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Abstract

From early education, we’ve learned a general problem-solving approach: abstract real-
world problems into models, solve them, and map the solutions back to reality. While
effective, this “Abstract, Solve, Map back” framework can sometimes overlook crucial
contextual details in real-world instances. This thesis addresses key questions in learning
probabilistic and causal models, and introduces algorithmic innovations to incorporate
contextual information as imperfect advice. The contributions are organized into three
themes: (I) Algorithms for learning probabilistic models, (II) Algorithms for learning
causal models, and (III) Algorithms with imperfect advice.

Theme (I) explores finite-sample distribution learning under the PAC framework. We
design algorithms for degree-bounded Bayesian networks, extending existing results for
linear Gaussian models and offering new insights for discrete polytrees. A key insight for
this theme is that structural sparsity enables more sample-efficient learning.

Theme (II) focuses on causal inference, specifically on the problems of causal graph
discovery via adaptive interventions and causal effect estimation. For discovery, we
provide the first full characterization for identifying causal graphs with interventions and
propose adaptive algorithms for various settings. For estimation, we derive PAC bounds
for covariate adjustments and develop algorithms to find small adjustment sets. The key
idea is that reframing certain causal problems as graph learning or distribution learning
tasks allows us to leverage tools from graph theory and statistics respectively.

Theme (III) studies algorithms that utilize instance-specific side-information, explored
through the framework of learning-augmented algorithms. Inspired by the property testing
insight that “testing can be cheaper than learning”, we introduce the TestAndAct frame-
work for using imperfect advice. This approach incorporates a test to assess the quality
of the advice and adapts the algorithm’s behavior accordingly. We instantiate variants of
this idea to improve competitive ratios in online bipartite matching under random arrivals,
reduce sample complexity in learning multivariate Gaussians, and minimize interventions
for learning causal graphs. Our methods provide performance guarantees that scales with
the quality of the advice, without requiring prior knowledge of its accuracy.
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Chapter 1

Overview of thesis

“The important thing is not to stop questioning. Curiosity has its own reason
for existence. One cannot help but be in awe when he contemplates the
mysteries of eternity, of life, of the marvelous structure of reality. It is enough
if one tries merely to comprehend a little of this mystery each day.”

- Albert Einstein in Death of a Genius [Mil55]

Since our early education, we have been taught a very general problem solving frame-
work that helps us tackle complex real-world issues: model real world problems into their
clean abstract counterparts which we can solve, then map back the solutions to the real
world instances; see Fig. 1.1. For example, let us consider the toy problem of finding a
word in a dictionary. This can be modelled as searching for an element in a sorted array of
length n. Then, we see that we can our problem by simulating binary search by querying
Θ(log n) pages in the dictionary. This paradigm of “Abstract, Solve, and Map back” is
highly effective because it allows us to simplify and address complex, nuanced problems
by reducing them to well-understood problems with established solutions. This is why
educational systems emphasize teaching methods for solving general problems, equipping
us with tools to tackle a wide range of real-world challenges through effective modeling.

Finding a
word in a
dictionary

Searching
over length n
sorted array

Binary search:
Θ(log n) queries

Simulate by flipping
dictionary pages

Abstract

Solve

Map back

Real world

Abstract
model world

Figure 1.1: The general “Abstract, Solve, Map back” problem solving framework
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CHAPTER 1. OVERVIEW OF THESIS 2

To address the complexities of real-world phenomena, two widely studied abstract
models have proven effective: probabilistic models for prediction tasks and causal models
for understanding the effects of interventions on systems.

Probabilistic models are built on the foundation of probability theory, which provides
a mathematical framework to handle uncertainty. These models are particularly useful
when we aim to capture the variability in observed data or make predictions in the presence
of incomplete information. By representing the world through random variables and their
distributions, probabilistic models allow us to quantify uncertainty, compute the likelihood
of various outcomes, and infer hidden structures from data. Common examples include
Bayesian networks [Pea88], Markov chains [Nor97], Hidden Markov Models (HMMs)
[RJ86], and Gaussian Mixture Models (GMMs) [Rey15]. Based on the characteristics of
the problem of interest, certain models may be more useful than others.

In contrast, causal models are based on the theory of causal inference [Rub74, SN90,
Sek09, Pea09a] and seek to move beyond simple correlations, aiming to capture the under-
lying mechanisms that drive relationships between variables of interest. It is well-known
that causal thinking requires one to go beyond statistical inference as there are funda-
mentally unanswerable questions given only observational data such as “how does the
distribution change if I intervene on a particular variable in a particular way?” (interven-
tional question) or “given that the patient died, would he/she have lived if we administered
a different treatment?” (counterfactual question). [PM18, BCII22] provide excellent
exposition and examples on this separation phenomenon through the “causal hierarchy”.

Setting aside modeling concerns, the generality of the “Abstract, Solve, Map back”
paradigm (Fig. 1.1) often means we overlook instance-specific details that could potentially
improve our problem-solving approach. In the dictionary example, we could have utilized
additional information such as letter frequency tables, sought predictions from a machine
learning model such as ChatGPT, or consulted a friend who recently looked up a nearby
word. For instance, if we are searching for the word “Heuristic”, we might disregard a
prefix of the dictionary proportional to the words starting with letters A to G. Alternatively,
if a friend found the word “Happy” on page 400, then they might suggest us to search
in that vicinity. In fact, we can principally account for such an advice and design an
algorithm1 which provably uses O(log |x− x∗|) queries, where x∗ is the true page which
the element we are interested in lies in and |x−x∗|measures the advice error; see Fig. 1.2.
Observe that this reverts toO(log n) in the worst case but we could conceivably use much
less queries when the advice x is of high quality, i.e. when x and x∗ are close.

This thesis tackles some of the fundamental and basic questions regarding the learning
of probabilistic and causal models, as well as exploring the idea of principally incorporating
imperfect advice in different problems. Throughout my Ph.D., I have made contributions to
various settings in this problem space, some of which are highlighted via the Venn diagram

1See https://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search

https://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search
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Finding a
word in a
dictionary

Searching
over length n
sorted array

Algorithm with
imperfect advice:

O(log |x − x∗|) queries

Simulate by flipping
dictionary pages

Abstract

Solve

Map back

Real world

Abstract
model world

It’s on
page x

Figure 1.2: Extending the general “Abstract, Solve, Map back” framework by designing a
new algorithm that can principally exploit an advice in the dictionary example

in Fig. 1.3: (I) [BCG+22, DDKC23, CYBC24, BCGM25]; (II) [CSB22, CS23c, CS23b,
CS23a, CSU24, CSBS25]; (III) [CGLB24, CL24]; (IV) [BCGJG24]; (V) [CGB23].

Causal
models

Probabilistic
models

Algorithms with
imperfect advice

(I)

(II)

(IV)

(V)
(III)

(a) Overview of the themes of this thesis

Causal
models

Probabilistic
models

Algorithms with
imperfect advice

(b) Theme 1: Learning probabilistic models

Causal
models

Probabilistic
models

Algorithms with
imperfect advice

(c) Theme 2: Learning causal models

Causal
models

Probabilistic
models

Algorithms with
imperfect advice

(d) Theme 3: Utilizing imperfect advice

Figure 1.3: The three themes covered in this thesis

In the rest of this chapter, we provide high level introductions to each theme explored
in this thesis and discuss some of the contributions made within the respective themes.
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1.1 Theme 1: Learning probabilistic models

Classic results in statistics show asymptotic convergence of estimators in the limit of large
data. A natural question is how well do such methods work under finite sample scenarios
in the real-world settings. We consider this from the viewpoint of distribution learning
[KMR+94] under the Probably Approximately Correct (PAC) learning model [Val84].
Given sample access to an unknown underlying distribution P , the goal here is to learn a
distribution P̂ that is close (in total variational distance) to the ground-truth distribution
P , using an efficient algorithm, i.e. dTV(P , P̂) ≤ ε with success probability at least 1− δ.
Here, pointwise convergence of the distributional parameters is no longer a requirement
and the aim is rather to approximately learn the induced distribution. This latter relaxed
objective may be achievable when the former may not be (e.g. for ill-conditioned systems)
and can be the more relevant requirement for downstream inference tasks.

This part of the thesis focuses on learning Bayesian networks, a type of probabilistic
graphical model used to model beliefs in a wide variety of domains, e.g. see [JN07,
KF09, Pea09b] and references therein. A key insight underlying my results is that one can
design more sample efficient procedures when the variables have structural relations that
admit a sparse Bayesian network representation. Sparsity is a common and very useful
assumption for statistical learning problems; see [HTW15] for an overview of the role of
sparsity in regression. In particular, we study sparsity from the popular lens of bounded
in-degree [Das97, BCD20] as it naturally reflects the belief that each variable is affected by
a small number of variables in a correct model. In Chapter 3, we study this problem in the
setting of linear Gaussian Bayesian networks over n variables [BCG+22]. WhileΘ(n2/ε2)

samples are known to be necessary and sufficient (e.g. see [ABDH+20, Appendix C]), we
generalized this sample complexity bound to Θ̃(nd/ε2) samples when we are guaranteed
thatP is described by a known Bayesian network with maximum in-degree d. Meanwhile,
in Chapter 4, we establish finite-sample guarantees for efficient proper learning of discrete
distributions described by bounded-degree polytrees, a subclass of Bayesian networks
where the graph is a tree if we ignore the edge directions [CYBC24]. Prior to our
work, the only known results for learning polytree with finite sample guarantees is for
1-polytrees [BGP+23, DP21] where the Bayesian network has maximum in-degree of 1.
We generalized this by designing a PAC-learner algorithm that recovers d-polytrees under
certain assumptions.
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1.2 Theme 2: Learning causal models

Understanding the world and the impact of algorithms through a causal lens is becoming
increasingly important as automated techniques are being operationalized more widely.
A central problem in causality is to distinguish causes from effects in large environments
and learning causal relationships from data is an important problem with applications in
many areas such as medicine, biology, genetics, econometrics, and philosophy [Hoo90,
Rei91, KWJ+04, Woo05, RW06, ES07, SC17, RHT+17, POS+18]. There has also been
a growing interest in the machine learning community to use causal inference techniques
to improve generalizability to novel testing environments, e.g. see [LKC17, Sch22]. For
example, causal inference techniques have been used to design methods that generalize
to out-of-distribution samples [GUA+16, ABGLP19, Arj20]. Under the assumption that
there are no latent confounders, a common representation for causal models is via directed
acyclic graphs (DAGs) subject to causal operations such as do-calculus [Pea09b]; more
complicated graphical notations exist when there are hidden variables in the causal system.

In this part of the thesis, we focus on acyclic causal models primarily because of their
simplicity and interpretability as DAGs provide a natural and unambiguous framework for
modeling cause-and-effect relationships. More complicated causal models such as cyclic
causal models [BFPM21] and mixture of causal DAGs [SPU20] have been explored though
research in these areas is still relatively nascent. Under the acyclic causal model setting,
we study two fundamental problems in causal inference: structure learning and causal
effect estimation. The former aims to recover a graph G∗ which is causally representative
of the underlying distribution while the latter aims to estimate the effect of a variable given
an intervention on another.

Causal structure learning. In general, observational data can only recover the causal
DAG G∗ up to an equivalence class [Pea09b, SGS00]. Hence, if one wants to avoid mak-
ing parametric assumptions about the causal mechanisms, the only recourse is to obtain
experimental data from interventions [EGS05, EGS06, Ebe10]. In practice, interventions
may correspond to randomized controlled trials or performing certain gene knockout oper-
ations. Under some standard causal assumptions, we can abstract this as a graph learning
problem with specialized causal graph manipulation operations. In Chapter 6, we gave a
complete characterization for a set of adaptive interventions that can correctly identify G∗

amongst its observational equivalence class, and also improved the (then) state-of-the-art
search algorithm running as much as 10x faster in certain settings whilst having stronger
theoretical guarantees [CSB22]. Our characterization also recovers several existing re-
sults in causal graph discovery in a clean unified perspective. Prior to this work, only
approximation bounds on the size of the interventional set were known, which impeded the
development of algorithms with provable guarantees. We have also extended line of work
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to other settings to address practical concerns and natural questions such as “what if we
only care about the relations between a subset of variables?” [CS23c], “can we optimize
for total cost incurred if interventions have varying node-specific costs?” [CS23b], “what
is the optimal trade-off between adaptivity and total number of interventions required?”
[CS23a], and “what if interventions have off-target effects?” [CSU24].

Causal effect estimation. Here, one wishes to estimate the interventional distribution
of Y when X is set to x, which can be written as Px(y) notationally. Accurate estimates
of such causal effects play a key role in decision-making across applications such as
healthcare, economics, and operations. The solution to this problem is traditionally
conceptualized as a two-step process: first estimate a graph Ĝ, then apply closed-form
graphical criteria to Ĝ. The first step is known as causal discovery (a.k.a. structure
learning, what we addressed in the paragraph above) and the second step is known as
causal identifiability where one has to output an expression of an interventional query
Px(y) given a causal graph G∗, or correctly determine that there exists no such expression
for some distribution represented by G∗. Each of these two steps are independent topics of
intense research and the second step typically treats the first as a black-box tool and fully
trusts its output. Unfortunately, such a two-step approach is suboptimal for estimating
Px(y). Firstly, to correctly learn the causal graph G∗, one may need strong assumptions on
the underlying distribution P . Secondly, the graphical characterization results for causal
identifiability do not apply to an erroneous graph, but a huge number of samples may be
needed to correctly learn the causal graph G∗ since it is difficult to tell whether an edge
is actually missing or is just very “weak”. In the absence of randomized experiments, a
common approach to estimating causal effects uses covariate adjustment. In Chapter 7, we
study covariate adjustment for discrete distributions from the PAC learning perspective,
assuming knowledge of a valid adjustment set Z, which might be high-dimensional
[CSBS25]. Our first main result PAC-bounds the estimation error of covariate adjustment
by a term that is exponential in the size of the adjustment set; it is known that such a
dependency is unavoidable even if one only aims to minimize the mean squared error.
Motivated by this result, we introduce the notion of an ε-Markov blanket, give bounds
on the misspecification error of using such a set for covariate adjustment, and provide
an algorithm for ε-Markov blanket discovery; our second main result upper bounds the
sample complexity of this algorithm. Furthermore, we provide a misspecification error
bound and a constraint-based algorithm that allow us to go beyond ε-Markov blankets to
even smaller adjustment sets. Our third main result upper bounds the sample complexity
of this algorithm, and our final result combines the first three into an overall PAC bound.
Altogether, our results highlight that one does not need to perfectly recover causal structure
in order to ensure accurate estimates of causal effects.
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1.3 Theme 3: Utilizing imperfect advice

Here, we study algorithms that extend the “Abstract, Solve, and Map back” approach,
as portrayed in Fig. 1.2, by incorporating useful contextual information about the actual
real-world instances that we are solving. Instance-specific advice can come from machine
learning predictions or domain experts, and there is no general restriction on the type and
on quality assurance of the provided advice. The design and analysis of such methods are
often explored under the framework of learning-augmented algorithms2 [MV22] where
the typical performance measures are consistency and robustness which quantify the
two extremes of perfect advice and arbitrarily bad advice. Ideally, one would want to
design methods with high consistency while having robustness no worse than advice-free
baselines. A closely related subfield is that of data-driven algorithms [Bal20, GR20] where
one aims to design parameterized algorithms whose parameters are pre-tuned based on
some training data or information about the data distribution.

Motivated by the insight from the property testing literature that “testing can be cheaper
than learning”, this thesis introduces the framework of TestAndAct for using imperfect
advice in learning-augmented algorithms. On a high level, we incorporate a suitable
test to determine the quality of the given advice and “act suitably” in our algorithmic
design. We instantiate variants of this idea to obtain better competitive ratios in online
bipartite matching under random arrivals [CGLB24] in Chapter 9, use less samples in
learning Gaussians [BGGJ+24] in Chapter 10, and use less interventions to learn causal
graphs [CGB23] in Chapter 11. Crucially, our methods provide guarantees that interpolate
between the extremes of perfect advice and arbitrarily bad advice depending on the quality
of the given advice, without knowing its quality as input a priori.

2The website https://algorithms-with-predictions.github.io/ tracks recent progress in this research area.

https://algorithms-with-predictions.github.io/
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1.4 Roadmap of thesis

The remainder of the thesis is organized around the three major themes discussed above.
Given the diversity of these themes, we will provide a contextualized conclusion chapter
for each part.

• We begin with a generalized preliminaries in Chapter 2 to introduce some notation,
definitions, and basic results that are relevant across the themes.

• Part I consists of two chapters, covering results related to learning probabilistic
models. In particular, we focus on designing sample-efficient algorithms that utilize
i.i.d. observational samples from an unknown underlying distributionP and produce
an estimated distribution P̂ which is “close” to P . Chapter 3 studies the setting
whereP is described by a Gaussian Bayesian network with unknown parameters and
the goal is to compute good estimates for these parameters. Meanwhile, Chapter 4
explores the learning of bounded-degree polytrees, a rich class of high-dimensional
probability distributions and a subclass of Bayesian networks.

• Part II consists of two chapters, covering results related to learning causal mod-
els. As discussed earlier, there are two fundamental problems in causal inference:
structure learning and causal effect estimation. Chapter 6 investigates the former
problem using adaptive interventions and characterizes the conditions for a set of
interventions to recover an underlying causal structure. On the other hand, Chap-
ter 7 provides PAC-style estimation bounds for the latter problem while relying on
a minimal set of causal assumptions.

• Part III consists of three chapters, covering results related to learning using imperfect
advice. Chapter 9 explores the use of imperfect advice in the context of the classic
online bipartite matching problem and introduces the TestAndAct framework.
We then show how to apply this framework to tackle problems related to learning
probabilistic (Chapter 10) and causal (Chapter 11) models.

Remark 1.1 (Reading notes). We recommend readers to skim the notations in Section 2.1
and refer back to Chapter 2 as and when needed. Readers are encouraged to read the
first 3 sections (i.e. “Introduction”, “Our main results”, and “Technical overview”) to get
a high-level appreciation of the contributions of each content chapter. Details and proofs
will follow in subsequent sections and the appendices.

To facilitate a more coherent presentation, this thesis only presents a selection of the
work done during my Ph.D.; please see Appendix D for a full list.



Chapter 2

Preliminaries

“Mathematics is written for mathematicians.”
- Nicolaus Copernicus in De revolutionibus orbium coelestium [Cop95].

“Often, the most important step is making the right notion, defining the right
notion. Once you have the right notion, you know, the rest of the theory,
theorems, proofs, [and] constructions follow.”

- Avi Wigderson, 2024, in Alan Turing: A TCS Role Model3

Readers are recommended to skim Section 2.1 and refer back to this chapter as and
when needed for relevant known definitions and results when reading subsequent chapters.
The results presented in this section are mostly textbook level material. For completeness,
we also present some proofs as a suitable citation could not be found at the time when we
were using them for our own work.

2.1 Typography, abbreviations, and notation

Throughout this thesis, we use typography in the following way:

Typography Representations

Lowercase letters Scalar, set element, random variable instantiation
Uppercase letters Random variable

Bolded lowercase letters Vector, set
Bolded uppercase letters Set/Vector of random variables, matrix

Calligraphic letters Probability distribution, graph, set of sets
Bolded calligraphic letters Set of probability distributions

Small caps Algorithm name

3Turing Award Lecture: “Alan Turing: A TCS Role Model”.
Available at https://www.youtube.com/live/f2NiGO8zC1c?t=3211s; see the 53min 31sec mark

9

https://www.youtube.com/live/f2NiGO8zC1c?t=3211s
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Intuitively, we use non-bolded versions for singletons, bolded versions for collections of
items, and calligraphic for more complicated objects. The context should be clear enough
to distinguish between various representations of the same typography. We also employ
the following abbreviations:

Abbreviations Full form

w.l.o.g. without loss of generality
w.p. with probability

w.h.p. with high probability
a.k.a. also known as
i.i.d. independent and identically distributed
w.r.t. with respect to

We use N and R to represent the set of natural and real numbers respectively. To
denote natural numbers without 0, we use N+ = N\{0}. For any natural number n ∈ N+,
we write [n] as shorthand for the set {1, 2, . . . , n}. We also write poly(n) to mean “some
polynomial in n”, exp(n) to mean “some exponential in n”, and employ the standard
asymptotic notations [Knu76, GK90] such as O(·), Ω(·), and Θ(·). We also write Õ(·),
Ω̃(·), and Θ̃(·) to hide logarithmic factors. We generally use superscript ∗ to denote ground
truth and hats ·̂ to denote estimated quantities.

The indicator function1predicate is 1 if the predicate is true and 0 otherwise. The notation
∧ and ∨ refer to logical-AND and logical-OR respectively. We denote the domain of the
variable V as ΣV , and extend this to sets by letting ΣA = ΣV1 × . . . × ΣVk

, where
A = {V1, . . . , Vk} and × denotes the Cartesian product. To lighten notation, we write
P(A = a) asP(a) as shorthand and summations are always taken over the entire alphabet
of the index, i.e.

∑
a f(a) denotes

∑
a∈ΣA

f(a) for some function f over possible values
a of variables A = {V1, . . . , Vk}.

Consider two arbitrary sets A and B. We denote the powerset of A by 2A and denote
the set of all subsets of A of size k ∈ N+ by

(
A
k

)
. A ⊆ B means that A is a (possibly

improper) subset of B while A ⊂ B (or A ⊊ B) means that A is a proper subset of B.
The notation A ⊔B refers to the disjoint union of sets A and B, i.e. A ⊔B = A ∪B

and A ∩B = ∅.
Finally, as a remark, note that this thesis mostly consider graphs G where vertices V

correspond to variables X of a multivariate distribution P (except graphs in Chapter 9).
As such, we may switch between using X and V to refer to variables/nodes/vertices
interchangeably, but it should be clear from context.
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2.2 Linear algebraic and combinatorial notions

2.2.1 Vectors

Definition 2.1 (L1 norm of a vector). Letx ∈ Rd be an arbitrary d-dimensional real vector
with i-th entry xi = xi. Then, the ℓ1 norm of x is defined as ℓ1(x) = ∥x∥1 =

∑d
i=1 |xi|.

Definition 2.2 (L2 norm of a vector). Letx ∈ Rd be an arbitrary d-dimensional real vector
with i-th entry xi = xi. Then, the ℓ2 norm of x is defined as ℓ2(x) = ∥x∥2 =

√∑d
i=1 x

2
i .

Lemma 2.3 (Relation between L1 and L2 vector norms; e.g. see Exercise 5.4.P3 of [HJ12]).
Let x ∈ Rd be an arbitrary d-dimensional real vector. Then, ∥x∥2 ≤ ∥x∥1 ≤

√
d · ∥x∥2.

Definition 2.4 (Projected vector). Let x = (x1, . . . ,xd) ∈ Rd be a d-dimensional vector
and I = {i1, . . . , iw} ⊆ [d] be a subset of 1 ≤ w ≤ d indices, where i1 < . . . < iw. Then,
we define xI = (xi1 , . . . ,xiw) ∈ Rw as the projection of the vector x to the coordinates
indicated by I .

2.2.2 Matrices

We write the d× d dimensional identity matrix by Id. For an arbitrary matrix A ∈ Rm×n,
we denote the smallest and largest eigenvalues of A by σmin(A) and σmax(A) respectively.
The rank of a matrix is the maximum number of linearly independent rows or columns in
the matrix. When m = n, A is a square matrix and has trace Tr(A) =

∑n
i=1 ai,i. If A is

invertible, we write A−1 to denote its inverse. To convert between matrices and vectors,
we use the notations vec(·) and mat(·). For example, we vectorize A via

vec(A) = (A1,1, . . . ,A1,n,A2,1, . . . ,A2,n, . . . ,Am,1, . . . ,Am,n) ∈ Rmn ,

and unvectorize it via mat(vec(A)) = A.
The following are some facts about matrix norms and the relations between them; e.g.

see [HJ12]. Let A ∈ Rm×n be an arbitrarym×n real matrix of rank r ≤ min{m,n}with
(i, j)-th entries Ai,j = ai,j and singular values σ1(A), . . . , σmin{m,n}(A). It is common
to use σmin(A) and σmax(A) to denote the smallest and largest singular values of A.

The Frobenius norm of A is defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2i,j =

√√√√min{m,n}∑
i=1

(σi(A))2 = ∥vec(A)∥2

The spectral norm of A is defined as

∥A∥ = ∥A∥2 = σmax(A) = max
x̸=0

∥Ax∥2
∥x∥2
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It is known that ∥A∥2 ≤ ∥A∥F ≤
√
r · ∥A∥2 ≤

√
min{m,n} · ∥A∥2.

Supposem = n, so A ∈ Rn×n is a square matrix with eigenvalues λ1(A), . . . , λn(A).
If A is symmetric, i.e. A⊤ = A, then its singular values are the absolute values of its
eigenvalues. Furthemore, if A is an invertible, then 1

∥A∥ = 1
σmax(A)

≤ 1
σmin(A)

= ∥A−1∥.

Lemma 2.5 (Upper bound on Frobenius norm of matrix product). LetA ∈ Rm×n andB ∈
Rn×k be two arbitrary real matrices. Then, ∥AB∥F ≤ min{∥A∥2∥B∥F , ∥A∥F∥B∥2}.

Lemma 2.6 ([RV09]; Theorem 6.1 and Equation 6.10 in [Wai19]). Let ℓ ≥ d and G ∈
Rℓ×d be a matrix with i.i.d. N(0, 1) entries. Denote σmin(G) as the smallest singular
value of G. Then, for any 0 < t < 1, we have Pr

(
σmin(G) ≥

√
ℓ(1− t)−

√
d
)
≤

exp (−ℓt2/2).

Lemma 2.7 (Trace inequality). For any three matrices A,B,C ∈ Rd×d, we have
Tr(ABC) ≤ ∥vec(BA)∥1 · ∥C∥2.

Proof. Let λ1(M ), . . . , λd(M ) denote the eigenvalues of a matrix M ∈ Rd×d.

Tr(ABC) ≤
∑
i

λi(AB) · λi(C) (by von Neumann trace inequality)

=
∑
i

λi(BA) · λi(C) (e.g. see Theorem 1.3.22 of [HJ12])

≤
∑
i

|λi(BA) · λi(C)|

≤

∥∥∥∥∥∥∥∥

λ1(BA)

...
λd(BA)


∥∥∥∥∥∥∥∥
1

·

∥∥∥∥∥∥∥∥

λ1(C)

...
λd(C)


∥∥∥∥∥∥∥∥
∞

(Hölder’s inequality)

=
∑
i

|λi(BA)| ·max
i
λi(C) (Definitions of vector ℓ1 and ℓ∞ norms)

≤
∑
i

|λi(BA)| · ∥C∥2 (Definition of matrix spectral norm)

It remains to argue that
∑

i |λi(BA)| ≤ ∥vec(BA)∥1. To this end, consider the
singular value decomposition (SVD) of BA = UΣV ⊤ with unitary matrices U ,V and
diagonal matrixΣ = diag(σ1, . . . , σd). Let us denote the eigenvalues ofBA by σ1, . . . , σd
and the columns of BA by z1, . . . ,zd ∈ Rd. Then,∑

i

|λi(BA)| ≤
∑
i

σi (e.g. see Equation (7.3.17) in [HJ12])

= Tr(Σ) (By definition of Σ)

= Tr(V ⊤V U⊤UΣ) (Since U and V are unitary matrices)

= Tr(V U⊤UΣV ⊤) (By cyclic property of trace)

= Tr(V U⊤BA) (By SVD of BA)
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=
d∑

i=1

(V U⊤zi)i (By definition of trace)

≤
d∑

i=1

∥V U⊤zi∥2

(Since (V U⊤zi)
2
i is just one term in summation of ∥V U⊤zi∥22)

=
d∑

i=1

∥zi∥2 (Since U and V are unitary matrices)

≤
d∑

i=1

∥zi∥1 (Since ℓ2 ≤ ℓ1)

=
d∑

i=1

d∑
j=1

|(BA)i,j| (By definition of vector ℓ1 norm)

= ∥vec(BA)∥1 (By definition of ∥vec(BA)∥1)

Putting together, we get Tr(ABC) ≤
∑

i |λi(BA)| · ∥C∥2 ≤ ∥vec(BA)∥1 · ∥C∥2 as
desired.

Lemma 2.8. For any two matrices A,B ∈ Rd×d, we have

• ∥vec(A+B)∥1 ≤ ∥vec(A)∥1 + ∥vec(B)∥1, and

• ∥vec(AB)∥1 ≤ ∥vec(A)∥1 · ∥vec(B)∥1

Proof. To see ∥vec(A+B)∥1 ≤ ∥vec(A)∥1 + ∥vec(B)∥1, observe that

∥vec(A+B)∥1 =
d∑

i=1

d∑
j=1

|Aij +Bij|

≤
d∑

i=1

d∑
j=1

|Aij|+
d∑

i=1

d∑
j=1

|Bij| = ∥vec(A)∥1 + ∥vec(B)∥1

To see ∥vec(AB)∥1 ≤ ∥vec(A)∥1 · ∥vec(B)∥1, observe that

∥vec(AB)∥1 =
d∑

i=1

d∑
j=1

d∑
k=1

|AijBjk|

≤

(
d∑

i=1

d∑
j=1

|Aij|

)
·

(
d∑

j=1

d∑
k=1

|Bjk|

)
= ∥vec(A)∥1 · ∥vec(B)∥1

Lemma 2.9 (Chapter 5.6 of [HJ12]). Let A and B be two square real matrices where A

is an invertible matrix. Then, ∥AB∥ = ∥BA∥.
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Proof. Exercise 5.6.P58(b) of [HJ12] tells us that ∥AB∥ = ∥BA∥ when A normal and
B is Hermitian. Since normal matrices are invertible and every real matrix is Hermitian,
the claim follows.

2.3 Probabilistic notions

2.3.1 Concentration bounds

Let us recap some basic concentration bounds and techniques used for bounding unlikely
bad events. We say an event E holds with high probability4 (w.h.p.) in n if Pr[E ] ≥ 1 −

1
poly(n)

. Markov’s inequality is one of the simplest concentration bounds that makes almost
no assumptions on the random variable. By using Markov’s inequality and additional
assumptions, one can show stronger concentration bounds such as Chebyshev’s inequality,
Chernoff bounds and Hoeffding bounds. It is also known that classes of random variables
such as sub-Gaussian and sub-exponential random variables yield strong tail bounds.
Interested readers may check out resources such as [Ver18, Chapter 2] to learn more.

Theorem 2.10 (Markov’s inequality). If X is a non-negative random variable and t > 0,
then Pr(X ≥ t) ≤ E(X)

t
.

Theorem 2.11 (Chebyshev’s inequality). If X is a random variable with finite variance
and t > 0, then Pr(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

Theorem 2.12 (Chernoff bound). For independent Bernoulli variables X1, . . . , Xn, let
X =

∑n
i=1Xi. Then

Pr(X ≥ (1 + ε) · E(X)) ≤ exp

(
−ε

2 · E(X)

3

)
for 0 < ε

Pr(X ≤ (1− ε) · E(X)) ≤ exp

(
−ε

2 · E(X)

2

)
for 0 < ε < 1

By union bound, for 0 < ε < 1, we have

Pr(|X − E(X)| ≥ ε · E(X)) ≤ 2 exp

(
−ε

2 · E(X)

3

)
One can convert expectation results to high probability ones by paying an extra

O(log n) factor via standard applications of Markov and Chernoff bounds: each event
succeeds with constant probability via Markov inequality, so Chernoff bounds ensure that
at least one out of O(log n) independent runs succeeds with high probability.

When dealing with multiple bad events E1, . . . , En, we wish to upper bound the event
E1 ∪ . . . ∪ En that at least one of them occurs. If this probability is small, then we can be

4See https://en.wikipedia.org/wiki/With_high_probability

https://en.wikipedia.org/wiki/With_high_probability
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sure that no bad event occurred. When n = 2, the inclusion–exclusion principle5 tells us
that Pr[E1 ∪ E2] = Pr[E1] + Pr[E2] − Pr[E1 ∩ E2]. Since probabilities are non-negative,
one can conclude that Pr[E1∪E2] ≤ Pr[E1]+Pr[E2] even without knowing how the events
are correlated. Generalizing this for n > 2 yields the union bound.

Theorem 2.13 (Union bound). For any countable set of events E1, E2, . . ., we have
Pr(∪∞i=1Ei) ≤

∑∞
i=1 Pr(Ei).

Union bound is by no means tight and one will get tighter bounds if information about
the event intersections is known. However, union bound is very easy to apply as individual
event probabilities are typically known. If each event occurs with exponentially small
probability (as in the case of many concentration bounds), then the union bound still gives
an exponentially small probability as long as the number of events is not “too many”.

Hoeffding’s lemma provides a bound on the moment generating function of a bounded
random variable, serving as a key tool in concentration inequalities. In particular, it plays
an important role in deriving tail bounds for sums of independent random variables.

Lemma 2.14 (Hoeffding’s lemma; [Hoe94]). Let X be any real-valued random variable
in the range [a, b]. Then, for any λ ∈ R, we have E

(
eλ(X−E(X)

)
≤ exp

(
λ2(b−a)2

8

)
.

2.3.2 Distributional distances

Definition 2.15 (Total variational (TV) distance).
For two continuous distributions P and Q over domain X ,

dTV(P ,Q) =
1

2

∫
x∈X
|P(x)−Q(x)| dx

For two discrete distributions P and Q over [n] for some n ∈ N+,

dTV(P ,Q) =
1

2

n∑
x=1

|P(x)−Q(x)|

Definition 2.16 (Kullback–Leibler (KL) divergence).
For two continuous distributions P and Q over X ,

dKL(P ,Q) =
∫
x∈X
P(x) log

(
P(x)
Q(x)

)
dx

For two discrete distributions P and Q over [n] for some n ∈ N+,

dKL(P ,Q) =
n∑

x=1

P(x) log
(
P(x)
Q(x)

)
5See https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle

https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle
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Note that KL divergence is not symmetric in general.

Definition 2.17 (Squared Hellinger distance).
For two continuous distributions P and Q over domain X ,

d2
H(P ,Q) = 1−

∫
x∈X

√
P(x)Q(x) dx

For two discrete distributions P and Q over [n] for some n ∈ N+,

d2
H(P ,Q) =

1

2

n∑
x=1

√
P(x)Q(x)

Instead of directly dealing with total variational distance, a common analytic technique
is to bound the KL divergence and then appeal to the Pinsker’s inequality [Tsy09, Lemma
2.5, page 88] to upper bound dTV via dKL. This is because KL divergence tensorizes
(while TV does not) which enables node-wise analyses.

Theorem 2.18 (Pinsker’s inequality). For any two distributions P and Q on the same
measurable space,

dTV(P ,Q) ≤
√

dKL(P ,Q)/2

Thus, if s(ε) samples are needed to learn a distribution Q such that dKL(P ,Q) ≤ ε,
s(ε2) samples are needed to ensure dTV(P ,Q) ≤ ε.

Definition 2.19 ((Conditional) Mutual Information). Fix a distribution P . For random
variables X and Y with domains ΣX and ΣY respectively, their mutual information is
defined as

I(X;Y ) =
∑

x∈ΣX ,y∈ΣY

P(x, y) · log
(
P(x, y)
P(x) · P(y)

)
.

Conditioning on a third random variable Z with domain ΣZ , the conditional mutual
information is defined as

I(X;Y | Z) =
∑

x∈ΣX ,y∈ΣY ,z∈ΣZ

P(x, y, z) · log
(
P(x, y, z) · P(z)
P(x, z) · P(y, z)

)
.

2.3.3 Learning concepts and terminology

The Probably Approximately Correct (PAC) learning model [Val84] is a framework in
computational learning theory that formalizes the concept of learning from examples. It
defines a learning algorithm’s ability to learn a target concept from a class of functions
within specified bounds of accuracy and confidence. In the context of learning distri-
butions, the PAC learning framework measures how many samples from an unknown
underlying distribution P it takes for an algorithm to recover a close distribution P̂ , with
good success probability, e.g. Pr(dTV(P , P̂) ≤ ε) ≥ 1− δ.



CHAPTER 2. PRELIMINARIES 17

Proper versus improper learning. When the underlying P is assumed to belong to a
certain class of distributions C, proper learning restricts the learner to produce an estimate
P̂ ∈ C while improper learning allows estimates to belong outside of C.

Realizable versus agnostic (non-realizable) setting. Given a class of distributions C
which the learner has to produce an estimate P̂ ∈ C from, the realizable setting refers to
the case where P ∈ C while the agnostic setting does not have this restriction.

2.3.4 Scheffé tournament

The classic method to select an approximate distribution amongst a set of candidate
distributions is via the Scheffé tournament of [DL01], which provides a logarithmic
dependency on the number of candidates.

Given sample access to an input distribution and explicit access to some candidate
distributions, the Scheffé-based algorithm of [DK14] outputs with high probability a
candidate distribution that is sufficiently close to the input distribution.

Theorem 2.20 ([DK14]). Fix any accuracy parameter ε > 0 and confidence parameter
δ > 0. Suppose there is a distribution P over variables X and a collection of ex-
plicit distributions Q = {Q1, . . . ,Qm}, where each distribution Qi is defined over the
same set X and there exists some Q∗ ∈ Q such that dTV(P ,Q∗) ≤ ε. Then, there
is an algorithm that uses O

(
log 1/δ

ε2
· logm

)
samples from P and returns some Q ∈ Q

such that dTV(P ,Q) ≤ 10ε with success probability at least 1 − δ and running time
poly(m, 1/δ, 1/ε2).

The result of [DK14] is actually more general than what we stated here. For instance,
they only require sample access to the distributions in Q = {Q1, . . . ,Qm} while our
setting is simpler as we will actually have explicit descriptions of each of these distributions.

2.3.5 Nets and covering

In approximate learning, we are often interested in recovering a point in some Rd space
which is close to the some true unknown point. As there are infinitely many points
in Rd, a useful trick is to discretize the space into sufficiently few points via ε-nets so
that one can apply techniques such as Scheffé tournament (Section 2.3.4) to search for
a “sufficiently good” point or union bound (Theorem 2.13) to argue that the total failure
probability is “sufficiently small”. In this thesis, we are mainly interested in the metric
space on the set of d-dimensional reals Rd with metric function being the ℓ2 distance
dist(x,y) = ℓ2(x,y) = ∥x− y∥2 for any x,y ∈ Rd.

Definition 2.21 (ε-net and covering number). Let (X, dist) be a metric space with set
X and metric function dist. For any ε > 0, a subset S ⊆ X is called an ε-net of X if
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every point in X is within distance ε from some point in S: ∀x ∈ X , ∃x0 ∈ S such that
dist(x, x0) ≤ ε. The covering number N (X, ε) is defined as the smallest ε-nets of X .

Theorem 2.22 (Bounds on covering number). Consider the metric space (Rd, ℓ2). Let
B(d, 1, r) = {x ∈ Rd : ∥x∥1 ≤ r} and B(d, 2, r) = {x ∈ Rd : ∥x∥2 ≤ r} be the ℓ1 and
ℓ2 Euclidean balls in Rd with radius r respectively. For any ε > 0,

•
(
1
ε

)d ≤ N (B(d, 2, 1), ε) ≤
(
1 + 2

ε

)d ≤ (3
ε

)d
• N (B(d, 1, r), ε) ≤ d

cr2

ε2 , for some absolute constant c > 0

Proof. See [Ver18, Proposition 4.2.13] and [Ver12, Chapter 4, Example 2.8] respectively.

ε r

Figure 2.1: A sample illustration of covering a 2-dimensional ℓ1 (in blue) and ℓ2 (in red)
balls of radius r with smaller ℓ2 balls of radius ε. Observe that the blue ε-balls suffice to
cover in the ℓ1 ball while the ℓ2 ball also requires the red ε-balls. The fact that the ℓ2 ball
incurs a larger covering number than the ℓ1 ball is exacerbated in higher dimensions.

2.3.6 Fano’s inequality

Fano’s inequality is a commonly used information-theoretic tool used to provide lower
bounds on the probability of error of any algorithm in estimating a discrete random variable
X given observations Y . Specifically, it relates the probability of producing an erroneous
estimate X̂ givenY with the conditional entropyH(X | X̂). [SC21] provides an excellent
introductory exposition on Fano’s inequality and its various applications. Here we state
the variant of Fano’s inequality where the unknown X is drawn uniformly from a set.
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Theorem 2.23 (Fano’s inequality). Fix a finite alphabet X and an arbitrary estimator.
Let X ∈ V be a discrete random variable in a hypothesis test and X̂ ∈X be an estimate
of X by the estimator given observations Y . If X is uniformly distributed over X , then

Pr(X ̸= X̂) ≥ 1− I(X; X̂) + 1

log |X|

where I(X; X̂) = H(X)−H(X | X̂) is the mutual information function.

The following inequality makes the Fano’s inequality more user-friendly since it re-
places the I(X; X̂) term with I(X;Y ). This is useful since it is typically easier to bound
I(X;Y ) as we know how Y is generated given X .

Lemma 2.24 (Data processing inequality). Suppose X , Y and X̂ form a Markov chain
X → Y → X̂ , where X and X̂ are independent given Y . Then, I(X;Y ) ≥ I(X; X̂).

2.4 Some common distributions and random variables

2.4.1 Gaussian distribution

It is known that the GaussianQ ∼ N(0, Σ̂) defined by the empirical covariance matrix Σ̂,
computed with O(n2/ε2) samples from P , is ε-close in TV distance to P with constant
probability. This sample complexity is also necessary for learning general n-dimensional
Gaussians and hence general Gaussian Bayesian networks on n variables.

Lemma 2.25 (Folklore; e.g. see Appendix C of [ABDH+20]). Fix ε, δ ∈ (0, 1). Given 2n

i.i.d. samplesx1, . . . ,x2n ∼ N(µ,Σ) for some unknown meanµ and unknown covariance
Σ, define empirical mean and covariance as

µ̂ =
1

2n

2n∑
i=1

xi and Σ̂ =
1

2n

n∑
i=1

(x2i − x2i−1)(x2i − x2i−1)
⊤

Then,

• When n ∈ O
(

d2+d log(1/δ)
ε2

)
, we have Pr

(
dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε

)
≥ 1− δ

• When n ∈ O
(

d+
√

d log(1/δ)

ε2

)
, we have Pr

(
(µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε2

)
≥ 1− δ

There are also some additional known properties about the empirical covariance per-
taining to eigenspaces.

Lemma 2.26 (Properties of empirical covariance; e.g. see Fact 3.4 of [KLSU19]). Let
Σ̂ ∈ Rd×d be the empirical covariance constructed from n i.i.d. samples from N(0,Σ)

for some unknown covariance Σ. Then,
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• When n = d, with probability 1, we have that Σ̂ and Σ share the same eigenspace.

• Let λ1 ≤ . . . ≤ λd and λ̂1 ≤ . . . ≤ λ̂d be the eigenvalues of Σ and Σ̂ respectively.

With probability at least 1− δ, we have λ̂1

λ1
≤ 1 +O

(√
d+log 1/δ

n

)
.

The following lemmas are known concentration results about Gaussian samples drawn
from N(0, Id).

Lemma 2.27. Suppose g1, . . . , gn ∼ N(0, Id). Then,

Pr

(∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

≥

√
2n log

(
2d

δ

))
≤ δ

Proof. Since g1, . . . , gn ∼ N(0, Id), we see that y = g1 + . . . + gn ∼ N(0, nId).
Furthermore, each coordinate i ∈ [d] of yi = (y1, . . . , yd) is distributed according to
N(0, n). By standard Gaussian tail bounds, we know that Pr(|yi| ≥ t) ≤ 2 exp

(
− t2

2n

)
for any i ∈ [d] and t > 0. So,

Pr

(∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

≥

√
2n log

(
2d

δ

))
= Pr

(
∥y∥∞ ≥

√
2n log

(
2d

δ

))

= Pr

(
max
i∈[d]
∥yi∥ ≥

√
2n log

(
2d

δ

))

≤
d∑

i=1

Pr

(
∥yi∥ ≥

√
2n log

(
2d

δ

))
(Union bound over all d coordinates)

≤ 2d exp

(
−
2n log

(
2d
δ

)
2n

)
(Setting t = 2n log

(
2d
δ

)
)

= δ

Lemma 2.28 (Lemma C.4 in [ABDH+20]; Corollary 5.50 in [Ver10]). Let g1, . . . , gn ∼
N(0, Id) and let 0 < ε < 1 < t. If n ≥ c0 · t

2d
ε2

, for some absolute constant c0, then

Pr

(∥∥∥∥∥ 1n
n∑

i=1

gig
⊤
i − Id

∥∥∥∥∥
2

> ε

)
≤ 2 exp(−t2d)

The next lemma simplifies the KL divergence between two Gaussians in the special
cases of identity covariance and equal means.
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Lemma 2.29 (KL divergence of two Gaussians). Given two d-dimensional multivariate
Gaussian distributions P ∼ N(µP ,ΣP) and Q ∼ N(µQ,ΣQ) where ΣP and ΣQ are
invertible, we have

dKL(P ,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
≤ 1

2
·
(
(µQ − µP)

⊤Σ−1
Q (µQ − µP) + ∥X∥2F

)
whereX = Σ

−1/2
Q ΣPΣ

−1/2
Q −Id with eigenvalues λ1, . . . , λd. In particular, dKL(P ,Q) =

1
2
∥µQ − µP∥22 when ΣP = ΣQ = Id and dKL(P ,Q) ≤ 1

2
∥X∥2F when µP = µQ.

Proof. Let P ∼ N(µP ,ΣP) and Q ∼ N(µQ,ΣQ) be two d-dimensional multivariate
Gaussian distributions where ΣP and ΣQ are full rank invertible covariance matrices.

By definition, the KL divergence between P and Q is

dKL(P ,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
(2.1)

Let us define the matrix X = Σ
−1/2
Q ΣPΣ

−1/2
Q − Id with eigenvalues λ1, . . . , λd. Note

that X is invertible because ΣP and ΣQ are invertible, so λ1, . . . , λd > 0. Then, Eq. (2.1)
can be upper bounded as

dKL(P ,Q) =
1

2
·
(
Tr(Σ−1

Q ΣP)− d+ (µQ − µP)
⊤Σ−1

Q (µQ − µP) + ln

(
detΣQ

detΣP

))
≤ 1

2

(
(µQ − µP)

⊤Σ−1
Q (µQ − µP) + ∥X∥2F

)
(2.2)

This is because Tr(Σ−1
Q ΣP) = Tr(Σ

−1/2
Q ΣPΣ

−1/2
Q ) = Tr(X + Id) = Tr(X)+ d and

− ln

(
detΣQ

detΣP

)
= ln det

(
Σ−1

Q ΣP
)
= ln det(X + Id) = ln

d∏
i=1

(1 + λi)

=
d∑

i=1

ln(1 + λi) ≥
d∑

i=1

(λi − λ2i ) = Tr(X)−
d∑

i=1

λ2i = Tr(X)− ∥X∥2F

where the inequality holds due to λ1, . . . , λd > 0.
When ΣP = ΣQ = Id, Eq. (2.1) reduces to dKL(P ,Q) = 1

2
∥µQ−µP∥22. Meanwhile,

when µP = µQ, Eq. (2.2) reduces to dKL(P ,Q) ≤ 1
2
(∥X∥2F ).

Finally, one can relate arbitrary Gaussians with the standard Gaussian through the
following lemma.

Lemma 2.30 (Theorem 2.2 in [Gut09])). Let X1, . . . ,Xp ∼ N(0,LL⊤) be p i.i.d. n-
dimensional multivariate Gaussians with covariance matrix LL⊤ ∈ Rn×n, i.e. L ∈ Rn×p.
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If X ∈ Rp×n is the matrix formed by stacking X1, . . . ,Xp as rows of X , then X = GL⊤

where G ∈ Rp×p is a random matrix with i.i.d. N(0, 1) entries.

The transformation stated in [Gut09, Theorem 2.2, page 120] is for a single multivariate
Gaussian vector, thus we need to take the transpose when we stack them in rows in
Lemma 2.30. Note that G and G⊤ are identically distributed.

2.4.2 Chi-square distribution

A closely related distribution to the Gaussian distribution is the chi-square distribution.

Lemma 2.31 (Equation 2.19 in [Wai19]). Let y =
∑n

k=1 z
2
k, where each zk ∼ N(0, 1).

Then, y ∼ χ2
n and for any 0 < t < 1, we have Pr

(
| y
n
− 1| ≥ t

)
≤ 2 exp (−nt2/8).

Lemma 2.32. Fix n ≥ 1 and d ≥ 1. Suppose we draw n samples X1, . . . ,Xn ∼
N(µ, Id), for some unknown mean µ ∈ Rd. Define Zn = 1√

n

∑n
i=1Xi and Yn = ∥Zn∥22.

Then,

1. Yn follows the non-central chi-squared distribution χ′2
d (λ) for λ = n∥µ∥22. This also

implies that E[Yn] = d+ n∥µ∥22 and Var(Yn) = 2d+ 4n∥µ∥22.

2. For any t > 0,

Pr(Yn > d+ λ+ t) ≤ exp

(
−d
2

(
t

d+ 2λ
− log

(
1 +

t

d+ 2λ

)))
≤ exp

(
− dt2

4(d+ 2λ)(d+ 2λ+ t)

)

3. For any t ∈ (0, d+ λ),

Pr(Yn < d+ λ− t) ≤ exp

(
d

2

(
t

d+ 2λ
+ log

(
1− t

d+ 2λ

)))
≤ exp

(
− dt2

4(d+ 2λ)2

)

Proof. The first item follows from the definition of the non-central chi-squared distribution,
noting that the random vector Zn is distributed as N(

√
n · µ, Id). The second and third

items follow from Theorems 3 and 4 of [Gho21] respectively.

2.4.3 Sub-Gaussian random variables

Sub-Gaussian random variables are a class of random variables that exhibit tail behavior
similar to a Gaussian distribution. They are characterized by their tight concentration
around the mean, and their moment generating function is bounded in a way that allows
for stronger tail bounds than those provided by Markov’s inequality.
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Definition 2.33 (Sub-Gaussian distribution; e.g. see Section 1.2 of [RH23]). A random
variable X is said to be sub-Gaussian with parameter σ2 if we have E(X) = 0 and
E
(
eλX
)
≤ exp

(
λ2σ2

2

)
for all λ ∈ R. If X ∼ subG(σ2), it is known that we have

Pr(|X| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
for any t ≥ 0.

Lemma 2.34 (Sub-Gaussian additivity; e.g. see Corollary 1.7 of [RH23]). For i ∈ [k],
let Xi ∼ subG(σ2

i ) be an independent sub-Gaussian random variable with parameter
σ2
i . Then, for any set of real coefficients a1, . . . , ak ∈ R, we have

(∑k
i=1 aiXi

)
∼

subG(
∑k

i=1 a
2
iσ

2
i ).

Lemma 2.35. Let X and Y be discrete random variables. If (X | Y = y) ∼ subG(σ2
y)

for every y ∈ ΣY , then X ∼ subG(maxy∈ΣY
σ2
y).

Proof. By iterated expectation,

E
(
eλX
)
= E

(
E
(
eλX | Y

))
≤ E

(
exp

(
λ2σ2

Y

2

))
≤ E

(
exp

(
λ2maxy∈ΣY

σ2
y

2

))
≤ exp

(
λ2maxy∈ΣY

σ2
y

2

)
,

i.e., X ∈ subG(maxy∈ΣY
σ2
y), as desired.

2.4.4 Poisson random variables

The following known result regarding the concentration of the Poisson random variables
is also helpful in bounding the overall algorithmic success probability when using the
Poissonization technique; see Section 2.5.1.

Lemma 2.36 (Poisson concentration; e.g. see [Can19] and Theorem A.8 in [Can22]). Let
N ∼ Poi(n) be a Poisson random variable with parameter n. Then, for any t > 0, we
have Pr(N ≥ n+ t) ≤ exp

(
− t2

2(n+t)

)
, and for any 0 < t < n, we have Pr(N ≤ n− t) ≤

exp
(
− t2

2(n+t)

)
. In particular, setting t = n/2, we have Pr(N ≤ n/2) ≤ exp

(
− n

12

)
.

Furthermore, by union bound, we have Pr(|N − n| ≥ t) ≤ 2 exp
(
− t2

2(n+t)

)
.

2.5 Distribution testing and distance estimation

We will later use results from [JHW18] for the problem of ℓ1 distance estimation. This is
closely related to tolerant identity testing, where the tester’s task is to distinguish whether
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a distribution P is ε1-close to some known distributionQ from the case where P is ε2-far
from Q, according to some natural distance measure.

The following theorem states the number of samples from an unknown distribution P
that needed by the algorithm in [JHW18] to get an estimate of ℓ1(P ,Q) for some reference
distribution Q with additive error ε and error probability δ.6

Theorem 2.37 (adapted from [JHW18]). Fix a reference distributionQ over a domain T
of size |T | = r and let s ∈ O

(
r·log(1/δ)
ε2·log r

)
be an even integer. There exists an algorithm

that draws s1 + s2 i.i.d. samples from an unknown distribution P over T , where s1, s2 ∼
Poisson(s/2), and outputs an estimate ℓ̂1 such that |ℓ̂1 − ℓ1(P ,Q)| ≤ ε with success
probability at least 1− δ.

Proof. By [JHW18, Theorem 2], their estimator has ε additive error in expectation when
s = Θ( r

ε2 log r
). So, with 100s samples, we can achieve ε/10 additive error in expectation,

i.e. E[|ℓ̂1− ℓ1(P ,Q)|] = ε/10. By Markov’s inequality, we get Pr[|ℓ̂1− ℓ1(P ,Q)| > ε] ≤
1/10. Thus, by repeating the entire algorithmO(log(1/δ)) times and choosing the median
ℓ̃1 of the resulting estimates, we get Pr[|ℓ̃1 − ℓ1(P ,Q)| > ε] ≤ δ.

2.5.1 Poissonization

The algorithm of Theorem 2.37, and our sample complexity bounds in Chapter 7, rely
on a standard technique in distribution testing known as Poissonization which aims to
eliminate correlations between samples at the expense of not having a fixed sample size;
e.g. see [Val08, Section 4.3], [Can20b, Appendix D.3], and [Can22, Appendix C].

When drawing n i.i.d. samples from an underlying distribution P(X) over a domain
ΣX = {1, . . . , k}, the vector of counts (N1, . . . , Nk) follows a multinomial distribution
with parameters n and (P(X = 1), . . . ,P(X = k)), where each random variable Ni

is the number of times we observe i ∈ [k] amongst the n = N1 + . . . + Nk drawn
samples. Oftentimes, in analysis, we would like that the random variables N1, . . . , Nk are
independent but this is unfortunately false in this setting since they are dependent and in
fact negatively correlated.

Instead of directly drawing n i.i.d. samples, the idea behind Poissonization is to modify
the sampling process by first sampling a Poisson number NPoi ∼ Poi(n) with mean n and
then drawingNPoi i.i.d samples. Under this Poissonization sampling process, the resulting
count vector has a few desirable properties.

Lemma 2.38 (Appendix C of [Can22]). Let (N1, . . . , Nk) be the sample counts in the
Poissonized sampling process such that N1 + . . . + Nk = NPoi ∼ Poi(n). Then, the
following statements hold:

6It is our understanding that the tester proposed by [JHW18] requires a significant amount of hyperpa-
rameter tuning and no off-the-shelf implementation is available [Han24].
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(a) The random count variables N1, . . . , Nk are mutually independent

(b) For each i ∈ [k], we have Ni ∼ Poi(n · P(X = i))

(c) For each i ∈ [k] and n′ ∈ N, we have (Ni | NPoi = n′) ∼ Bin(n′,P(X = i)).

2.5.2 Known sample complexity results for discrete distributions

In Chapter 7, part of our analysis involves estimating P(A) well in TV distance, for some
subset of variables A ⊆ V . In the distribution testing literature, this task is well-known
to require Θ̃

(
|ΣA|
ε2

)
i.i.d. samples, where ΣA is the alphabet size of the variables A.

Lemma 2.39 (Estimating well in TV; e.g. see [Can20a]). Given tolerance parameters
ε, δ > 0 and sample access to a distribution P(V ), the empirical distribution P̂(V )

constructed from O
(

|ΣV |+log 1
δ

ε2

)
i.i.d. samples has the property that

Pr

(∑
v∈ΣV

|P(v)− P̂(v)| ≤ ε

)
≥ 1− δ

Meanwhile, in many practical settings, exact conditional independence is rarely sat-
isfied due to noise and complex interactions between variables. Instead, we often rely
on approximate conditional independence, which relaxes this assumption while still pre-
serving the essence of conditional independence. This approach allows us to model more
realistic scenarios and still capture important structural dependencies within the data.

Definition 2.40 (Approximate conditional independence). For disjoint setsA,B,C ⊆ V ,
we define ∆A⊥⊥B|C =

∑
a,b,cP(c) · |P(a, b | c)−P(a | c) · P(b | c)|. If ∆A⊥⊥B|C ≤ ε

for ε ≥ 0, we write A⊥⊥ε B | C.

When ε = 0 in Definition 2.40, we recover the usual notion of conditional inde-
pendence. Several methods have been developed which satisfy the requirements of the
ε-approximate conditional independence tester for Definition 2.40. In this thesis, we call
our ε-approximate conditional independence tester ApproxCondInd. Assuming that ε−1

is sufficiently large7 compared to |ΣA|, |ΣB|, and |ΣC |, [CDKS18] proposes a test based
on total variation distance that uses Õ

(
1
ε2
·
√
|ΣA| · |ΣB| · |ΣC |

)
samples from P; see

their Theorem 1.3 and Lemma 2.2. There is also a simpler test based on the empirical mu-
tual information, proposed by [BGP+23], that uses Õ

(
1
ε2
· |ΣA| · |ΣB| · |ΣC |

)
samples

from P , though we use the former to obtain optimal dependence on the alphabet sizes.

Lemma 2.41 (Using [CDKS18] as a blackbox in ApproxCondInd). Given tolerance
parameters ε, δ > 0 and sample access to a distribution P(V ), the ApproxCondInd

7For instance, 1
ε > |ΣC |

1
4 · (max{|ΣA|, |ΣB|, |ΣC |})

1
4 would suffice.
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algorithm uses Õ
(

1
ε2
·
√
|ΣA| · |ΣB| · |ΣC | · log 1

δ

)
samples and correctly determines

whether ∆A⊥⊥B|C = 0 (output YES) or ∆A⊥⊥B|C > ε (output NO) with probability at
least 1− δ, for any disjoint sets A,B,C ⊆ V .

Note that when 0 < ∆A⊥⊥B|C ≤ ε, ApproxCondInd is allowed to output arbitrarily.
In particular, when ApproxCondInd outputs YES on inputs (A,B,C, ε, δ), then we have
Pr(∆A⊥⊥B|C ≤ ε) ≥ 1− δ.

2.6 Graphical notions

Let G = (V ,E) be a graph on |V | = n vertices and |E| edges. Formally speaking, E is
a set that contains both unordered and ordered pairs of vertices U, V ∈ V subject to the
following two constraints:

• {U, V } ∈ E =⇒ (U, V ) ̸∈ E ∧ (V, U) ̸∈ E.
Or equivalently, (U, V ) ∈ E ∨ (V, U) ∈ E =⇒ {U, V } ̸∈ E

• (U, V ) ∈ E ⇐⇒ (V, U) ̸∈ E

For U, V ∈ V , unordered pairs represent unoriented adjacencies (e.g. U − V ) while
ordered pairs represent directionality / arcs / oriented adjacencies (e.g. U → V ).

We use “oriented” and “directed” interchangeably and often omit the subscript G in
the above definitions when the graph in discussion is clear from context.

2.6.1 General graph notions

A graph G may be partially oriented in general and the skeleton skel(G) = (V ,E′) of
G = (V ,E) refers to the resulting fully undirected graph when all arc directions are made
unoriented, i.e. E′ = {{A,B} : {A,B} ∈ E ∨ (A,B) ∈ E ∨ (B,A) ∈ E}. When
orientation is unspecified, G is assumed to be fully undirected, i.e. skel(G) = G. Graph
G is said to be complete if every pair of nodes are adjacent, i.e. the underlying undirected
graph forms a clique. The clique number ω(G) refers to the largest size of any clique in G.
A maximal clique is an vertex-induced subgraph of a graph that is a clique and ceases to be
one if we add any other vertex to the subgraph. If all edges in the clique are oriented in an
acyclic manner, then there is a unique valid permutation π that respects this orientation and
we denote V = argmaxU∈V π(U) as the sink of the clique. A directed cycle is a sequence
of edges forming an undirected cycle with at least one oriented arc, and all oriented arcs
are in the same direction along this cycle. Partially oriented graphs without directed cycles
are also known as chain graphs. A chain component is a maximally connected subgraph
after removing arcs from G; we denote the set of chain components by CC(G). For any
subset V ′ ⊆ V and E′ ⊆ E, we use G[V ′] and G[E′] to denote the node-induced and
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edge-induced subgraphs of G respectively. Meanwhile, V (G), E(G), and A(G) refer to
the set of vertices, edges, and oriented arcs of any given graph G respectively.

2.6.2 Undirected graph notions

Suppose graph G is fully unoriented. For vertices U, V ∈ V , subset of vertices V ′ ⊆ V

and integer r ≥ 0, define distG(U, V ) as the shortest path length between U and V ,
distG(V,V

′) = minU∈V ′ distG(U, V ), and N r
G(V

′) = {V ∈ V : distG(V,V
′) ≤ r} ⊆ V

as the set of vertices that are r-hops away from V ′, i.e. r-hop neighbors of V ′. We omit r
when referring to 1-hop neighbors, e.g. NG(V ). Graph G is said to be connected if there
is a path between every pair of vertices. A chordal graph is a graph where every cycle of
length at least 4 has a chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle. See [BP93] for more properties. A minimum vertex cover in a graph
is a smallest possible set of vertices such that every edge in the graph is incident to at least
one vertex in this set. In other words, each edge in the graph must be “covered” by at least
one vertex from this set. If all vertices of a graph G can be colored with k colors (but not
by k − 1 colors) such that each vertex is assigned a color distinct from its neighbors, then
the coloring number of G is defined to be χ(G) = k.

2.6.3 Directed graph notions

Suppose graph G is fully oriented. For any node V ∈ V , we write PaG(V ), AnG(V ),
DeG(V ) ⊆ V to denote its parents, ancestors and descendants respectively. By convention,
we have V /∈ PaG(V ), V ∈ AnG(V ), and V ∈ DeG(V ) and paG(V ) denotes the values
taken by V ’s parents. We further define ChG(V ) ⊆ DeG(V ) as the set of direct children
of V whereby for any W ∈ ChG(V ) there does not exists Z ∈ V \ {V,W} such that
Z ∈ DeG(V ) ∩ AnG(W ). Note that ChG(V ) ⊆ {W ∈ V : V → W} ⊆ DeG(V ). An
edge U → V is called a covered edge [Chi95] if Pa(U) = Pa(V ) \ {U}.

2.6.4 Directed acyclic graph (DAG)

A directed acyclic graph (DAG) is a fully oriented graph G that does not contain any
directed cycles. A vertex Vi on any simple path V1− . . .−Vk is called a collider if the arcs
are such that Vi−1 → Vi ← Vi+1. If we further have Vi−1 \− Vi+1, then Vi−1 → Vi ← Vi+1

is also called a v-structure with center Vi in G. One can associate a (not necessarily unique)
valid permutation / topological ordering πG : V → [n] to any (partially directed) DAG G
such that oriented arcs (U, V ) satisfy πG(U) < πG(V ) and unoriented arcs {U, V } can be
oriented as U → V without forming directed cycles when πG(U) < πG(V ).
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2.6.5 Graph separators

Existence and efficient computation of graph separators are well studied [LT79, GHT84,
GRE84, AST90, KR10, WN11] and are commonly used in divide-and-conquer graph
algorithms and as analysis tools.

Definition 2.42 (α-separator and α-clique separator). Let A,B,C be a partition of the
vertices V of a graph G = (V ,E), i.e. A⊔B⊔C = V . We say that C is an α-separator
if no edge joins a vertex in A with a vertex in B and |A|, |B| ≤ α · |V |. We call C an
α-clique separator if it is an α-separator and a clique.

Theorem 2.43 ([GRE84], instantiated for unweighted graphs). Let G = (V ,E) be a
chordal graph with |V | ≥ 2 and p vertices in its largest clique. There exists a 1/2-
clique-separator C of size |C| ≤ p − 1. The clique C can be computed in O(|E|)
time.

Lemma 2.44 ([GRE84]). Let G = (V ,E) be a chordal graph with |V | ≥ 2 and p vertices
in its largest clique. Suppose each vertex v is assigned a non-negative weight c(v) ≥ 0

such that
∑

v c(v) = n. Then, there exists a 1/2-clique-separator S of size |V (S)| ≤ p−1
such that any connected component in G after the removal has total weight of no more
than

∑
v∈V c(v)/2. The clique S can be computed in O(|E|) time.

2.6.6 Meek rules

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect
to any given set of arcs that has a consistent DAG extension [Mee95]. Given any edge
orientation information, one can always repeatedly apply Meek rules till a unique fixed
point (where no further rules trigger) to maximize the number of oriented arcs.

Definition 2.45 (The four Meek rules [Mee95], see Fig. 2.2 for an illustration).

R1 Edge {A,B} ∈ E(G) is oriented as A → B if ∃ C ∈ V such that C → A and
C \− B.

R2 Edge {A,B} ∈ E(G) is oriented as A→ B if ∃ C ∈ V such that A→ C → B.

R3 Edge {A,B} ∈ E(G) is oriented as A → B if ∃ D,D ∈ V such that D − A − C,
D → B ← C, and C \− D.

R4 Edge {A,B} ∈ E(G) is oriented as A → B if ∃ C,D ∈ V such that D − A − C,
D → C → B, and B \− D.

Note that Meek R3 will trigger before any interventions are performed because C →
B ← D is a v-structure that would have been oriented just from observational data.
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Figure 2.2: An illustration of the four Meek rules

There exists an algorithm (Algorithm 2 of [WBL21]) that runs in O(d · |E(G)|) time and
computes the closure under Meek rules, where d is the degeneracy of the graph skeleton: a
d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree
at most d. Note that the degeneracy of a graph is typically smaller than the maximum
degree of the graph.

2.7 Bayesian networks

A Bayesian network G for a set of n variables X1, . . . , Xn is described by a DAG (X,E)

and n corresponding conditional probability tables (CPTs), e.g., the CPT for Xi ∈ X

describes P(xi | paG(Xi)) for all possible values of xi and paG(Xi). In a Bayesian
network (G,P), the joint distribution for P factorizes as P(x) =

∏n
i=1P(xi | paG(Xi)),

according to G. As we can see, Bayesian networks allow us to establish a connection
between a probability distribution P over n variables and a graph G with n nodes.

All independence constraints that hold in the joint distribution of a Bayesian network
that has underlying DAG G are exactly captured by the d-separation criterion [Pea88,
Section 3.3.1]. Two nodes X, Y ∈ X are said to be d-separated in a DAG G = (X,E)

given a set Z ∈ X \ {X, Y } if and only if there is no Z-active path in G between X
and Y ; a Z-active path is a simple path Q such that any vertex from Z on Q occurs as a
collider and any vertex from X \Z appears as a non-collider. Two nodes are d-connected
if they are not d-separated. It is known that X is d-separated from its non-descendants
given its parents [Pea88, Section 3.3.1, Corollary 4]. A Markov blanket of X ∈ X is a
subset of variables S ⊆X such that all other variables are independent ofX , conditioned
on S. We use X⊥dY | Z to denote d-separation and X ⊥⊥P Y | Z to denote conditional
independence with respect to a distribution P .

Definition 2.46 (Markov). A probability distribution P is said to be Markov with respect
to a DAG G if d-separation in G implies conditional independence in P .

Note that any distribution is Markov with respect to the complete DAG, since there
are no d-separations implied by this kind of DAG. Two DAGs are said to be Markov
equivalent if they encode the same set of conditional independence relations. It is known
that two graphs are Markov equivalent if and only if they have the same skeleton and
v-structures [VP90, AMP97]. In fact, the Markov equivalence class (MEC) of any DAG
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G can be represented by a partially oriented version of G called the essential graph E(G),
which can be computed from G by orienting v-structures in skel(G) and applying Meek
rules. Essential graphs are also known as completely partially directed acyclic graphs
(CPDAGs). A special and important class of DAGs is that of moral DAGs.

A B C

D E

F

A B C

D E

F

A B C

D E

FG∗ E(G∗)

Orient v-structures Apply Meek rules

Figure 2.3: Example on how to compute an essential graph E(G∗) of a given DAG G∗

Definition 2.47 (Moral DAG). A graph G is a moral DAG if its essential graph only has a
single chain component. That is, after removing directed edges from E(G), there is only
one single undirected connected component remaining.

Recall thatU → V is called a covered edge [Chi95] ifPa(U) = Pa(V )\{U}. Covered
edges are special arcs in a causal graph discovery because their orientation can be reversed
and they still yield the same conditional independencies. See Fig. 2.4 for an illustration.
Note that one can compute all covered edges of a given DAG G in polynomial time.
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Figure 2.4: A DAG G∗ with its essential graph E(G∗) on the left. G1 and G2 are two other
DAGs that belong to the same Markov equivalence class [G∗]. Dashed arcs are covered
edges in each DAG. One can perform a sequence of covered edge reversals to transform
between the DAGs (see Lemma 2.49). Note that the sizes of the minimum vertex cover of
the covered edges may differ across DAGs.

The following is a well-known result relating covered edges and MECs.

Definition 2.48 (Covered edge reversal). A covered edge reversal means that we replace
U → V with V → U , for some covered edge U → V , while keeping all other arcs
unchanged.

Lemma 2.49 ([Chi95]). If G and G ′ belong in the same MEC if and only if there exists a
sequence of covered edge reversals to transform between them.
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The converse of the Markov property (Definition 2.46) is that of the faithfulness
property. While the Markov property enables one to draw conclusions about P from G,
the faithfulness property allows one to make inferences in the reverse direction. This is
particular useful when one wishes to construct a graphical representation of a distribution
and variants of faithfulness has been used to recover causal graphs; see [Lam23].

Definition 2.50 (Faithfulness). A probability distribution P is said to be faithful with
respect to a DAG G if conditional independence in P implies d-separation in G.

2.8 Causal DAGs

While we use DAGs for both causal and probabilistic models models, the former focuses
on capturing associations or correlations among variables while the latter aims to uncover
the underlying mechanisms that drive these associations. In particular, for a distribution
P that is Markov with respect to DAG G∗, any graph in the Markov equivalence class
[G∗] of G∗ is an equally good representation for P . However, from a causal perspective,
only one of them would be a good representation since the direction of the arcs in the
DAG explicitly captures the causal relationship between variables. For example, if P is
a joint distribution over the variables temperature (X) and altitude (Y ), then the correct
causal relation should be Y → X but the graph X → Y belongs in the same Markov
equivalence class and is an equally good probabilistic representation. This distinction
enables causal DAGs to answer questions not just about what happens, but about why and
how it happens, making them particularly valuable when one wishes to understand the
impact of performing interventions to the system.

2.8.1 Interventions

An intervention in a causal DAG refers to an external action that forcibly sets the values of
a particular set of variables, thereby breaking their natural causal relationships with their
parents in the graph. This process modifies the underlying causal structure, allowing for
the analysis of the effects of this change on the other variables in the system.

Here, we study ideal interventions. Graphically speaking, an ideal intervention S on G
induces an interventional graph GS (also called a mutilated graph) where all incoming arcs
to vertices V ∈ S are removed [EGS05]. An intervention I ⊆ V is said to be k-bounded
if |I| ≤ k; it is called an atomic intervention if k = 1 and non-atomic if k ≥ 2. One
can view observational data as a special case where I = ∅. The reason for considering
non-atomic interventions is to reduce the number of adaptive rounds required to recover
G∗ since potentially more edges may be separated by a single non-atomic intervention.
Also, as real-world interventions may be costly, it is of practical importance to minimize
the number of interventions required. Finally, an edge U → V is said to be cut by an
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intervention S if exactly one endpoint of the edge lies in S, i.e. |S∩{U, V }| = 1. Fig. 2.5
provides an illustration of the above concepts.

Definition 2.51 (Separation of edges by interventions). We say that an interventionS ⊆ V

separates a covered edge U −V if |{U, V }∩S| = 1. That is, exactly one of the endpoints
is intervened by S. We say that an intervention set I separates a covered edge U − V if
there exists S ∈ I that separates U − V .
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Figure 2.5: A causal graph G over variables {A,B,C,D,E, F} along with two inter-
ventional graphs under an atomic intervention set {B} and non-atomic intervention set
{A,D}. Observe that the covered edge A→ D is not cut by the intervention {A,D}.

It is known that intervening on a set S ⊆ V allows us to infer the edge orientation
of any edge separated by S and V \ S [Ebe07, HEH13, HLV14, SKDV15, KDV17]. An
intervention set I ⊆ 2V is a collection of interventions and an I-essential graph EI(G)
of G is the essential graph representing the Markov equivalence class of graphs whose
interventional graphs for each intervention is Markov equivalent to GS for any intervention
S ∈ I. Interventions affect the joint distribution of the variables and are formally captured
by Pearl’s do-calulus [Pea09b]:

1. R1 (add/remove obs): If (Y ⊥d Z |X,W )GX
, then for all x′, we have

P(Y | do(x′),Z,W ) = P(Y | do(x′),W )

2. R2 (swap obs with do): If (Y ⊥d Z |X,W )GXZ
, then for all x′, z′, we have

P(Y | do(x′), do(z′),W ) = P(Y | do(x′), z′,W )

3. R3 (add/remove do): If (Y ⊥d Z |X,W )G
XZ(W )

, then for all x′, z′, we have

P(Y | do(x′), do(z′),W ) = P(Y | do(x′),W )

where Z(W ) = Z \ An(W ) are Z nodes that are not ancestors of any W nodes
in GX .

These rules were later generalized to allow for latent variables [Zha07, JRZB22].
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There are several known properties about I-essential graph properties [HB12, HB14,
SMG+20]: Every I-essential graph is a chain graph with chordal chain components. This
includes the case ofS = ∅. Orientations in one chain component do not affect orientations
in other components. In other words, to fully orient any essential graph E(G∗), it is
necessary and sufficient to orient every chain component in E(G∗) independently. More
formally, we have the following properties.

Lemma 2.52 (Proposition 15 of [HB12]). Consider the I-essential graph EI(G∗) of some
DAG G∗ and let H ∈ CC(EI(G∗)) be one of its chain components. Then, EI(G∗) is a
chain graph and EI(G∗)[V (H)] is chordal.

Lemma 2.53 (Modified lemma 1 of [HB14]). Let I ⊆ 2V be an intervention set. Consider
the I-essential graph EI(G∗) of some DAG G∗ and letH ∈ CC(EI(G∗)) be one of its chain
components. Then, for any additional interventional set I ′ ⊆ 2V such that I ∩ I ′ = ∅,
we have

EI∪I′(G∗)[V (H)] = E{S∩V (H) : S∈I′}(G∗[V (H)]).

Lemma 1 of [HB14] actually considers a single additional intervention, but a closer look
at their proof shows that the statement can be strengthened to allow for multiple additional
interventions; see [CSB22, Appendix B]. Note that we can drop the ∅ intervention in the
statement since essential graphs are defined with the observational data provided.

As a consequence of Lemma 2.53, one may assume without loss of generality that
CC(E(G∗)) is a single connected component and then generalize results by summing
across all connected components.

For any intervention set I ⊆ 2V , we write R(G, I) = A(EI(G)) to mean the set
of oriented arcs in the I-essential graph of a DAG G. Under this notation, we see that
the directed arcs in the partially directed graph EI(G) can be expressed as A(EI(G)) =
R(G, I). For cleaner notation, we write R(G, I) for single interventions I = {I} for
some I ⊆ V , and R(G, V ) for single atomic interventions I = {{V }} for some V ∈ V .

For any subset S ⊆ E(G), we denote R(G,S) ⊆ E(G) as the set of oriented arcs in
the essential graph of G if we orient S, along with the v-structure arcs in G, then apply
Meek rules till convergence. In particular, when S = {(U, V ) : U ∈ I or V ∈ I} ⊆ E is
the set of incident edges to some vertex set I ⊆ V , then R(G,S) = R(G, I) are precisely
the oriented arcs in the interventional essential graph EI(G). Furthermore, if S is a
superset of the set of incident edges to some vertex set I ⊆ V , then R(G, I) ⊆ R(G,S).
When we use the R(G, ·) notation, we will be explicit about its type – whether · is a subset
of vertices V , a subset of a subset of vertices 2V , or a subset of edges E.

The following lemma implies that the combined knowledge of two intervention sets do
not further trigger any Meek rules. While [GSKB18] studies atomic interventions, their
proof extends to non-atomic intervention sets, and even the observational case where the
intervention set could be ∅.
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Lemma 2.54 (Modified lemma 2 of [GSKB18]). For any DAG G = (V ,E) and any two
intervention sets I1, I2 ⊆ 2V , we have R(G, I1 ∪ I2) = R(G, I1) ∪R(G, I2).

We define R−1
1 (G, A→ B) ⊆ V and R−1

k (G, A→ B) ⊆ 2V to refer to interventions
orienting an arc A→ B ∈ A(G):

R−1
1 (G, A→ B) = {V ∈ V : A→ B ∈ R(G, V )}

R−1
k (G, A→ B) = {I ⊆ V : |I| ≤ k,A→ B ∈ R(G, I)}

For any oriented arc A→ B ∈ A(G), we define R−1
1 (G, A→ B) = V and R−1

k (G, A→
B) = {I ⊆ V : |I| ≤ k} as the set of interventions that would have oriented A → B.
For notational simplicity, we write R−1 to mean R−1

1 .

Definition 2.55 (Oriented subgraphs and recovered parents). For any interventional set
I ⊆ 2V and U ∈ V , define GI = G[E \R(G, I)] as the fully directed subgraph DAG
induced by the unoriented arcs in G and PaG,I(U) = {X ∈ V : X → U ∈ R(G, I)} as
the recovered parents of U by I.

2.8.2 Common causal assumptions

Causal inference involves drawing conclusions about cause-and-effect relationships from
data, often using statistical methods. Several key assumptions are commonly made in
causal inference to ensure that these conclusions are valid. Below are the most common
assumptions:

• Causal Markov Condition (CMC); see Definition 2.46

The Causal Markov Condition states that a variable is conditionally independent
of its non-effects, given its direct causes. In the causal DAG representation, this
means that variables are conditionally independent of non-descendants given its
parents. This assumption allows us to relate DAG graphical structure to probabilistic
dependencies.

• Faithfulness; see Definition 2.50

The faithfulness assumption asserts that the only conditional independencies that
exist in the data are those implied by the causal DAG. In other words, if two
variables are independent in the data, then there should be no direct or indirect
causal relationship between them in the DAG. Faithfulness prevents coincidental
cancellations of dependencies that might arise in specific parameter configurations
which ensures that the statistical relationships observed in the data reflect the true
causal structure.
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• Causal sufficiency

Causal sufficiency assumes that all common causes (confounders) of the variables
being studied are measured and included in the analysis. This means there are
no hidden variables that simultaneously affect multiple observed variables. This
assumption simplifies the setting for causal inference problems. While some causal
inference problems are completely resolved in the causal sufficiency setting, the
problem of computing an optimal adaptive intervention policy for causal graph
discovery (which we address in Chapter 6) was not.

• Positivity (Overlap)

The positivity assumption (also known as overlap or common support) requires that
for every combination of covariates, there is a positive probability of receiving each
treatment. This means that all groups defined by covariates have a chance of being
exposed to each level of the treatment. Without positivity, it would be impossible to
make valid comparisons across treatment groups because some groups would have
no representation in certain treatment categories. Positivity ensures that the causal
effect is estimable for all subgroups.

• Stable Unit Treatment Value Assumption (SUTVA)

SUTVA has two parts: (1) the treatment of one individual does not affect the
outcome of another (no interference), and (2) there is only one version of each
treatment (no hidden variations of the treatment). SUTVA is necessary to ensure
that the treatment effect is well-defined and that the causal effect can be consistently
estimated. Violations of SUTVA can lead to biased estimates and incorrect causal
conclusions.

In Chapter 6, we additionally make the following two assumptions.

Assumption 2.56. We are given access to the essential graph (or equivalently we know the
Markov equivalence class) of the true causal graph.

Assumption 2.57. We are able to determine orientations of edges that are separated by
intervened vertices.

Assumption 2.56 is reasonable since there are a plethora of algorithms that recover the
essential graph from observational data (which is abundant in many applications) under
some standard causal assumptions such as those listed above, such as the PC [SGS00], FCI
[SGS00] and RFCI algorithms [CMKR12]; see [GZS19, VCB22] for a survey. Meanwhile,
Assumption 2.57 is always valid when we use hard or ideal interventions (which is the
form of interventions we study in Chapter 6). Note that Assumption 2.57 may still hold
with weaker forms of interventions (soft, imperfect, shift, etc) under additional conditions.
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2.9 Learning-augmented algorithms

Given the widespread success and prevalence of machine-learned systems across various
application domains, it is natural to ask whether the predictions generated by these systems
can be used to improve the performance of classic algorithmic problems. For example,
[KBC+18] examined the conditions under which machine-learned indexes outperform tra-
ditional index structures, demonstrating their advantages empirically. Similarly, [MNS12]
proposed a black-box meta-algorithm that, assuming the availability of a highly compet-
itive optimistic algorithm (potentially trained on historical data and problem instances),
achieves a competitive ratio interpolating between that of the worst-case algorithm and
the optimistic algorithm based on a given input interpolation parameter.

The field of learning-augmented algorithms formally studies how additional instance-
specific predictions can used to enhance or guide traditional algorithmic processes. This
approach combines the strengths of machine learning with classical algorithms to im-
prove performance, adapt to new data, and solve complex problems more effectively.
Learning-augmented algorithms as a whole have received significant attention since the
seminal work of [LV21], which investigated the online caching problem with predictions;
their result was further improved by [Roh20, Wei20, ACE+23]. Algorithms with advice
were also studied for the ski-rental problem [GP19, WLW20, ADJ+20], non-clairvoyant
scheduling [KPS18], scheduling [LLMV20, BMRS20, AJS22], augmenting classical data
structures with predictions (e.g. indexing [KBC+18] and Bloom filters [Mit18]), online se-
lection and matching problems [DLPLV21, AGKK23], online TSP [BLMS+22, GLS23],
a more general framework of online primal-dual algorithms [BMS20], graph algorithms
[CSVZ22, DIL+21], and mechanism design [GKST22, ABG+22].

The two main ways to evaluate a learning-augmented algorithm are the metrics of
consistency and robustness. As this field mostly evolved from online algorithms, these
metrics are first defined in terms of achievable competitive ratios8:
◦ An algorithm is a-consistent if it is a-competitive with perfect advice
◦ An algorithm is b-robust if it is b-competitive with arbitrary advice quality
Adapting the language of consistency and robustness to other settings such as query

complexity, we see that the learning-augmented binary search described in Chapter 1 is
1-consistent and O(log n)-robust: 1 query suffices when the predicted page is correct
while O(log n) queries suffice in the worst case regardless of any given predicted page.
We will later adapt this language of consistency and robustness to measure the number of
adaptive interventions (in Chapter 11) and number of samples (in Chapter 10).

8Competitive analysis evaluates the performance of an online algorithm by comparing its objective to
that of an optimal offline algorithm, which has complete knowledge of the entire input beforehand. While
the online algorithm processes the input sequentially and must make irrevocable decisions without foresight,
the offline algorithm can optimize its decisions with full knowledge of future inputs. The competitive ratio
is defined as the ratio between the objective achieved by the online algorithm and the optimal objective
achieved by the offline algorithm.



Part I

Learning probabilistic models

37



Chapter 3

Learning parameters of sparse linear
Gaussian Bayesian networks

“Frustra fit per plura quod potest fieri per pauciora.”
(“It is futile to do by more what can be done by fewer.”)

- William of Ockham

3.1 Introduction

Linear structural equation models (SEMs) with additive Gaussian noise are widely used to
model uncertainty in AI systems [Pea88]. A Gaussian Bayesian network can be described
by linear structural models with additive Gaussian noise, a special case of structural
equation models (SEMs) where variables have a linear relation with their parents’ values
in the presence of an additive Gaussian noise. For each i ∈ [n], the variable Xi relates to
its parents Pa(Xi) as follows:

Xi =

ηi +
∑

Xj∈Pa(Xi)
ai,jXj if Pa(Xi) ̸= ∅

ηi if Pa(Xi) = ∅
(3.1)

where ηi ∼ N(0, σ2
i ) is a variable-specific independent Gaussian random variable. The

scalars σi and {ai,j}j∈Pa(Xi) are the parameters associated to variable Xi in this model.
Stacking the parameters into matrix form, we see that

X1

X2

...
Xn

 =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
... ... . . .

...
an,1 an,2 . . . an,n



X1

X2

...
Xn

+


η1

η2
...
ηn


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where ai,j = 0 whenever j ̸∈ Pa(Xi). By expressing the above relation as X = AX+η,
we see that X = (In −A)−1η where In is the n× n identity matrix, and so X follows a
multivariate Gaussian; see Section 2.4.1.

Recall from Chapter 2 that a Bayesian network corresponds to a pair (P ,G) of dis-
tribution P and DAG structure G. The question of structure learning (recovering G)
for Gaussian Bayesian networks has been extensively studied. A number of works have
proposed increasingly general conditions for ensuring identifiability of the network struc-
ture from samples [PB14, GH17, CDW19, PK20, Par20, GDA20] and structure learning
algorithms that work for high-dimensional Gaussian Bayesian networks have also been
proposed [AZ15, AGZ19, GZ20].

In this chapter, we consider the task of learning a sparse linear Gaussian Bayesian
network on n variables, given its DAG structure G. The usual formulation of this prob-
lem is in terms of parameter estimation, where one wants a consistent estimator that
exactly recovers the parameters of the Bayesian network in the limit, as the the number of
samples approaches infinity. Parameter estimation has been well-studied in practice and
maximum likelihood estimators are known for various simple settings such as when the
conditional distribution is Gaussian or the variables are discrete-valued. For example, see
the implementation of fit in the R package bnlearn [Scu10].

In contrast to asymptotic parameter estimation, we consider the problem from the
viewpoint of distribution learning [KMR+94] under the Probably Approximately Cor-
rect (PAC) learning model [Val84]. The goal here is to learn, with high probability, a
distribution P̂ that is close to the ground-truth distribution P , using an efficient algo-
rithm, i.e. dTV(P , P̂) ≤ ε. In this setting, pointwise convergence of the parameters is no
longer a requirement; the aim is rather to approximately learn the induced distribution.
Indeed, the latter relaxed objective may be achievable when the former may not be (e.g.
for ill-conditioned systems) and can be the more relevant requirement for downstream
inference tasks. For a survey on the current state-of-the-art in distribution learning from
an algorithmic perspective, see [Dia16].

While the definition of linear Gaussian SEMs from Eq. (3.1) may suggest an approach
of viewing P as an n-dimensional multivariate Gaussian and estimating it from samples,
we know from Section 2.4.1 that such an approach necessarily require Ω(n2/ε2) samples
in general. As such, we focus on the setting where the structure of the network is sparse,
whereby each variable has at most d parents.

3.2 Our main results

Theorem 3.1. Let ε, δ ∈ (0, 1) be the error and failure parameters respectively. Suppose
G is a DAG on n variables {X1, . . . , Xn}, each with in-degree at most d, and the total
degree is dtotal =

∑n
i=1 |Pa(Xi)|. Given the DAG G and sample access to distribution P
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that is Markov with respect to G, there is an algorithm that usesO
(
dtotal
ε2

log
(
n
δ

))
samples

from P and produces a distribution P̂ such that dTV(P , P̂) ≤ ε. This algorithm runs in
O
(

d2total·d
ε2

log
(
1
δ

))
time and succeeds with probability at least 1− δ.

To complement our upper bound of Õ(dtotal/ε2) ⊆ Õ(nd/ε2), we also show that our
sample complexity is nearly optimal in terms of the dependence on the parameters n, d,
and ε as Ω(nd/ε2) samples is unavoidable in general.

Theorem 3.2. Let ε ∈ (0, 1) be the error parameter. There exists a distribution P that is
Markov with respect to a DAG G over n variables, each with in-degree at most d ≤ n/2,
such that producing a distribution P̂ achieving dTV(P , P̂) ≤ ε with success probability
2/3 given G and sample access to P requires Ω(nd/ε2) samples from P .

Observe that as d → n, our sample complexity results recover the known bound of
Θ(n2/ε2) for learning general n-dimensional multivariate Gaussians in Section 2.4.1.

3.3 Technical overview

Given the linear Gaussian Bayesian network with DAG G over variables {X1, . . . , Xn}, we
know that Xi has parameters σi and {ai,j}j∈Pa(Xi), so producing an estimated distribution
P̂ can be done by providing estimates σ̂i and {âi,j}j∈Pa(Xi). We can represent {ai,j}j∈Pa(Xi)

as a vector ai ∈ Rn where the jth entry is ai,j for j ∈ Pa(Xi) and zero for j ̸∈ Pa(Xi).
Then, by grouping the parameters into αi = (ai, σi), we use α∗

i to denote the ground truth
parameters corresponding to P and α̂i as the estimated parameters for Xi.

3.3.1 Building blocks

We begin by stating two Gaussian concentration bounds. The derivation and proofs of
these statements are deferred to Appendix A.1.2.

Lemma 3.3. Let G ∈ Rk×d be a matrix with i.i.d. N(0, 1) entries. Then, for any constant
0 < c1 < 1/2 and k ≥ d/c21,

Pr

(
∥(G⊤G)−1∥ ≤ 1

(1− 2c1)
2 k

)
≥ 1− exp

(
−kc

2
1

2

)

Lemma 3.4. Let G ∈ Rk×p be a matrix with i.i.d.N(0, 1) entries and η ∈ Rk be a vector
with i.i.d. N(0, σ2) entries, where G and η are independent. Then, for any constant
c2 > 0,

Pr
(
∥G⊤η∥ < 2σc2

√
kp
)
≥ 1− 2p exp (−2k)− p exp

(
−c

2
2

2

)
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Cauchy random variables arise naturally when studying Gaussians because Z = X/Y

is a Cauchy random variable whenX and Y are two independent Gaussians. The next two
lemmas provide results relating to Cauchy random variables and may be of independent
interest beyond our analysis. Lemma 3.5 gives the non-asymptotic convergence of medians
of Cauchy random variables and Lemma 3.6 gives a condition where a vector is term-wise
Cauchy random variable.

Lemma 3.5 (Non-asymptotic convergence of Cauchy median). Consider a collection of
m i.i.d. Cauchy(0, 1) random variables X1, . . . , Xm. Given a threshold 0 < τ < 1, we
have

Pr (median{X1, . . . , Xm} ̸∈ [−τ, τ ]) ≤ 2 exp

(
−mτ

2

8

)

Lemma 3.6. Consider the matrix equation AB = E where A ∈ Rn×n, B ∈ Rn×1,
and E ∈ Rn×1 such that entries of A and E are independent Gaussians, elements in
each column of A have the same variance, and all entries in E have the same variance.
That is, A·,j ∼ N(0, σ2

i ) and Ei ∼ N(0, σ2
n+1). Then, for all i ∈ [n], we have that

Bi ∼ σn+1

σi
· Cauchy(0, 1).

3.3.2 Upper bound

For our upper bound (Theorem 3.1), we analyze the KL divergence between two distribu-
tions defined by parameters α∗ and α̂, and then apply Pinsker’s inequality (Theorem 2.18)
to obtain a corresponding bound on dTV. The motivation behind such an approach is
because one can decompose the KL divergence in terms of node-wise estimation error
(Section 3.4). This enables one to design algorithms for recovering parameters on a
per-node basis and then apply simple union bound arguments to conclude that the overall
approach succeeds with the required success probability.

Now, consider an arbitrary variable Y ∈ {X1, . . . , Xn} with p parents and associated
parameters a∗ and σ∗. If p = 0, then a∗ = 0 (the all-zero vector) and we can simply set
the coefficients â = 0. Meanwhile, if p ≥ 1, we may assume w.l.o.g. that X1, . . . , Xp

are the parents of Y by relabeling. Let matrix M ∈ Rp×p denote the covariance matrix
defined by the parents of Y , where the (i, j)-th entry of M is E[XiXj]. Under this
notation, we see the vector (X1, . . . , Xp) ∼ N(0,M) is distributed as a multivariate
Gaussian. Let us further define ∆ = â− a∗ as the entry-wise difference vector between
the estimated coefficients and true coefficients. We later show that the set of parameters
â1, . . . , ân, σ̂1, . . . , σ̂n implies that dKL(P , P̂) ≤ ε when the following two conditions
hold for all i ∈ [n].

∣∣∆⊤
i Mi∆i

∣∣ ≤ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

,∀i ∈ [n] (Condition 1)
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1−

√
ε · |Pa(Xi)|

dtotal
≤
(
σ̂i
σ∗
i

)2

≤ 1 +

√
ε · |Pa(Xi)|

dtotal
,∀i ∈ [n] (Condition 2)

Roughly speaking, the first condition requires that the estimation error in the cofficients
|(âi − ai)

⊤Mi(âi − ai)| = |∆⊤
i Mi∆i| is “bounded relative to σ∗

i ” while the second
condition requires that σ̂i is a “good multiplicative approximation” of σ∗

i . Note that
Condition 1 is trivially satisfied when Pa(Xi) = ∅.

Motivated by the above insights, we will estimate parameters for each variable in an
independent fashion. That is, given the samples, the parameters related to each variable can
be estimated in parallel. Our algorithmic approach is a two-phased one; see Algorithm 1.
In the first phase, we aim to produce estimates â1, . . . , ân such that Condition 1 is satisfied.
In the second phase, we use the estimates â1, . . . , ân to produce estimates σ̂2

1, . . . , σ̂
2
n such

that Condition 2 is satisfied.

Algorithm 1 Two-phased recovery algorithm
1: Input: Sample access to P , DAG G, and sample parameters m1 and m2

2: Draw m = m1 +m2 independent samples of (X1, . . . , Xn) from P .
3: â1, . . . , ân ← Run a coefficient recovery algorithm using first m1 samples.
4: σ̂2

1, . . . , σ̂
2
n ←Run a variance recovery algorithm using lastm2 samples and â1, . . . , ân

5: return â1, . . . , ân, σ̂
2
1, . . . , σ̂

2
n

In Section 3.5, we show that empirical variance given the produced â1, . . . , ân esti-
mates suffice, and then provide two different classes of methods for coefficient recovery.
In Section 3.6, we analyze algorithms based on the maximum likelihood estimator linear
least squares regression and provide explicit sample complexity bounds. Meanwhile, in
Section 3.7, we develop and analyze an alternative algorithm based on Cauchy random
variables, which is a uncommon in the context of regression and statistical learning.

3.3.3 Lower bound

Consider the graph construction in shown in Fig. 3.1. Here, the DAG G is bipartite with
maximum in-degree d. For j ∈ {1, . . . , d}, each variableXj = ηj is distributed according
to a standard Gaussian random variable ηj ∼ N(0, 1). For i ∈ {d + 1, . . . , n}, each
variable Xi = ηi +

∑d
j=1 ai,jXj has all {X1, . . . , Xd} as parents and ηi ∼ N(0, 1). We

also associate a d-bit binary string to each variable Xi such that the coefficient

ai,j =


1√

d(n−d)
if the jth bit of the binary string is 0

1+ε√
d(n−d)

if the jth bit of the binary string is 1
(3.2)

Now, let s ∈ {0, 1}d(n−d) be a collection of (n− d) binary strings of length d. In the
above setup, with a(s)j,1 , . . . , a

(s)
j,d determined by the jth consecutive d bits of s via Eq. (3.2),
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Xi
. . .Xd+1 . . . Xn

Xj. . .X1
. . . Xd

a1,i
aj,i

ad,i

Figure 3.1: Hardness construction: complete bipartite DAG with maximum in-degree d.

we can define an induced conditional distributionQs on {X1, . . . , Xn}. Through the same
decomposition that we derived in Section 3.4, one can show that

dKL(Qs,Qs′) =
1

2

n∑
i=d+1

d∑
j=1

(a
(s)
j,i − a

(s′)
j,i )⊤(a

(s)
j,i − a

(s′)
j,i )

=
1

2

n∑
i=d+1

d∑
j=1

(
ε√

d(n− d)
· 1si,j ̸=s′i,j

)2

=
ε2

2d(n− d)
dhamm(s, s

′)

for any two distributionsQa andQb induced by binary stringsa anda′ respectively, where
dhamm refers to the Hamming distance between two binary strings.

To obtain our lower bound (Theorem 3.2), we consider the subset C of length d(n− d)
binary strings such that dhamm(s, s

′) = d(n − d)/2 for distinct strings s, s′ ∈ C. One
can show that |C| ≥ 2Ω(d(n−d)), dKL(Qa,Qb) ∈ O(ε2), and dTV(Qa,Qb) ∈ Ω(ε). So,
if we were to uniformly choose a binary string s ∈ C and use its induced distribution as
P = Qs, requiring dTV(P , P̂) ≤ ε implies that one has to correctly identify s amongst
C. When d ≤ n/2, one can then conclude that Ω(d(n − d)/ε2) ⊆ Ω(nd/ε2) samples by
using a packing argument based on Fano’s inequality (Theorem 2.23).

For a detailed proof of Theorem 3.2, we refer readers to [BCG+22, Section 5].

3.4 Decomposing the KL divergence

Our analysis relies on decomposing and bounding the KL divergence between P and P̂ ,
and then applying Pinsker’s inequality (see Theorem 2.18) to obtain a bound on the TV
distance between P and P̂ .

Following the approach of [Das97]9, we decompose dKL(P , P̂) into n terms that can
be computed by analyzing the quality of recovered parameters for each variable Xi. To
relate the overall KL distance between two sets of parameters α∗

i and α̂i, we first define a
9[Das97] analyzes the non-realizable setting where the distribution P may not correspond to the causal

structure of the given Bayesian network. As we study the realizable setting, we have a much simpler
derivation.
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distance measure dCP between the conditional probabilities on a per-node basis:

dCP(α
∗
i , α̂i) =

∫
pa(Xi)

∫
xi

P(xi, pa(Xi)) log

(
P(xi | pa(Xi))

Q(xi | pa(Xi))

)
dxi dpa(Xi)

Then, if P̂ is the distribution defined by parameters α̂ on the same Bayesian network
structure G, one can check that the Bayesian network decomposition of joint probabilities
and marginalization yields

dKL(P , P̂) =
n∑

i=1

dCP(α
∗
i , α̂i) . (3.3)

Now, consider an arbitrary variable Y ∈ {X1, . . . , Xn} with p parents and associated
parameters a∗ and σ∗. If p = 0, then a∗ = 0 (the all-zero vector) and we can simply set the
coefficients â = 0. Meanwhile, if p ≥ 1, we may assume w.l.o.g. that X1, . . . , Xp are the
parents of Y by relabeling. Let matrix M ∈ Rp×p denote the covariance matrix defined
by the parents of Y , where the (i, j)-th entry of M is E[XiXj]. Under this notation, we
see the vector (X1, . . . , Xp) ∼ N(0,M) is distributed as a multivariate Gaussian. Let us
further define ∆ = â− a∗ as the entry-wise difference vector. Then, one can show that

dCP(α
∗
i , α̂i) = ln

(
σ̂i
σ∗
i

)
+

(σ∗
i )

2 − σ̂2
i

2σ̂2
i

+
∆⊤

i Mi∆i

2σ̂2
i

,∀i ∈ [n] (3.4)

For full derivation details of Eq. (3.3) and Eq. (3.4), see Appendix A.1.1.
As foreshadowed in Section 3.3, the following lemma uses the above decomposition to

conclude that dCP(α
∗
i , α̂i) is small enough to imply that dTV(P , P̂) ≤ ε when Condition

1 and Condition 2 hold on α∗
i and α̂i, for all i ∈ [n].

Lemma 3.7. Let ε ≤ 0.17 be a constant. Suppose distributions P and P̂ are defined on a
Bayesian network G with parameters α∗ and α̂. If Condition 1 and Condition 2 hold on
α∗

i and α̂i for all i ∈ [n], then dTV(P , P̂) ≤
√
3ε.

Proof. Let us denote the total in-degree of all variables by dtotal =
∑n

i=1 |Pa(Xi)|. We
begin the proof by observing the following inequality, which is also used in [ABDH+20,
Lemma 2.9].

γ − 1− ln(γ) ≤ (γ − 1)2 for γ ≥ 0.316 . . . (3.5)

Consider an arbitrary fixed i ∈ [n]. Since |Pa(Xi)| ≤ dtotal, Condition 2 implies that(
σ∗
i

σ̂i

)2

≥ 1

1 +
√

ε·|Pa(Xi)|
dtotal

≥ 1

1 +
√
ε

For ε ≤ 0.17, one can check that 1
1+

√
ε
≥ 0.5, and so Eq. (3.5) applies to

(
σ∗
i

σ̂i

)2
.
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Furthermore, we will have 0 ≤ ε·|Pa(Xi)|
dtotal

≤ ε ≤ 1
4
.

So,

ln

(
σ̂i
σ∗
i

)
+

(σ∗
i )

2 − σ̂2
i

2σ̂2
i

=
1

2
·

((
σ∗
i

σ̂i

)2

− 1− ln

((
σ∗
i

σ̂i

)2
))

≤ 1

2
·

((
σ∗
i

σ̂i

)2

− 1

)2

By Eq. (3.5)

≤ 1

2
·

 1

1−
√

ε·|Pa(Xi)|
dtotal

− 1

2

By Condition 2

≤ 2ε · |Pa(Xi)|
dtotal

Holds when 0 ≤ ε · |Pa(Xi)|
dtotal

≤ 1

4

Meanwhile,

∆⊤
i Mi∆i

2σ̂2
i

≤ |∆
⊤
i Mi∆i|
2σ̂2

i

≤ ε · |Pa(Xi)|
2dtotal

·
(
σ∗
i

σ̂i

)2

By Condition 1

≤ ε · |Pa(Xi)|
2dtotal

· 1

1−
√

ε·|Pa(Xi)|
dtotal

By Condition 2

≤ ε · |Pa(Xi)|
dtotal

Holds when 0 ≤ ε · |Pa(Xi)|
dtotal

≤ 1

4

Putting together, we see that dCP (α
∗
i , α̂i) ≤ 3ε·|Pa(Xi)|

dtotal
. The claim then holds by

invoking the decompositions of Eq. (3.3) and Eq. (3.4):

dKL(P , P̂) =
n∑

i=1

dCP(α
∗
i , α̂i) ≤

n∑
i=1

3ε · |Pa(Xi)|
dtotal

= 3ε

Finally, we can apply Theorem 2.18 to conclude that dTV(P , P̂) ≤
√
3ε2 =

√
3ε.

Remark 3.8. Showing dTV(P , P̂) ≤
√
3ε in Lemma 3.7 is qualitatively the same as

showing dTV(P ,Q) ≤ ε since one can repeat the entire analysis above with a smaller
error ε′ = ε/

√
3.

3.5 Variance recovery

As discussed in Section 3.3, the computing empirical variance suffices to obtain estimates
σ̂2
1, . . . , σ̂

2
n satisfying Condition 2 when given coefficient estimates satisfying Condition 1.
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We formalize this in VarianceRecovery (Algorithm 2). Note that the algorithm only uses
one batch of samples for all the nodes. This is possible as we can obtain high-probability
bounds on the error events at each node.

Algorithm 2 VarianceRecovery: Variance recovery algorithm

1: Input: DAG G, coefficient estimates, and m2 ∈ O
(
dtotal
ε2

log
(
n
δ

))
samples

2: for variable Y with coefficient estimate â do ▷ If |Pa(Y )| = 0, then â = 0.
3: W.l.o.g., by renaming variables, let X1, . . . , X|Pa(Y )| be the parents of Y .
4: for s = 1, . . . ,m2 do
5: Define y(s) and x(s)i as the sth sample of Y and Xi, for i ∈ {1, . . . , |Pa(Y )|}.
6: Define z(s) =

(
y(s) − ⟨x(s), â⟩

)2, where x(s) =
(
x
(s)
1 , . . . , x

(s)
|Pa(Y )|

)
.

7: Estimate σ̂2 = 1
m2

∑m2

s=1 z
(s)

8: return σ̂2
1, . . . , σ̂

2
n

To analyze VarianceRecovery, we first prove guarantees for an arbitrary variable
Y ∈ {X1, . . . , Xn} and then take union bound over all n variables. When Pa(Y ) = ∅,
â = 0 and σ̂2 = 1

m2

∑m2

s=1(y
(s))2 is distributed according to (σ∗)2 ·χ2

m2
. Meanwhile, when

Pa(Y ) ̸= ∅, one can show that σ̂2 ∼
(
(σ∗)2 +∆⊤M∆

)
· χ2

m2
. In either case, we can

apply standard concentration bounds for χ2 random variables (see Lemma 2.31) to argue
that VarianceRecovery produces estimates σ̂2

1, . . . , σ̂
2
n that satisfy Condition 2. The next

lemma formalizes this. Note that the proof for the Pa(Y ) ̸= ∅ case relies on the given
coefficients a satisfying Condition 1, i.e. |∆⊤M∆| is bounded relative to (σ∗)2.

Theorem 3.9 (Guarantees of VarianceRecovery). Suppose 0 ≤ ε ≤ 3 − 2
√
2 ≤ 0.17

and coefficient estimates âi satisfies Condition 1 for all i ∈ [n]. With O
(
dtotal

ε
log
(
n
δ

))
samples, the VarianceRecovery algorithm recovers σ̂2

1, . . . , σ̂
2
n such that

Pr

∀i ∈ [n], 1−

√
ε · |Pa(Xi)|

dtotal
≤
(
σ̂i
σ∗
i

)2

≤ 1 +

√
ε · |Pa(Xi)|

dtotal

 ≥ 1− δ

The total running time is O
(

d2total
ε

log
(
1
δ

))
.

Proof. Fix any arbitrary variable Y ∈ {X1, . . . , Xn}with parameters (a∗, σ∗), associated
noise variable η, and associated covariance matrix M . It suffices to show that with
O
(

dtotal
ε·|Pa(Y )| log

(
1
δ

))
samples, the VarianceRecovery algorithm recovers σ̂ such that

Pr

1−

√
ε · |Pa(Y )|
dtotal

≤
(
σ̂

σ∗

)2

≤ 1 +

√
ε · |Pa(Y )|
dtotal

 ≥ 1− δ (3.6)

Then, for each i ∈ [n], we apply Eq. (3.6) with δ′ = δ/n and m ∈ O
(
dtotal

ε
log
(
1
δ′

))
, then

take the union bound over all n variables. The computational complexity for a variable
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with p parents is O(mp) and so the total runtime is O(mdtotal) since
∑n

i=1 pi = dtotal. In
the rest of this proof, we will establish Eq. (3.6) as discussed.

Suppose we drew k ∈ O
(

dtotal
ε·|Pa(Y )| log

(
1
δ

))
⊆ O

(
dtotal

ε
log
(
1
δ

))
samples and esti-

mated σ̂ = 1
k

∑k
s=1 z

(s) = 1
k

∑k
s=1(y

(s) − x(s)â)2 as per VarianceRecovery. We will
now argue that σ̂2 ∼ (σ∗)2+∆⊤M∆

k
· χ2

k, then apply standard concentration bounds for χ2

random variables; see Lemma 2.31. For any sample s ∈ [k], we see that

y(s) − x(s)â = a(s)a+ η(s) − x(s)â = η(s) − a(s)∆ ,

where ∆ = â − a ∈ Rp is an unknown constant vector (because we do not actually
know a). For fixed ∆, we see that x(s)∆ ∼ N(0,∆⊤M∆). Since η(s) ∼ N(0, (σ∗)2)

and x(s) are independent, we have that y(s) − x(s)â ∼ N(0, (σ∗)2 + ∆⊤M∆). So,
for any sample s ∈ [k], z(s) = (y(s) − x(s)â)2 ∼

(
(σ∗)2 +∆⊤M∆

)
· χ2

1. Therefore,
σ̂ = 1

k

∑k
s=1 z

(s) ∼ (σ∗)2+∆⊤M∆
k

· χ2
k as desired. Now, let us define

γ =

(
σ̂

σ∗

)2

·

(
1

1 + ∆⊤M∆
(σ∗)2

)
∼ χ2

k

k

Since p ≤ dtotal, if ε ≤ 3 − 2
√
2, then εp

dtotal
≤ 3 − 2

√
2 ≤ 3 + 2

√
2. We first make

two observations:

1. For 0 ≤ εp
dtotal

≤ 3− 2
√
2,
(
1 +

√
εp

dtotal

)
·
(

1

1+∆⊤M∆
(σ∗)2

)
≥ 1 +

√
εp

4dtotal

2. For 0 ≤ εp
dtotal

≤ 3 + 2
√
2,
(
1−

√
εp

dtotal

)
·
(

1

1+∆⊤M∆
(σ∗)2

)
≤ 1−

√
εp

4dtotal

Using Lemma 2.31 with the above discussion, we have

Pr

((
σ̂

σ∗

)2

≥ 1 +

√
εp

dtotal
∨
(
σ̂

σ∗

)2

≤ 1−
√

εp

dtotal

)

= Pr

γ ≥
1 +

√
εp

dtotal

1 + ∆⊤M∆
(σ∗)2

 ∨ γ ≤
1−

√
εp

dtotal

1 + ∆⊤M∆
(σ∗)2


≤ Pr

(
γ ≥ 1 +

√
εp

4dtotal
∨ γ ≤ 1−

√
εp

4dtotal

)
= Pr

(
|γ − 1| ≥

√
εp

4dtotal

)
≤ 2 exp

(
− kεp

32dtotal

)
≤ δ (By definition of k)

This establishes Eq. (3.6) as desired.
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3.6 Coefficient recovery based on linear least squares

In this section, we provide an algorithm LeastSquares for recovering the coefficients
in a Bayesian network using linear least squares. As discussed in Section 3.3, we will
recover the coefficients for each variable such that Condition 1 is satisfied. To this end,
let us consider an arbitrary variable Y ∈ {X1, . . . , Xn} with p parents. If p = 0, we
simply set the coefficients â = 0 and observe that Condition 1 is trivially satisfied since
∆ = â− a∗ = 0− 0 = 0. Meanwhile, if p ≥ 1, we may assume w.l.o.g. (by relabeling)
that X1, . . . , Xp are the parents of Y and proceed to estimate the coefficients â using
independent samples from P .

Using m1 independent samples, we form matrix X ∈ Rm1×p using m1 independent
samples, where the rth row consists of sample values x(r)1 , . . . , x

(r)
p , and the column vector

B = (y(1), . . . , y(m1))⊤ ∈ Rm1 . Then, we define â = (X⊤X)−1X⊤B as the solution to
the least squares problem Xâ = B.

Algorithm 3 LeastSquares: Coefficient recovery algorithm

1: Input: DAG G and m1 ∈ O
(
dtotal

ε
· ln
(
n
δ

))
samples

2: for variable Y with p ≥ 1 parents X1, . . . , Xp do
3: Form matrix X ∈ Rm1×p, where the rth row consists of samples (x(r)1 , . . . , x

(r)
p )

4: Form column vector B = (y(1), . . . , y(m1))⊤ ∈ Rm1

5: Define â = (X⊤X)−1X⊤B as the solution to the least squares problemXâ = B

6: return â1, . . . , ân

Theorem 3.10 (Distribution learning using LeastSquares). Let ε, δ ∈ (0, 1). Suppose
G is a known DAG on n variables with in-degree at most d and we have sample access
to distribution P that is Markov with respect to G. Given O

(
dtotal
ε2

log
(
n
δ

))
samples from

P , by using LeastSquares for coefficient recovery in Algorithm 1, one can produce a
distribution P̂ such that dTV(P , P̂) ≤ ε. The time complexity is O

(
d2total·d

ε2
log
(
1
δ

))
and

the success probaility is at least 1− δ.

Observe that as d → n, the sample complexity bound of Theorem 3.10 recovers the
known bound of Θ(n2/ε2) for learning general n-dimensional multivariate Gaussians
discussed in Section 2.4.1.

Our analysis begins by proving guarantees for an arbitrary variable.

Lemma 3.11. Fix an arbitrary variable Y with p parents, parameters (a∗, σ∗), and
associated covariance matrix M . With k ≥ 4c22

(1−c1)4
· dtotal

ε
samples, for any constants

0 < c1 < 1/2 and c2 > 0, LeastSquares recovers the coefficients â such that

Pr

(
|∆⊤M∆| ≥ (σ∗)2 · ε · p

dtotal

)
≤ exp

(
−kc

2
1

2

)
+ 2p exp (−2k) + p exp

(
−c

2
2

2

)



CHAPTER 3. LEARNING PARAMETERS IN SPARSE NETWORKS 49

Proof. Let M = LL⊤ be the Cholesky decomposition of M via the lower triangular
matrix L. Since |∆⊤M∆| = |∆⊤LL⊤∆| = ∥L⊤∆∥2, it suffices to bound ∥L⊤∆∥.

W.l.o.g., Y has additive Gaussian noise variable η and the parents X1, . . . , Xp by
relabeling. Define X ∈ Rk×p, B ∈ Rk, and â ∈ Rp as in LeastSquares. Let
η = (η(1), . . . , η(k)) ∈ Rk be the instantiations of Gaussian η in the k samples. By the
structural equations, we know that B = Xa+ η. So,

ã = (X⊤X)−1X⊤B = (X⊤X)−1X⊤(Xa∗ + η) = a+ (X⊤X)−1X⊤η

By Lemma 2.30, we can express X = GL⊤ where matrix G ∈ Rk×p is a random ma-
trix with i.i.d.N(0, 1) entries. Since∆ = â−a∗, we see that∆ = (L⊤)−1(G⊤G)−1G⊤η.
Rearranging, we have L⊤∆ = (G⊤G)−1G⊤η and so ∥L⊤∆∥ ≤ ∥(G⊤G)−1∥ · ∥G⊤η∥.
Combining Lemma 3.3 and Lemma 3.4, which bound ∥(G⊤G)−1∥ and ∥G⊤η∥ respec-
tively, we get

Pr

(
∥L⊤∆∥ >

2σ∗c2
√
p

(1− 2c1)
2
√
k

)
≤ exp

(
−kc

2
1

2

)
+2p exp (−2k)+p exp

(
−c

2
2

2

)
(3.7)

for any constants 0 < c1 < 1/2 and c2 > 0. The claim follows by setting k =
4c22

(1−c1)4
·

dtotal
ε

.

We can now establish Condition 1 of Lemma 3.7 for LeastSquares.

Lemma 3.12. With m1 ∈ O
(
dtotal

ε
· ln
(
n
δ

))
samples, LeastSquares recovers the coeffi-

cients â1, . . . , ân such that

Pr

(
∀i ∈ [n], |∆⊤

i Mi∆i| ≥ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

)
≤ δ

The total running time is O
(

d2total·d
ε

ln
(
1
δ

))
.

Proof. By setting c1 = 1/4, c2 =
√

2 ln (3n/δ), and k = 32dtotal
ε

ln
(
3n
δ

)
≥ 4c22

(1−c1)4
· dtotal

ε

in Lemma 3.11, we have

Pr

(
|∆⊤

i Mi∆i| ≥ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

)
≤ exp

(
−kc

2
1

2

)
+ |Pa(Xi)| · exp (−2k) + |Pa(Xi)| · exp

(
−c

2
2

2

)
≤ δ

3n
+

δ

3n
+

δ

3n

=
δ

n

for any i ∈ [n]. The claim holds by a union bound over all n variables.
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As maxi∈[n] |Pa(Xi)| ≤ d,
∑n

i=1 |Pa(Xi)| = dtotal, and the computational complexity
for a variable with p parents is O(m1 · p2), the total runtime is O(m1 · dtotal · d) ⊆
O
(

d2total·d
ε

ln
(
1
δ

))
.

Theorem 3.10 follows from combining the guarantees of LeastSquares (Lemma 3.12)
and VarianceRecovery (Theorem 3.9) via Lemma 3.7.

Proof of Theorem 3.10. We will show sample and time complexities before giving the
proof for the dTV distance.

Let m1 ∈ O
(
dtotal

ε
· ln
(
n
δ

))
and m2 ∈ O

(
dtotal

ε
log
(
n
δ

))
. Then, the total num-

ber of samples needed is m = m1 + m2 ∈ O
(
dtotal

ε
log
(
n
δ

))
. LeastSquares runs in

O
(

d2total·d
ε

ln
(
1
δ

))
time while VarianceRecovery runs inO

(
d2total

ε
log
(
1
δ

))
time. There-

fore, the overall running time is O
(

d2total·d
ε

log
(
1
δ

))
.

By Lemma 3.12, LeastSquares recovers coefficients â1, . . . , ân such that

Pr

(
∀i ∈ [n], |∆⊤

i Mi∆i| ≥ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

)
≤ δ

By Theorem 3.9 and Using the recovered coefficients from LeastSquares, the guar-
antees of Theorem 3.9 tells us that VarianceRecovery recovers variance estimates σ̂2

i

such that

Pr

∀i ∈ [n], 1−

√
ε · |Pa(Xi)|

dtotal
≤
(
σ̂i
σ∗
i

)2

≤ 1 +

√
ε · |Pa(Xi)|

dtotal

 ≥ 1− δ

As our estimated parameters satisfy Condition 1 and Condition 2, Lemma 3.7 tells us
that dKL(P ,Q) ≤ 3ε. Thus, dTV(P ,Q) ≤

√
dKL(P ,Q)/2 ≤

√
3ε/2.

The claim follows by repeating the above analysis with ε′ =
√

3ε/2.

3.7 Coefficient recovery based on Cauchy variables

In this section, we provide novel algorithms CauchyEst and CauchyEstTree for re-
covering the coefficients in polytree Bayesian networks. We will show that CauchyEst-
Tree has near-optimal sample complexity. Of technical interest, our analysis involves
Cauchy random variables, which are somewhat of a rarity in statistical learning. As in
LeastSquares, CauchyEst and CauchyEstTree use independent samples to recover
the coefficients associated to each individual variable in an independent fashion.

Let us consider an arbitrary variable Y ∈ {X1, . . . , Xn} with p parents with additive
noise η, corresponding coefficients a∗, and covariance matrix M = LL⊤. As before,
w.l.o.g., we may assume that Y has parents X1, . . . , Xp by relabelling. The intuition is
as follows: if η = 0, then one can form a linear system of equations using p samples to
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exactly solve for the coefficients a∗. Unfortunately, η is non-zero in general. Instead of
exactly recovering a, we partition the m1 independent samples into k = ⌊m1/p⌋ batches
involving p samples and form intermediate estimates ã(1), . . . , ã(k) by solving a system
of linear equations for each batch (see Batch, Algorithm 4). Then, we “combine” these
intermediate estimates to obtain our estimate â.

Algorithm 4 Batch: Batch coefficient recovery algorithm for variable with p parents
1: Input: DAG G, a variable Y with p parents X1, . . . , Xp, and p samples
2: Form matrix X ∈ Rp×p, where the rth row consists of samples (x(r)1 , . . . , x

(r)
p )

3: Form column vector B = (y(1), . . . , y(p))⊤ ∈ Rp

4: Define ã as any solution to Xã = B.
5: return ã

An astute reader will notice that Batch is very similar to LeastSquares in that both
attempt to estimate ã via Xã = B. While LeastSquares uses the least squares estimate,
Batch works with any solution to the linear system of equations.

For an arbitrary copy of recovered coefficients ã, let∆ = ã−a∗ be a vector measuring
the ccoordinate-wise gap between these recovered coefficients and the ground truth as
before. The following lemma shows that each entry of the vector L⊤∆ is distributed
according to σ∗ · Cauchy(0, 1), although the entries may be correlated with each other in
general.

Lemma 3.13. Consider a batch estimate ã from Batch. Then, L⊤∆ is entry-wise
distributed as σ∗ · Cauchy(0, 1), where ∆ = ã− a∗. Note that the entries of L⊤∆ may
be correlated in general.

Proof. Observe that each row of X is an independent sample drawn from a multivariate
Gaussian N(0,M). By denoting η = (η(1), . . . , η(p))⊤ as the p samples of η, we can
write Xã = Xa + η and thus X∆ = η by rearranging terms. By Lemma 2.30, we
can express X = GL⊤ where matrix G ∈ Rp×p is a random matrix with i.i.d. N(0, 1)

entries. By substituting X = GL⊤ into X∆ = η, we have L⊤∆ = G−1η.10

By applying Lemma 3.6 with the following parameters: A = G,B = L⊤∆,E = η,
we conclude that each entry of L⊤∆ is distributed as σ∗ · Cauchy(0, 1). However, note
that these entries are generally correlated.

If we have direct access to the matrixL, then one can do the following (see CauchyEst,
Algorithm 5): take coordinate-wise medians of L⊤ã to form MEDi and then estimate
â = (L⊤)−1(MED1, . . . , MEDn)

⊤. The reason why we use medians is because the typical
strategy of averaging independent estimates does not work here as the variance of a Cauchy
variable is unbounded. By the convergence of Cauchy random variables to their median,
one can show that each coordinate of â converges to the true coefficient a∗ as before.

10Note that event that G is singular has measure 0.
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Unfortunately, we do not have L and can only hope to estimate it with some matrix L̂

using the empirical covariance matrix M̂ .

Algorithm 5 CauchyEst: Coefficient recovery algorithm for general Bayesian networks
1: Input: DAG G and m samples
2: for variable Y with p ≥ 1 parents X1, . . . , Xp do
3: Let M̂ be the empirical covariance matrix with respect to X1, . . . , Xp.
4: Compute the Cholesky decomposition M̂ = L̂L̂⊤ of M̂ .
5: for s = 1, . . . , ⌊m/p⌋ do
6: Using p samples and Batch, compute a batch estimate ã(s).
7: For each i ∈ [n], define MEDi = median{(L̂⊤ã(1))i, . . . , (L̂

⊤Ã(⌊m/p⌋))i}.
8: return â = (L̂⊤)−1(MED1, . . . , MEDn)

⊤.

3.7.1 Special case of polytree Bayesian networks

If the Bayesian network is a polytree, then L is diagonal. In this case, we specialize
CauchyEst to CauchyEstTree and are able to give theoretical guarantees. We begin
with simple corollary which tells us that the ith entry of ∆ is distributed according to
σ∗

σi
· Cauchy(0, 1).

Corollary 3.14. Consider a batch estimate ã from Batch. If the Bayesian network is a
polytree, then ∆i = (ã− a∗)i ∼ σ∗

σi
· Cauchy(0, 1).

Proof. Observe that each row of X is an independent sample drawn from a multivariate
Gaussian N(0,M). By denoting η = (η(1), . . . , η(p))⊤ as the p samples of η, we can
write Xã = Xa+ η and thus X∆ = η by rearranging terms. Since the parents of any
variable in a polytree are not correlated, each element in the ith column of X is aN(0, σ2

i )

Gaussian random variable.
By applying Lemma 3.6 with the following parameters: A = X,B = ∆E = η, we

conclude that ∆i = (ã− a)i ∼ σ∗

σi
· Cauchy(0, 1).

For each i ∈ Pa(Y ), we combine the k independently copies of ã(1), . . . , ã(k) using the
coordinate-wise median: (â)i = medians∈[k](ã

(s))i for each coordinate i. For arbitrary
sample s ∈ [k] and parent index i ∈ Pa(Y ), observe that the ith coordinate error is
(∆(s))i = (ã(s))i − (a∗)i. Since (a∗)i is just an unknown constant,

(â)i = medians∈[k]
(
ã(s)
)
i
= (a∗)i +medians∈[k]

(
∆(s)

)
i

Since each (∆(s))i term is i.i.d. distributed as σ∗ · Cauchy(0, 1), the median term
medians∈[k](∆

(s))i converges to 0 with sufficiently large k, and thus (â)i converges to
the true coefficient ith coordinate (a∗)i of a∗.

The goal of this section is to prove Theorem 3.15 given CauchyEstTree (Algorithm 6).
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Algorithm 6 CauchyEstTree: Coefficient recovery for polytrees

1: Input: A polytree G and m1 ∈ O
(
dtotal·d

ε
log
(
n
δ

))
samples

2: for variable Y with p ≥ 1 parents X1, . . . , Xp do
3: for s = 1, . . . , ⌊m1/p⌋ do
4: Using p samples and Batch, compute a batch estimate ã(s).

5: return column vector â, where (â)i =

{
medians∈[k](ã

(s))i if i ∈ Pa(Y )

0 if i ̸∈ Pa(Y )

Theorem 3.15 (Distribution learning using CauchyEstTree). Let ε, δ ∈ (0, 1).
Suppose G is a fixed directed acyclic graph on n variables with degree at most d.
Given O

(
dtotal·d

ε
log
(

n
εδ

))
samples from an unknown Bayesian network P over G, if

we use CauchyEstTree for coefficient recovery in Algorithm 1, then with probability
at least 1 − δ, we recover a Bayesian network P̂ over G such that dTV(P , P̂) ≤ ε in
O
(

d2total·d
ω−1

ε
log
(
n
δ

))
time.

Note that for polytrees, dtotal/n is just a constant. As before, we will first prove
guarantees for an arbitrary variable and then take union bound over n variables.

Lemma 3.16. Consider the CauchyEstTree algorithm. Fix an arbitrary variable of
interest Y with p parents, parameters (a∗, σ∗), and associated covariance matrix M .
With k = 8dtotal

ε
log
(
2
δ

)
samples, we recover coefficient estimates â such that

Pr

(
|∆⊤M∆| ≤ (σ∗)2 · ε · p

dtotal

)
≥ 1− δ

Proof. Since M = LL⊤, it suffices to bound ∥L⊤∆∥. Lemma 3.13 tells us that each
entry of the vector L⊤∆ is the median of k copies of Cauchy(0, 1) random variables
multiplied by σy. Setting k = 8dtotal

ε
log
(
2
δ

)
and 0 < τ =

√
ε

dtotal
< 1 in Lemma 3.5, we

see that

Pr

(
median of k i.i.d. Cauchy(0, 1) random variables ̸∈

[
−
√

ε

dtotal
,

√
ε

dtotal

])
≤ δ

That is, each entry of L⊤∆ has absolute value at most σ∗ ·
√

ε
dtotal

. By summing across
all p entries of L⊤∆, we see that

|∆⊤M∆| = |∆⊤LL⊤∆| = ∥L⊤∆∥2 ≤ p · (σ∗)2 · ε

dtotal
= (σ∗)2 · ε · p

dtotal

We can now establish Condition 1 of Lemma 3.7 for CauchyEstTree.

Lemma 3.17. Consider the CauchyEstTree algorithm. Suppose the Bayesian network
is a polytree. With m1 ∈ O

(
dtotal·d

ε
log
(
n
δ

))
samples, we recover coefficient estimates
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â1, . . . , ân such that

Pr

(
∀i ∈ [n], |∆⊤

i Mi∆i| ≥ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

)
≤ δ

The total running time is O
(

d2total·d
ω−1

ε
log
(
n
δ

))
where ω is the matrix multiplication

exponent.

Proof. For each i ∈ [n], apply Lemma 3.16 with δ′ = δ/n and m1 =
8dtotal

ε
log
(
2n
δ

)
, then

take the union bound over all n variables.
The runtime of Batch is the time to find the inverse of a p × p matrix, which is

O(pω) for some matrix multiplication constant ω ∈ (2, 3). Therefore, the computational
complexity for a variable with p parents is O(pω−1 ·m1). Since maxi∈[n] |Pa(Xi)| ≤ d

and
∑n

i=1 |Pa(Xi)| = dtotal, the total runtime is O(m1 · dtotal · dω−2).

We are now ready to prove Theorem 3.15.
Theorem 3.15 follows from combining Lemma 3.17 and Theorem 3.9 (the guarantees

of CauchyEstTree and VarianceRecovery respectively) via Lemma 3.7.

Proof of Theorem 3.15. We will show sample and time complexities before giving the
proof for the dTV distance.

Let m1 ∈ O
(
dtotal·d

ε
log
(
n
δ

))
and m2 ∈ O

(
dtotal

ε
log
(
n
δ

))
. Then, the total number

of samples needed is m = m1 + m2 ∈ O
(
dtotal·d

ε
log
(

n
εδ

))
. CauchyEstTree runs in

O
(

d2total·d
ω−1

ε
log
(
n
δ

))
time while VarianceRecovery runs in O

(
d2total

ε
log
(
1
δ

))
time,

where ω is the matrix multiplication exponent. Therefore, the overall running time is
O
(

d2total·d
ω−1

ε
log
(
n
δ

))
.

By Lemma 3.17, CauchyEstTree recovers coefficients Â1, . . . , Ân such that

Pr

(
∀i ∈ [n], |∆⊤

i Mi∆i| ≥ (σ∗
i )

2 · ε · |Pa(Xi)|
dtotal

)
≤ δ

Using the recovered coefficients from CauchyEstTree, the guarantees of Theorem 3.9
tells us that VarianceRecovery recovers variance estimates σ̂2

i such that

Pr

∀i ∈ [n], 1−

√
ε · |Pa(Xi)|

dtotal
≤
(
σ̂i
σ∗
i

)2

≤ 1 +

√
ε · |Pa(Xi)|

dtotal

 ≥ 1− δ

As our estimated parameters satisfy Condition 1 and Condition 2, Lemma 3.7 tells us
that dKL(P ,Q) ≤ 3ε. Thus, dTV(P ,Q) ≤

√
dKL(P ,Q)/2 ≤

√
3ε/2. The claim follows

by setting ε′ =
√

3ε/2 throughout.



Chapter 4

Learning bounded-degree polytrees
with known skeleton

“All models are wrong but some are useful.”
- George Box [Box79].

4.1 Introduction

Polytrees are a subclass of Bayesian networks (Section 2.7) where the undirected graph
underlying the DAG is a forest, i.e. there are no cycles in the undirected graph obtained by
ignoring edge directions. Since there is a unique path in skel(G) between any two vertices
in the graph in polytrees, ancestors of any vertex V are mutually independent and typically
become mutually dependent when V (or any of V ’s descendants) are being conditioned
over. A polytree with maximum in-degree d is also known as a d-polytree. Polytrees
are of particular interest because inference on polytree-structured Bayesian networks can
be performed efficiently [PK83, Pea86]. Another motivation to study polytrees is due to
[GA21] showing that polytrees are easier to learn than general Bayesian networks due
to the underlying graph being a tree, allowing typical assumptions such as faithfulness
(Definition 2.50) to be dropped when designing efficient learning algorithms.

With an infinite number of samples, one can recover the DAG of a non-degenerate
polytree in the equivalence class with the Chow-Liu algorithm [CL68] and some additional
conditional independence tests [RP88]. However, this does not work in the finite sample
regime and the only known finite sample result for learning polytrees is for 1-polytrees
[BGP+23, DP21]. Furthermore, in the agnostic setting, the learning problem of finding
the closest polytree distribution to an arbitrary distribution P is NP-hard [Das99].

In this chapter, we consider the task of PAC-learning from samples of a discrete
distribution that is described by a degree-bounded polytrees. While d∗ denotes the true
maximum in-degree of the underlying polytree, our algorithm and results are with respect

55
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to a given upper bound d of d∗. Specifically, we focus on the realizable setting where
the discrete distribution P on n variables (each with domain Σ) which we draw samples
from is Markov with respect to an unknown d∗-polytree G∗. Prior to our work, the only
known result known is for the d∗ = 1: [BGP+23, DP21] tell us that Θ̃(n·|Σ|2

ε
) samples are

sufficient to produce P̂ such that dKL(P , P̂) ≤ ε by analyzing the Chow-Liu algorithm.
This sample complexity is also necessary in the worst case. Note that we can focus on
bounding dKL instead of dTV because dKL(P , P̂) ≤ ε implies dTV(P , P̂) ≤

√
ε/2 via

Pinsker’s inequality (Theorem 2.18) so one can obtain corresponding bounds for dTV by
replacing ε with ε2 throughout.

4.2 Our main results

We give a sample-efficient algorithm for proper Bayesian network learning in the realiz-
able setting, when provided with the ground truth skeleton (i.e., the underlying forest).
Crucially, our result does not require any distributional assumptions such as strong faith-
fulness (Definition 2.50), etc. We also give information-theoretic sample complexity lower
bounds that hold even when the ground truth skeleton is known and given to us.

Theorem 4.1. Let ε, δ ∈ (0, 1) be the error and failure parameters respectively. Consider
a discrete distribution P on n variables, each with alphabet Σ, defined on a polytree G∗

with an unknown maximum in-degree d∗. Given m = Ω̃
(

n·|Σ|d+1

ε
log 1

δ

)
samples from P ,

the skeleton of G∗, and an in-degree upper bound d ≥ d∗, there exists an algorithm that
outputs a d-polytree distribution P̂ such that dKL(P , P̂) ≤ ε. This algorithm runs in time
polynomial in m, |Σ|d, and nd and succeeds with probability at least 1− δ.

We remark that Theorem 4.1 only requires an upper bound d on the true in-degree d∗.
In particular, our result yields a sample complexity upper bound of Õ(n/ε) for learning
O(1)-polytrees with constant |Σ| and d. In Section 4.5, we state sufficient distributional
conditions that enable recovery of the ground truth skeleton. Informally, we require that the
data processing inequality hold in a strong sense with respect to the edges in the skeleton.
Applying Theorem 4.1 under these conditions would then imply a polynomial-time PAC
algorithm to learn bounded-degree polytrees from samples.

Our next result shows that this dependence on the dimension n and the accuracy
parameter ε is optimal, up to logarithmic factors, even for d = |Σ| = 2.

Theorem 4.2. Let ε ∈ (0, 1) be the error parameter. There exists a choice of distribution
P over {0, 1}n that is Markov with respect to some 2-polytree G∗ such that producing P̂
such that dKL(P , P̂) ≤ ε with success probability at least 2/3 requires Ω(n/ε) samples
from P , even given we are given skel(G∗) as input.

In some sense, Theorem 4.2 generalizes the Ω̃
(
n
ε

)
sample complexity lower bound of

[BGP+23, Theorem 7.6] in the case where d = 1 and skel(G∗) is not given as input.
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4.3 Technical overview

4.3.1 Some setup

Let us begin by introducing some notation and preliminary concepts for this chapter.
Let X be the set of n variables which the distributionP is defined over. For any subset

of variables S ⊆X and graph G, PS denotes the projection ofP whilePG dnotes the pro-
jection of P onto G. More specifically, we have PG(x1, . . . , xn) =

∏
x∈X P(x | paG(X)).

Note thatPG is the closest distribution on G toP in dKL, i.e.PG = argminQ∈G dKL(P ,Q).
One can verify this using [BGP+23, Lemma 3.3]: for any distribution Q defined on G,

dKL(P ,Q)− dKL(P ,PG)

=
∑
V ∈V

P(paG(V )) · dKL(P(V | PaG(V )),Q(V | PaG(V ))) ≥ 0

By [CL68], we also know that

dKL(P ,PG) = −
n∑

i=1

I(Xi; PaG(Xi))−H(PX) +
n∑

i=1

H(PXi
) , (4.1)

where H is the entropy function. Since only the first term depends on the graph structure
of G, this motivate the Chow-Liu algorithm [CL68]: given mutual information between
each pairs of variables as edge weights, compute the maximum weight spanning tree.

Our goal in this chapter is to obtain approximately good graph Ĝ for P in the sense of
dKL(P ,PĜ) ≤ ε. With Ĝ, one can employ sample and computational-efficient learning
algorithms to output the final hypothesis P̂ .

Note that for some distributions there could be more than one ground truth graph, e.g.
when the Markov equivalence class has multiple graphs. In such situations, for analysis
purposes, we are free to choose any graph that P is Markov with respect to. As the mutual
information (MI) scores, i.e. the sum of MI terms in Eq. (4.1), are the same for any graphs
that P is Markov with respect to, the choice of G∗ does not matter here.

We also study a generalized version of v-structures (deg-ℓ v-structure) where the center
has ℓ ≥ 2 parents u1, u2, . . . , uℓ. We say that a deg-ℓ v-structure is said to be ε-strong if
we can reliably identify them in the finite sample regime.

Definition 4.3 (ε-strong deg-ℓ v-structure). Let 0 < c0 < 1 be the universal constant
appearing in Corollary 4.4. A deg-ℓ v-structure is a subgraph on ℓ+1 nodes v, u1, . . . , uℓ
such that:
1. deg-ℓ v-structure: v ← uk for all k ∈ [ℓ], and uk \− uk′ for all k, k′ ∈ [ℓ] and k ̸= k′

2. ε-strong: I(uk; {u1, u2, . . . , uℓ} \ uk | v) ≥ c0 · ε for all k ∈ [ℓ]

Our algorithmic correctness relies on the following result (Corollary 4.4) about condi-
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tional mutual information (CMI) testers, which is adapted from Theorem 1.3 of [BGP+23];
see Appendix A.2.1 for derivation details and [CYBC24, Appendix B] for a derivation of
a constant c0 that works.

Corollary 4.4 (CMI tester). Fix any ε > 0. Let (X, Y, Z) be three random variables
over ΣX ,ΣY ,ΣZ respectively. Given the empirical distribution (X̂, Ŷ , Ẑ) over a size N
sample of (X, Y, Z), there exists a universal constant 0 < c0 < 1 so that for any N at
least

Θ

(
|ΣX | · |ΣY | · |ΣZ |

ε
· log |ΣX | · |ΣY | · |ΣZ |

δ
· log

|ΣX | · |ΣY | · |ΣZ | · log
(
1
δ

)
ε

)
,

the following statements hold with probability 1− δ:
(1) If I(X;Y | Z) = 0, then Î(X;Y | Z) < c0 · ε.
(2) If Î(X;Y | Z) ≤ c0 · ε, then I(X;Y | Z) < ε.
Unconditional statements for I(X;Y ) and Î(X;Y ) hold similarly by setting |ΣZ | = 1.

Using the contrapositive of the first statement of Corollary 4.4 and non-negativity of
CMI, one can also see that if Î(X;Y | Z) ≥ c0 · ε, then I(X;Y | Z) > 0.

4.3.2 Overview of algorithm

Our algorithm is designed with Eq. (4.1) in mind. Since there are efficient algorithms for
estimating the parameters of a Bayesian network with in-degree d once a close-enough
graph Ĝ is recovered [Das97, BGMV20], it suffices to find a good approximation of the
underlying DAG G∗. For a distribution P that is Markov with respect to a DAG G∗,
the quality (in terms of KL divergence) of approximating G∗ with G is dKL(P ,PG) =

dKL(PG∗ ,PG) =
∑

x∈X I(X; PaG∗(X)) − I(X; PaG(X)), where I(·; ·) refers to mutual
information between the terms. When the true skeleton skel(G∗) is given to us in advance,
what remains is to orient each edge. As such, given error parameter ε > 0 and upper bound
on in-degree d, the goal of our algorithm is to judiciously orient the edges of skel(G∗) such
that dKL(PG∗ ,PG) is at most ε while ensuring that every vertex has at most d incoming
edges.

Our algorithm relies on estimating MI and CMI terms involving subsets of variables.
A naïve approach of estimating these terms additively would incur unnecessary sample
complexity overhead. One of our technical contributions is to show that it suffices to have
access to a tester that can distinguish between a CMI term being 0 or at least some threshold
η > 0. As shown in [BGP+23], the sample complexity for testing (see Corollary 4.4) is an
O(η) factor smaller than that for estimating the CMI up to additive error of ± η/2. Note
that the tester is probabilistic in nature and we will upper bound the overall failure rate
using union bound later.
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Our algorithm works in three phases. In the first phase, we orient “strong v-structures”.
In the second phase, we locally check if an edge is “forced” to orient in a specific
direction. In the third phase, we orient the remaining unoriented edges as a 1-polytree.
Throughout the algorithm, we do not unorient edges as we will be able to argue that any
orientations performed by the first two phases are guaranteed to respect the orientations
of the underlying causal graph from which we draw samples from.

To explain the intuition behind the first two phases, consider the example of a path
on 3 vertices U − V −W within a possibly larger graph; see Fig. 4.1 for a slightly more
sophisticated example. We will orient edges by using the finite-sample CMI tester to
determine whether certain CMI values are “large” or “small”. If U → V ← W , then U
andW are dependent given V . Otherwise, U andW are independent given V since G is a
polytree. That is, one would expect I(U ;W | V ) to be large if and only if U → V ← W

was a v-structure. If it is indeed the case that I(U ;W | V ) is “large”, then this would
be detected by the tester (i.e. U → V ← W was “strong”) and so we orient U → V

and W → V in Phase 1. Now, after Phase 1, the graph would be partially oriented;
say, we have U → V −W after Phase 1. If U → V → W was the ground truth, then
I(U ;W | V ) = 0 and the tester will detect this term as “small”. If U → V ← W was the
ground truth, then I(U ;W ) = 0 and the tester will detect this term as “small”. Via the
contrapositive of the previous two statements, if I(U ;W | V ) or I(U ;W ) is “large”, then
we are “forced” to orient a specific orientation of the edge V −W . We may also leave
V −W unoriented if neither term was “large”. Another form of “forced orientation” is
due to the given upper bound d on the number of parents any vertex can have: we should
point all remaining incident unoriented edges away from a vertex V whenever V already
has d incoming arcs. For example, if d = 1, then we have to orient V → W if we observe
U → V −W after Phase 1. Given the above intuition, any edge that remains unoriented
till the Phase 3 must have been “flexible” in the sense that it could be oriented either way.
In fact, we later show that “not too much error” will be incurred if the edge orientations
from the final phase only increases the incoming degrees of any vertex by at most one.
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(c) See Section 4.4.1

Figure 4.1: 3-polytree example where I(A;B,C) = I(B;A,C) = I(C;A,B) = 0
due to deg-3 v-structure centered at D. By Corollary 4.4, I(A;F | D) = 0 implies
Î(A;F | D) ≤ c0 · ε, and so we will not detect A → D → F erroneously as a strong
deg-2 v-structure A→ D ← F .
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4.3.3 Overview of information-theoretic lower bound

Our lower bound shows that Ω(n/ε) samples are necessary, even when a known skeleton
is provided. To show this, we first show that Ω(1/ε) samples are required for the case
where n = 3 by reducing the problem finding an ε-close graph orientation to the problem
of testing whether samples are drawn from two given distributions. To accomplish this,
we designed a pair of distributions P1 and P2 and a pair of graphs G1 and G2 such that

1. P1 and P2 have “small” squared Hellinger distance,

2. Pi has zero KL divergence if projected onto Gi, and

3. Pi has “large” KL divergence if projected onto Gj (for j ̸= i).

Since the distributions have small squared Hellinger distance, say less than ε, one needs
Ω(1/ε) samples to distinguish them, thus showing that Ω(1/ε) samples are required for
the case where n = 3. To obtain a dependency on n, we construct n/3 independent copies
of the above gadget, à la proof strategy of [BGP+23, Theorem 7.6].

4.4 Recovering given a skeleton and degree bound

Here, we describe and analyze an algorithm for estimating a probability distribution P
that is defined on a d∗-polytree G∗. We assume that we are given skel(G∗) = (V ,E) and
d as input, where d∗ ≤ d.

4.4.1 Algorithm RecoverOrientation

At any point in the algorithm, let us define the following sets. Let N(V ) be the set of all
neighbors of V in skel(G∗) = (V ,E) over |V | = n variables. Let N in(V ) ⊆ N(V ) be
the current set of incoming neighbors of V . Let Nout(V ) ⊆ N(V ) be the current set of
outgoing neighbors of V . LetNun(V ) ⊆ N(V ) be the current set of unoriented neighbors
of V . That is, N(V ) = N in(V ) ⊔Nout(V ) ⊔Nun(V ).

We define an algorithmic subroutine “Meek R1(d)” to orient all incident unoriented
edges away from V whenever V already has d parents in a partially oriented graph. The
reason for this naming is because it generalizes the idea behind the first of the four Meek
rules [Mee95]; see Section 2.6.6 for details.

Our algorithm has three phases. In Phase 1, we orient strong v-structures. In Phase 2,
we locally check if an edge is forced to orient one way or another to avoid incurring too
much error. In Phase 3, we orient the remaining unoriented edges as a 1-polytree. Since
the remaining edges were not forced, we may orient the remaining edges in an arbitrary
direction (while not incurring “too much error”) as long as the final incoming degrees of
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Algorithm 7 RecoverOrientation: Algorithm for known skeleton and max in-degree.
Input: c0, ε > 0, skeleton skel(G∗), and max in-degree d
Output: A complete orientation of skel(G∗)

1: Run Phase1: Orient strong v-structures ▷ O(nd+1) time
2: Run Phase2: Local search and Meek R1(d) ▷ O(n3) time
3: Run Phase3: Freely orient remaining unoriented edges ▷ O(n) time via DFS
4: return Ĝ

any vertex does not increase by more than 1. Subroutine Orient (Algorithm 8) performs
the necessary updates when we orient U − V to U → V .

Algorithm 8 Orient: Subroutine to orient edges
Input: Vertices U and V where U − V is currently unoriented

1: Orient U − V as U → V .
2: Update N in(V ) to N in(V ) ∪ {U} and Nun(V ) to Nun(V ) \ {U}.
3: Update Nout(U) to Nout(U) ∪ {V } and Nun(U) to Nun(U) \ {V }.

Algorithm 9 Phase1: Orient strong v-structures
Input: c0, ε > 0, skeleton skel(G∗), and max in-degree d

1: γ ← d
2: while γ ≥ 2 do
3: for V ∈ V do ▷ Arbitrary order
4: for T ∈ Nγ do ▷ Nγ ⊆ 2N(V ) are the γ neighbors of V ; |Nγ| =

(|N(V )|
γ

)
5: if |T ∪N in(V )| ≤ d and Î(U ;T \ {U} | V ) ≥ c0 · ε, ∀U ∈ T then
6: for U ∈ T do ▷ Strong deg-γ v-structure
7: Orient(U , V )
8: γ ← γ − 1 ▷ Decrement degree bound

Example Suppose we have the partially oriented graph Fig. 4.1(c) after Phase 1. Since
N in(D) = {A,B}, we will check the edge orientations of C − D and F − D. Since
I(F ; {A,B} | D) = 0, we will have Î(F ; {A,B} | D) ≤ ε, so we will not erroneously
orient F → D. Meanwhile, I(C; {A,B}) = 0, we will have Î(C; {A,B}) ≤ ε, so we
will not erroneously orient D → C.

Remark 4.5. Note that within the for-loop from Line 7 of Phase2 (Algorithm 10), neither
condition may hold, in which case we do not orient anything, hence the “missing” else.

When we freely orient a forest, we pick arbitrary root nodes in the connected compo-
nents and orient to form a 1-polytree.
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Algorithm 10 Phase2: Local search and Meek R1(d)
Input: c0, ε > 0, partially oriented graph, and max in-degree d

1: while True do ▷ O(n) iterations, O(n2) time per iteration
2: if ∃V ∈ V such that |N in(V )| = d and Nun(V ) ̸= ∅ then ▷ Meek R1(d)
3: Orient all unoriented arcs away from V
4: Update Nout(V )← Nout(V ) ∪Nun(V ); Nun(V )← ∅
5: for every node V ∈ V do
6: if 1 ≤ |N in(V )| < d then
7: for every U ∈ Nun(V ) do ▷ See Remark 4.5
8: if Î(U ;N in(V ) | V ) > c0 · ε then
9: Orient(U , V )

10: else if Î(U ;N in(V )) > c0 · ε then
11: Orient(V , U )
12: if No new edges are being oriented then
13: break

Algorithm 11 Phase3: Freely orient remaining unoriented edges
Input: c0, ε > 0, partially oriented graph, and max in-degree d

1: LetH be the forest induced by the remaining unoriented edges.
2: Freely orientH as a 1-polytree, i.e. maximum in-degree inH is 1.
3: Let Ĝ be the combination of the orientedH and the previously oriented arcs.
4: return Ĝ

4.4.2 Analysis

We rely on the conclusions of Corollary 4.4 with error tolerance ε′ = ε
2n·(d+1)

. Via a
union bound over O(nd+1) events, Lemma 4.6 ensures that all our (conditional) MI tests
in RecoverOrientation (Algorithm 7) will behave as expected with probability at least
1− δ, with sufficient samples. Full proofs are deferred to Appendix A.2.2.

Lemma 4.6. Suppose all variables in the Bayesian network have alphabet Σ, for |Σ| ≥ 2.
For ε′ > 0, O(nd+1) statements of the following forms all simultaneously succeed with
probability at least 1− δ:
(1) If I(X;Y | Z) = 0, then Î(X;Y | Z) < c0 · ε′,
(2) If Î(X;Y | Z) ≤ c0 · ε′, then I(X;Y | Z) < ε′.
with m empirical samples, where Z ∈ V ∪ {∅}, X,Y ⊆ V \ {Z}, |X ⊔ Y | ≤ d, and

m ∈ O
(
|Σ|d+1

ε′
· log |Σ|

d+1 · nd

δ
· log |Σ|

d+1 · log(nd/δ)

ε′

)
Proof. Set ε′ = ε

2n·(d+1)
, use Corollary 4.4, and apply union bound overO(nd+1) tests.

In the remaining of our analysis, we will analyze under the assumption that all our
O(nd+1) tests are correct with the required tolerance level.



CHAPTER 4. LEARNING BOUNDED-DEGREE POLYTREES 63

Recall that Pa(V ) is the set of true parents of V in G∗. LetH be the forest induced by
the remaining unoriented edges after Phase 2 and Ĝ be returned graph of RecoverOrien-
tation. Let us denote the finalN in(V ) as Pain(V ) at the end of Phase 2, just before freely
orienting, i.e. the vertices pointing into V in Ĝ \ H. Then, Pain(V ) = Pa(V ) \ Pain(V )

is the set of ground truth parents that are not identified in both Phase 1 and Phase 2.
Lemma 4.7 argues that the algorithm does not make mistakes for orientations in Ĝ \H, so
all edges in Pain(V ) will be unoriented at the end of Phase 2.

Lemma 4.7. Any oriented arc in Ĝ \ H is a ground truth orientation. That is, any vertex
parent set in Ĝ \ H is a subset of Pa(V ), i.e. Pain(V ) ⊆ Pa(V ), and N in(V ) at any time
during the algorithm will have N in(V ) ⊆ Pain(V ).

Let P̂a(V ) be the proposed parents of V output by RecoverOrientation. The KL
divergence between the true distribution and our output distribution is∑

V ∈V

I(V ; Pa(V ))−
∑
V ∈V

I(V ; P̂a(V ))

as the structure independent terms will cancel out. To get a bound on the KL divergence,
we will upper bound

∑
V ∈V I(V ; Pa(V )) and lower bound

∑
V ∈V I(V ; P̂a(V )).

To upper bound
∑

V ∈V I(V ; Pa(V )), we bounding each I(V ; Pa(V )) in terms of
Pain(V ) ⊆ Pa(V ) and I(V ;U) for U ∈ Pain(V ) using Lemma 4.9, which relies on
repeated applications of Lemma 4.8.

Lemma 4.8. Fix any vertex V , any S ⊆ Pain(V ), and any S′ ⊆ Pain(V ). If S ̸= ∅, then
there exists a vertex U ∈ S ∪ S′ with

I(V ;S ∪ S′) ≤ I(V ;S ∪ S′ \ {U}) + I(V ;U) + ε . (4.2)

Lemma 4.9. For any vertex V with Pain(V ), we can show that

I(V ; Pa(V )) ≤ ε · |Pa(V )|+ I(V ; Pain(V )) +
∑

U∈Pain(V )

I(V ;U) .

To lower bound
∑

V ∈V I(V ; P̂a(V )), we rely on Lemma 4.10, which tells us that we
lose at most an additive ε error per vertex in Phase 3, where we increase the incoming
edges to any vertex by at most one. Note that orienting “freely” in Phase 3 could also
increase the mutual information score and this is considering the worst case.

Lemma 4.10. Consider an arbitrary vertex V with Pain(V ) at the start of Phase 3. If
Phase 3 orients U → V for some U − V ∈ H, then

I(V ; Pain(V ) ∪ {U}) ≥ I(V ; Pain(V )) + I(V ;U)− ε
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Lemma 4.11. Let Pa(V ) be the true parents of v. Let P̂a(V ) be the proposed parents of
v output by our algorithm. Then,∑

V ∈V

I(V ; Pa(V ))−
∑
V ∈V

I(V ; P̂a(V )) ≤ n · (d∗ + 1) · ε .

Note that Lemma 4.11 is a bound with respect to the true max-degree d∗ despite only
given an upper bound d as input. With these results in hand, we are ready to establish our
main theorem.

Proof of Theorem 4.1. We first combine Lemma 4.11 and Lemma 4.6 with ε′ = ε
2n·(d+1)

≤
ε

2n·(d∗+1)
in order to obtain an orientation Ĝ which is close to G∗. Now, much similar to

the proof of [BGP+23, Theorem 1.4], we recall that there exist efficient algorithms for
estimating the parameters of a Bayesian network with in-degree-d (note that this includes
d-polytrees)P once a close-enough graph Ĝ is recovered [Das97, BGMV20], with sample
complexity Õ(n · |Σ|d/ε). Denote the final output P̂Ĝ , a distribution that is estimated
using the conditional probabilities implied by Ĝ. One can bound the KL divergences as
follows:

dKL(P ,PĜ)− dKL(P ,PG∗) ≤ ε/2 and dKL(P , P̂Ĝ)− dKL(P ,PĜ) ≤ ε/2 .

The first inequality follows from our graph learning guarantees on Ĝ while the second
is due to performing parameter learning algorithms on Ĝ. Thus, dKL(P , P̂Ĝ) ≤ ε +

dKL(P ,PG∗) = ε.

4.5 Skeleton assumption

Here, we present a set of sufficient assumptions (Assumption 4.12) under which the Chow-
Liu algorithm will recover the true skeleton even with finite samples. We note that the
conditions listed here are in spirit very similar to the assumptions made to recover exact
graphical structures in other works [GA21, GH17, GTA22], i.e., assuming a sufficiently
detectable gap on an edge or from an alternate graph. Otherwise, it is not hard to find
counter examples to thwart learners from recovering the correct network structure with
finite sample access. For example, on a distribution on X → Y with infinitely small
I(X;Y ), no algorithm can distinguish the actual graph from the empty graph given
finite sample access. As such, it is often necessary to make these assumptions for exact
structure recovery. Aside from the ones presented here, [BH20, CV22] study other
sufficient conditions for recovering the skeleton of polytrees and Bayesian networks.

Nevertheless, we would like to highlight that results in this chapter has made progress
in polytree PAC-learning in the following statisical sense: it suffices to have exact first
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(a) Ground truth G∗. Pa(D) = {A,B,C}
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(b) Midway of Phase 1. N in(D) = {A,B}

DB

A

C

F

E

G

H

I

J

H

(c) Before final phase. Pain(D) = {A,B}
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(d) Proposed graph Ĝ. P̂a(D) = {A,B, F}

Figure 4.2: An example run to illustrate notations. In the ground truth graph G∗, vertex
D has parents Pa(D) = {A,B,C}. While the algorithm executes, we track a tentative
parent set N in(D) of D and fix it to Pain(D) right before the final phase. Since d = 3,
observe that G → I must have been oriented due to a local search step and not due to
Meek R1(3) in Phase 2. At the end, in the proposed graph Ĝ, the proposed parent set of
D is P̂a(D) = {A,B, F}. Note that Ĝ only shows one possible orientation of the red
unoriented subgraphH before the final phase; see Fig. 4.3 for others.

order mutual information and approximate higher order mutual information to learn (most)
bounded in-degree polytrees in polynomial time. For prior works, it is only known that
one can recover polytrees efficiently with exact first and second order mutual information
[RP88] or exponential time algorithm for approximating bounded in-degree Bayesian
networks [KCG+23].

Assumption 4.12. For any given distribution P , there exists a constant εP > 0 such that:

1. For every pair of nodes U and V , if there exists a path U − · · ·−V of length greater
than 2 in G∗, then then I(U ;V ) + εP ≤ I(A;B) for every pair of adjacent vertices
A−B in the path.

2. For every pair of directly connected nodes A−B in G∗, I(A;B) ≥ εP .

Suppose there is a large enough gap of εP between edges in G∗ and edges outside of
G∗. Then, with O(1/ε2P) samples, each estimated mutual information Î(A;B) will be
sufficiently close to the true mutual information I(A;B). Thus, running the Chow-Liu
algorithm (which is maximum spanning tree on the estimated mutual information on each
pair of vertices) recovers skel(G∗). See Appendix A.2.3 for the full proof.

Lemma 4.13. Under Assumption 4.12, running the Chow-Liu algorithm on them-sample
empirical estimates {Î(U ;V )}U,V ∈V recovers a ground truth skeleton with high probability
when m ≥ Ω( logn

ε2P
).
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(b) D as the root
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(c) F as the root
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(d) E as the root
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(e) H as the root

Figure 4.3: The five different possible orientations of H. Observe that the ground truth
orientation of these edges is inconsistent with all five orientations shown here.

Combining Lemma 4.13 with RecoverOrientation (Algorithm 7), one can learn a
polytree that is ε-close in KL with Õ

(
max

{
log(n)

ε2P
, 2

d·n
ε

})
samples, where εP depends on

the distribution P .

4.6 Lower bound

In this section, we show that Ω(n/ε) samples are necessary even when a known skeleton is
provided. For constant in-degree d, this shows that our proposed algorithm in Section 4.4
is sample-optimal up to logarithmic factors.

We first begin by showing a lower bound ofΩ(1/ε) on a graph with three vertices, even
when the skeleton is given. Let G1 be X → Z → Y and G2 be X → Z ← Y , such that
skel(G1) = skel(G2) is X − Z − Y . Letting Bern(1/2) denote the Bernoulli distribution
with parameter 1/2, i.e. a fair coin flip, we define P1 and P2 as follows:

P1 :



X ∼ Bern
(
1
2

)
Z =

X w.p. 1
2

Bern
(
1
2

)
w.p. 1

2

Y =

Z w.p.
√
ε

Bern
(
1
2

)
w.p. 1−

√
ε

P2 :



X ∼ Bern
(
1
2

)
Y ∼ Bern

(
1
2

)
Z =


X w.p. 1

2

Y w.p.
√
ε

Bern
(
1
2

)
w.p. 1

2
−
√
ε

(4.3)
The intuition is that we keep the edge X → Z “roughly the same” and tweak the edge
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Y − Z between the distributions. By defining Pi,G as projecting Pi onto G, one can show
Lemma 4.14; see Appendix A.2.4 for its proof.

Lemma 4.14 (Key lower bound lemma). Let G1 beX → Z → Y and G2 beX → Z ← Y ,
such that skel(G1) = skel(G2) is X − Z − Y . With respect to Eq. (4.3), we have the
following:

1. d2
H(P1,P2) ∈ O(ε)

2. dKL(P1,P1,G1) = 0 and dKL(P1,P1,G2) ∈ Ω(ε)

3. dKL(P2,P2,G2) = 0 and dKL(P2,P2,G1) ∈ Ω(ε)

Our hardness result (Lemma 4.15) is obtained by reducing the problem of finding an
ε-close graph orientation of X − Z − Y to the problem of testing whether the samples
are drawn from P1 or P2. To ensure ε-closeness in the graph orientation, one has to
correctly determine whether the samples come from P1 or P2 and then pick G1 or G2
respectively. Put differently, if one can solve the problem in Lemma 4.15, then one can
use that algorithm to solve the problem in Lemma 4.14. However, it is well-known that
distinguishing two distributions whose squared Hellinger distance is ε requires Ω(1/ε)

samples (e.g. see [BY02, Theorem 4.7]).

Lemma 4.15. Even when given skel(G∗), it takes Ω(1/ε) samples to learn an ε-close
graph orientation of G∗ for distributions on {0, 1}3.

Proof. Consider the construction in Lemma 4.14. To ensure ε-closeness in the graph
orientation, one has to correctly determine whether the samples come from P1 or P2 and
then pick G1 or G2 respectively. This requires Ω(1/ε) samples.

Using the above construction as a gadget, we can obtain a dependency on n in our
lower bound by constructing n/3 independent copies of the above gadget, à la proof
strategy of [BGP+23, Theorem 7.6]. For some constant c > 0, we know that a constant
1/c fraction of the gadgets will incur an error or more than ε/n if less than cn/ε samples
are used. The desired result then follows from the tensorization of KL divergence, i.e.,
dKL (

∏
iPi,

∏
iQi) =

∑
i dKL(Pi,Qi).

Theorem 4.2. Let ε ∈ (0, 1) be the error parameter. There exists a choice of distribution
P over {0, 1}n that is Markov with respect to some 2-polytree G∗ such that producing P̂
such that dKL(P , P̂) ≤ ε with success probability at least 2/3 requires Ω(n/ε) samples
from P , even given we are given skel(G∗) as input.

Proof. Consider a distribution P on n/3 independent copies of the lower bound con-
struction from Lemma 4.15, where each copy is indexed by Pi for i ∈ {1, . . . , n/3}.
Suppose, for a contradiction, that the algorithm draws cn/ε samples for sufficiently small
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c > 0, and manages to output Q that is ε-close to P with probability at least 2/3. From
Lemma 4.15 with error tolerance Ω(ε/n), we know that each copy is not Ω(ε/n)-close
with probability at least 1/5. By Chernoff bound, at least Ω(n) copies are not Ω(ε/n)-
close with probability at least 2/3. Then, by the tensorization of KL divergence, we
see that dKL

(∏n/3
i=1Pi ∥

∏n/3
i=1Qi

)
=
∑n/3

i=1 dKL(Pi,Qi) > Ω(ε). This contradicts the
assumption that Q is ε-close to P with probability at least 2/3.



Chapter 5

Conclusion for Part I

The results presented in Chapter 3 and Chapter 4 are from the works of [BCG+22] and
[CYBC24] respectively.

In Chapter 3, we presented a coefficient recovery algorithm LeastSquares based on
node-wise linear least squares regression. Formal details of our lower bound is presented
in [BCG+22, Section 5]. We actually provide and analyze a generalization dubbed
BatchAvgLeastSquares in [BCG+22] by allowing any interpolation between “batch
size” and “number of batches” — LeastSquares is a special case of a single batch. In
a nutshell, for each variable with p ≥ 1 parents, BatchAvgLeastSquares solves b ≥ 1

batches of linear systems made up of k > p samples and then uses the mean of the
recovered solutions as an estimate for the coefficients. Since each solution to batch can
be computed independently before their results are combined, BatchAvgLeastSquares
facilitates further parallelism. In view of CauchyEst, a natural question is whether one
can use a coordinate-wise median of these recovered batch coefficients in order to be robust
towards sample contamination. While we did not provide formal analysis, our empirical
evaluation suggests that such taking the median does indeed improve robustness against
certain forms of data contamination; see [BCG+22, Section 6].

In Chapter 4, we studied the problem of estimating a distribution defined on a d∗-
polytree P with graph structure G∗ using finite observational samples. We designed and
analyzed an efficient algorithm that produces an estimate P̂ such that dKL(P , P̂) ≤ ε

assuming access to skel(G∗) and an upper bound d of d∗. The skeleton skel(G∗) is recover-
able under Assumption 4.12 and we show that there is an inherent hardness in the learning
problem even under the assumption that skel(G∗) is given. For constant d, our hardness
result shows that our proposed algorithm is sample-optimal up to logarithmic factors. Our
algorithm in Chapter 4 heavily relies on the realizability assumption that P is indeed
Markov to some d-polytree G∗ on n nodes. This assumption was subsequently removed
in [BGGJ+24] with a dynamic programming approach that uses roughly a multiplicatve
factor of Õ(n2) additional samples.

It is natural to ask whether what we can do with access to a false skeleton that is
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approximately correct (i.e. has some orientation close in KL to the ground truth) produced
by running the Chow-Liu algorithm on the sample statistics. However, it is unclear to us
why we can hope to design efficient algorithms with provable guarantees in this case for
two reasons:

• The Chow-Liu algorithm only uses order-1 mutual information while the KL di-
vergence of Eq. (4.1) requires information from order-d mutual information. It is
unclear why one can hope that this false skeleton would yield provable guarantees
with respect to Eq. (4.1).

• An “approximately correct” skeleton may have potentially unknown number of
edges in the skeleton being wrong and we do not see how to design efficient global
orientation algorithms using only statistics from the ground truth samples.

Without the true skeleton, a “local algorithm” (such as ours) can be tricked into some
“local optima” and it is hard to argue why the output would obtain “global guarantees”
with respect to the parent sets of Eq. (4.1).

Another interesting open question is whether one can extend the hardness result to
arbitrary d ≥ 1, or design more efficient learning algorithms for d-polytrees. In particular,
we are unaware of any obstruction a lower bound for |Σ| > 2 and d > 2. While we
do not know an optimal construction, the following construction (emulating Appendix
A.2 of [CDKS17]) yields Ω( n2d

(d+1)ε2
), showing that the exponential dependence on d is

unavoidable when learning the parameters of a given d-polytree. Consider n
d+1

stars with
binary alphabets, where each star center has d incoming parents. Each parental node is set
to be an independent uniform coin flip over the binary alphabet and so it takes Ω(2d/ε2) to
learn each star to accuracy ε. As KL is additive, one would require any constant fraction
of the stars to incur less than ε(d+1)

n
error. To do so, one would need Ω( n2d

(d+1)ε2
) samples.

5.1 Some additional related work

[Das97] first looked at the problem of parameter learning for fixed structure Bayesian
networks in the discrete and continuous settings and gave finite sample complexity bounds
for these problems based on the VC-dimensions of the hypothesis classes. In particular, he
gave an algorithm for learning the parameters of a Bayesian network on n binary variables
of bounded in-degree in dKL distance using a quadratic in n samples. Subsequently,
tight (linear) sample complexity upper and lower bounds were shown for this problem
[BGMV20, BGP+23, CDKS17]. To the best of our knowledge, a finite PAC-style bound
for fixed-structure Gaussian Bayesian networks was not known previously.

Structure learning of Bayesian networks is an old problem in machine learning and
statistics that has been intensively studied, e.g. see [KF09, Chapter 18]. Many early
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approaches required faithfulness, a condition which permits learning of the Markov equiv-
alence class, e.g. [SG91, FNP99, Chi03]. Finite sample complexity of such algorithms
assuming faithfulness-like conditions has also been studied, e.g. [FY96]. An alternate line
of more modern work has considered various other distributional assumptions that permits
for efficient learning, e.g. [CM02, HJM+08, SHHK06, PB14, GH17, PR18, AAZ19], with
the final three also showing finite sample complexities. Specifically for polytrees, [RP88]
and [GPP90] studied recovery of the DAG for polytrees under the infinite sample regime.

[AKN06] studied the problem of efficiently learning a bounded degree factor graph.
Using their method and conversion scheme between factor graphs and Bayesian networks,
one could efficiently learn polytrees (Bayesian networks) with bounded in- and out-
degrees. However, as we only consider an upper bound on the in-degrees in Chapter 4,
directly applying their method scales badly in sample complexity (exponential in the
number of variables) for even the simple star-like polytree: a center node V with undirected
edges to the rest of the n−1 nodes such that V ’s in-degree is d and out-degree is n−d−1.

More recently, [GA21] studied the more general problem of learning Bayesian net-
works, and their sufficient conditions simplified in the setting of polytrees. Their approach
emphasizes exact recovery, and thus the sample complexity has to depend on the minimum
gap of some key mutual information terms. In contrast, we allow the algorithm to make
mistakes when certain mutual information terms are too small to detect for the given sam-
ple complexity budget and achieve a PAC-type guarantee. As such, once the underlying
skeleton is discovered, our sample complexity only depends on the d, n, ε and not on any
distributional parameters.

There are also existing works on Bayesian network learning with tight bounds in total
variation distance with a focus on sample complexity (and not necessarily computational
efficiency), e.g. [CDKS17]. Meanwhile, [ABDK18] consider the problem of learning (in
TV distance) a bounded-degree causal Bayesian network from interventions, assuming the
underlying DAG is known.

5.2 Other unpresented works in Part I

In [DDKC23], we provide time and sample efficient algorithms for learning and testing
latent-tree Ising models, i.e. Ising models that may only be observed at their leaf nodes.
On the learning side, we obtain efficient algorithms for learning a tree-structured Ising
model whose leaf node distribution is close in TV distance, improving on the results of
[CGG01]. On the testing side, we provide an efficient algorithm with fewer samples for
testing whether two latent-tree Ising models have leaf-node distributions that are close
or far in TV distance. We obtain our algorithms by showing novel localization results
for the total variation distance between the leaf-node distributions of tree-structured Ising
models, in terms of their marginals on pairs of leaves.
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Given data, computing a “score maximizing” DAG is known to be NP-hard [Chi96].
Furthermore, [CHM04] showed that deciding whether a given distribution P is Markov
with respect to some Bayesian network of at most p ∈ N parameters or not is NP-hard.
In [BCGM25], we extend the hardness result of [CHM04] to the setting where we are
guaranteed that the Bayesian network in question is promised to have a small number of
parameters. In computational complexity theory, this is also known as a promise problem,
which generalizes a decision problem in that the input is promised to belong to a certain
subset of possible inputs. Our new hardness result confirms the common intuition that it is
hard to search for a Bayesian network G that is Markov with respect to a given probability
distribution, even if it is known that the distribution in question is Markov with respect
to a Bayesian network that has a small number of parameters. In [BCGM25], we also
generalized the finite sample result of [BCD20] for producing a TV-close estimate P̂ of
P , from the degree-bounded setting to the parameter-bounded setting.
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Learning causal models
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Chapter 6

Causal graph discovery with adaptive
interventions

“No causation without manipulation.”
- Paul Holland and Donald Rubin [Hol86]

6.1 Introduction

In this chapter, we study the problem of recovering the true underlying causal graph
using adaptive interventions under some standard causal assumptions in the causal graph
discovery literature. To be precise, suppose the true underlying DAG generating the data is
G∗ = (V ,E) belonging to the Markov equivalence class [G∗]with corresponding essential
graph E(G∗). Under the following causal assumptions, we aim to fully orient E(G∗) into
G∗ by performing adaptive interventions:

1. Causal sufficiency, i.e. no unobserved variables or hidden confounders.

2. We are given access to the essential graph of the true causal graph, or equivalently
we know its Markov equivalence class.

3. When we perform interventions on a subset of variables, we recover the orientations
of edges with exactly one endpoint amongst the intervened variables.

The third assumption enable us to abstract the above problem of causal graph learning
into a graph problem with specialized graph operations: first orient edges separated by
interventions, then apply Meek rules (Section 2.6.6) till convergence. This assumption
holds in the setting where we perform ideal/hard interventions. See Section 2.8.2 for
further discussion of these assumptions.

Problem 6.1 (The search problem). Given the essential graph E(G∗) of an unknown
underlying causal graph G∗, use the minimal number of interventions to fully recover the
ground truth causal graph G∗.
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Example 6.2. Fig. 6.1 gives an example DAGG∗ on 6 variables, along with its observational
essential graph E(G∗) and Markov equivalence class [G∗]. See Fig. 2.3 for an example on
how to compute an essential graph given a DAG. In this example, a single intervention on
{A} will suffice to orient E(G∗) into G∗ with the help of Meek rules (Section 2.6.6).

A B C

D E

F

A B C

D E

F

A B C

D E

F

A B C

D E

F

A B C

D E

F

A B C

D E

F

G∗

E(G∗) [G∗]

Figure 6.1: A causal graph G∗ and its partially oriented essential graph E(G∗) obtained
from observational data, where there is uncertainty in the 3 unoriented blue edges. Here,
E(G∗) represents 4 possible DAGs in [G∗], the Markov equivalence class of G∗.

Besides minimizing the number of interventions performed, many applications care
about recovering only a subset of the causal relationships. For instance, in local causal
graph discovery, efficient learning of localized causal relationships play a central role in
feature selection via Markov blankets [ATS03, TA03, MC04, AST+10a] while scalability
is of significant concern when one only wishes to learn localized causal effects (e.g. the
direct causes and effects of a target variable of interest) [SMH+15, FMT+21] within a
potentially large causal graph (e.g. gene regulatory networks [LD05]). Meanwhile, in
the context of designing algorithms that generalize to novel distributions [ABGLP19,
LWHLS22], it suffices to just learn the causal relationship between the target variable
and feature/latent variables while ignoring all other causal relationships. Furthermore,
in practice, there may be constraints on the interventions that one can perform and it is
natural to prioritize the recovery of important causal relationships. As such, in many
practical situations, one is interested in learning the causal relationship only for a subset
of the edges of the causal graph while minimizing the number of interventions.

Now, given two algorithms that solve Problem 6.1, how should we compare and
decide which algorithm is better? A natural comparison metric to use in this case is to
compare how well an algorithm performs against an all-knowing oracle that knows the true
underlying DAG — how many interventions would such an oracle require us to perform
in order to convince us of the ground truth?
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Problem 6.3 (The verification problem). Given the essential graph E(G∗) of an unknown
underlying causal graph G∗ and a proposed graph G ∈ [G∗], use the minimal number of
interventions to verify whether G ?

= G∗.

To tackle both problems, one needs to compute a collection of interventions that will
completely orient a given essential graph. For any DAG G = (V ,E), we call such a set
I ⊆ 2V a verifying set for G. Each element I ∈ I represents a subset of vertices on which
an ideal intervention will be conducted, recovering the orientations of separated edges and
any implied edge orientations due to Meek rules. In other words, for any graph G and
any verifying set I of G, we have EI(G)[V ′] = G[V ′] for any subset of vertices V ′ ⊆ V .
Furthermore, if I is a verifying set for G, then I ∪{S} is also a verifying set for G for any
additional intervention S ⊆ V . This is because interventions do not remove information
and oriented arcs always remain oriented.

Definition 6.4 (Minimum size verifying set). An intervention set I ⊆ 2V is called a
verifying set for a DAG G∗ = (V ,E) if EI(G∗) = G∗ and is said to have minimum size if
EI′(G∗) ̸= G∗ for any I ′ ⊆ 2V such that |I ′| < |I|.

Note that there may be multiple minimum sized verifying sets of minimum size. This
motivates the definition of a verification number νk(G) to denote the minimum sized
verifying set; ν1(G) refers the special case where only atomic interventions are allowed.

Definition 6.5 (Verification number). Given k ∈ N+, the verification νk(G) of a DAG G
is defined as νk(G) = |I|, where I is a minimum size verifying set for G such that any
intervention in I ∈ I involves at most |I| ≤ k vertices, i.e. k-bounded interventions.

The verification number is a useful analytical tool for the search problem as νk(G∗)
is a lower bound on the number of interventions used by an optimal search algorithm.
Furthermore, since the search problem needs to fully orient E(G∗) regardless of which DAG
is the ground truth, any search algorithm given E(G∗) requires at least minG∈[G∗] νk(G)
interventions, even if the algorithm is adaptive and randomized. In fact, the strongest
possible universal lower bound guarantee one can prove must be at most minG∈[G∗] νk(G)
and the strongest possible universal upper bound guarantee one can prove must be at least
maxG∈[G∗] νk(G). Note that if the search algorithm is non-adaptive, then it trivially needs
at least maxG∈[G∗] νk(G) interventions.

Remark 6.6. In this chapter, we mainly focus on our results for atomic interventions and
only briefly provide some tools and results to lift these results to the non-atomic setting
of k-bounded interventions. We will also assume that all interventions have unit cost and
focus on the goal of obtaining intervention sets of minimum size. In Chapter 8, we discuss
several other results and extensions that we have also studied in this problem space.
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6.2 Our main results

The main technical contributions of this chapter are the characterization of verifying
sets, and efficient algorithms for solving the verification and search problems that are
competitive with the verification number.

6.2.1 Characterization of verifying sets

Theorem 6.7. Fix a DAG G = (V ,E). An intervention set I ⊆ 2V is a minimum sized
verifying set for G if and only if every covered edge of G is separated by some intervention
in I.

Theorem 6.7 provides a formal justification to the observation of [SMG+20] that “In
general, the size of an [atomic verifying set] cannot be calculated from just its essential
graph”. This is because essential graphs could imply minimum vertex covers of different
sizes (see Fig. 6.4). The following examples illustrate applications of Theorem 6.7 to
some classes of special graphs.

Example 6.8 (Directed cliques). Consider the directed clique G = (V ,E) on n vertices
given in Fig. 6.2 where the direct child arcs (indicated by dashed arrows) are precisely the
covered edges in G. Theorem 6.7 tells us that ν1(G) = ⌊n/2⌋ where one can intervene
atomically on a minimum vertex cover of the path induced by these covered edges.

X1 X2 X3 X4
. . . Xn

Figure 6.2: A directed clique G on n vertices where the direct child arcs (indicated by
dashed arrows) are precisely the covered edges in G; see Lemma 6.15. As there are no
v-structures, the essential graph is completely unoriented. Here, ν1(G) = ⌊n/2⌋.

Example 6.9 (Directed trees). Consider the directed tree G given in Fig. 6.3 whereR ∈ V

is the root vertex. One can easily verify that the only covered edges (indicated by dashed
arrows) in G are arcs leaving R. Theorem 6.7 tells us that ν1(G) = 1 since intervening on
{R} would orient these covered edges and Meek R1 would orient the remaining edges.

Example 6.10 (Standing windmill). Consider the graph G∗ in Fig. 6.4 (a replication of
Fig. 2.4) where the essential graph E(G∗) representing the MEC [G∗] is the standing
windmill11. One can check that ν1(G∗) = ν1(G1) = 4 while ν1(G2) = 3. In fact, we

11To be precise, it is the Wd(3,3) windmill graph with an additional edge from the center.
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R ...

...

Figure 6.3: A directed tree G = (V ,E) with root vertex R ∈ V . One can easily verify
that the only covered edges (indicated by dashed arrows) in G are arcs leavingR. As there
are no v-structures, the essential graph is completely unoriented. Here, ν1(G) = 1.

actually show that minG∈[G∗] ν1(G) = 3 and maxG∈[G∗] ν1(G) = 4 in Appendix B.1.1.
Thus, any search algorithm using only atomic interventions on E(G∗) needs at least 3
atomic interventions.
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Figure 6.4: A DAG G∗ with its essential graph E(G∗) on the left. G1 and G2 are two other
DAGs that belong to the same Markov equivalence class [G∗]. Note that the sizes of the
minimum vertex cover of the covered edges (dashed arcs) may differ across DAGs.

Recall from Lemma 2.49 that any undirected edge in E(G∗) is a covered edge for
some G ∈ [G∗]. So, Theorem 6.7 implies a simple alternative proof for an earlier known
result that characterizes non-adaptive search algorithms via separating systems [HEH13,
SKDV15]: any non-adaptive search algorithm, which has no knowledge of G∗, should
separate every undirected edge in E(G∗).

Through the lens of covered edges, we can also see that existing universal bounds
of [SMG+20, PSS22] are not tight. Consider the case where the essential graph E(G∗)
is the standing windmill graph given in Fig. 6.4. The graph E(G∗) has n = 8 nodes,
r = 4 maximal cliques and the largest maximal clique is size 3. The lower bound of
[SMG+20] yields

∑
H∈CC(E(G∗))⌊

ω(H)
2
⌋ = ⌊3

2
⌋ = 1 while lower bound of [PSS22] yields

⌈n−r
2
⌉ = ⌈8−4

2
⌉ = 2. Meanwhile, we show minG∈[G∗] ν1(G) = 3 in Appendix B.1.1.

Another immediate application of Theorem 6.7 is to resolve the verification problem.
Specifically, for the hardness analysis, observe that if one performs strictly less interven-
tions than the intervention number, then there will be a covered edge which is not separated
and thus the graph will not be fully oriented.
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Corollary 6.11. Given an essential graph E(G∗) of an unknown ground truth DAG G∗

and a causal DAG G ∈ [G∗], we can test if G ?
= G∗ by intervening on any verifying set of

G. Furthermore, in the worst case, any algorithm that correctly resolves G ?
= G∗ using

k-bounded interventions needs at least νk(G) interventions.

6.2.2 Verification

Theorem 6.12. A minimum sized atomic verifying set for G can be computed in polynomial
time in the size of G.

Theorem 6.12 provides the first efficient algorithm for computing minimum sized
atomic verifying set for general graphs. Prior to this result, efficient algorithms for
computing minimum sized atomic verifying sets were only known for simple graphs such
as cliques and trees. For general graphs, only a brute force algorithm is known [SMG+20,
Appendix F] which takes exponential time in the worst case. Meanwhile, in contrast to
computing a minimum sized verifying set, [PSS22] provides an efficient algorithm that
returns a verifying set of size at most 2 times that of the optimum.

6.2.3 Search

Theorem 6.13. Fix an essential graph E(G∗) with an unknown underlying ground truth
DAG G∗. There is an algorithm that runs in polynomial time and computes an atomic
intervention set I ⊆ 2V in a deterministic and adaptive manner such that EI(G∗) = G∗

and |I| ∈ O(log(n) · ν1(G∗)).

Since any search algorithm will incur at least ν1(G∗) interventions, Theorem 6.13
implies that search is (almost, up to log n multiplicative factor) as easy as the verification.
This result is the first competitive results that holds for using atomic interventions on
general graphs. The only previously known result of O(log2(maxH∈CC(E(G∗)) ω(H)) ·
ν1(G∗)) by [SMG+20] was an algorithm based on directed clique trees with provable
guarantees only for atomic interventions on intersection-incomparable chordal graphs.

The approximation of O(log n) to ν1(G∗) is the tightest one can hope for atomic
interventions in general. For instance, consider the case where E(G∗) is an undirected line
graph on n vertices. Then, using a similar reasoning as the lower bound for binary search,
one can show that any adaptive algorithm needs Ω(log n) atomic interventions in the worst
case while ν1(G∗) = 1. The line graph also provides a clear distinction between adaptive
and non-adaptive search algorithms since any non-adaptive algorithm needs Ω(n) atomic
interventions to separate all the edges in E(G∗).
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6.2.4 Extensions to subset versions and k-bounded interventions

We also generalize our verification and search results to the setting where one is only
concerned about recovering orientations of a subgraph of interest, and to the setting with
k-bounded interventions. To the best of our knowledge, our work provides the first known
efficient algorithms for computing near-optimal verifying sets and performing subset
search with provable guarantees on general graphs.

6.3 Technical overview

Our first technical tool is to invoke the following property about interventional essential
graphs so that we can focus on instances where G∗ is a moral DAG when studying the
verification and search problems under interventions.

Theorem 6.14 (Properties of interventional essential graphs). Fix a DAG G = (V ,E).
For any intervention set I ⊆ 2V and any vertex U ∈ V , let R(G, I) ⊆ E denote the set
of oriented arcs in the I-essential graph of G, GI be the fully directed subgraph DAG of
G obtained by arcs in R(G, I), and PaG,I(U) = {X ∈ V : X → U ∈ R(G, I)} be the
parents of U recovered by I. The following statements are true with respect to any two
arbitrary intervention sets A ⊆ 2V and B ⊆ 2V :

1. Any v-structures in GA are also present in G.

2. Any acyclic completion of E(GA) that does not form new v-structures can be com-
bined with R(G,A) to obtain a valid DAG belonging to both E(G) and EA(G).

3. R(GA,B) = R(G,B) \R(G,A).

4. R(G,A ∪ B) = R(GA,B) ⊔R(G,A).

5. R(G,A ∪ B) = R(GA,B) ⊔R(GB,A) ⊔ (R(G,A) ∩R(G,B)).

6. R(G, ∅) does not contain any covered edge of G.

An important implication of Theorem 6.14 for verification and search problems is
that it suffices to solve these problems only on moral DAGs without v-structures. This is
because any oriented arcs in the observational graph can be removed before performing
any interventions as the optimality of the solution is unaffected: R(G, I) = R(G∅, I) ⊔
R(G, ∅), where G∅ is the graph obtained after removing all the oriented arcs in the
observational essential graph due to v-structures. In other words, w.l.o.g., we can focus on
instances where G∗ is a moral DAGs when studying the verification and search problems
under interventions. Fig. 6.5 gives an illustration example. Note that Theorem 6.14 holds
even when the intervention sets are non-atomic.
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Figure 6.5: Example for Theorem 6.14. Here, recovered edges R(G, ·) are colored while
the black edges are the hidden arc directions. Since B → C ← F is a v-structure in
G, these edges are oriented in the observational essential graph E(G) and so Meek R3
orients E → C in E(G). Intervening on A = {A} = {{A}} orients the edges {A →
E,A → F} and Meek R1 further orients the edges {E → B,E → D}. Intervening on
B = {B} = {{B}} orients the edges {E → B,B → D} and Meek R2 further orients the
edge {E → D}. Observe that R(GA,B) = {B → D}, R(GB,A) = {A→ E,A→ F},
and R(G,A) ∩R(G,B) \R(G, ∅) = {E → B,E → D}. Finally, note that E → F is a
covered edge so Theorem 6.7 tells us it will remain unoriented under interventionsA∪B.



CHAPTER 6. CAUSAL GRAPH DISCOVERY WITH ADAPTIVE INTERVENTIONS 82

While classic results [AMP97, HB12] tell us that chain components of interventional
essential graphs are chordal, it is not immediately obvious why such edge-induced sub-
graphs cannot have v-structures in any of the DAGs compatible with E(G). The first
statement of Theorem 6.14 formalizes this fact. Meanwhile, recall that from [GSKB18],
we have R(G,A ∪ B) = R(G,A) ∪ R(G,B) for any two interventions A and B (see
Lemma 2.54). Informally, this means that combining prior orientations will not trigger
Meek rules. On the other hand, Theorem 6.14 states that the adjacencies will also not,
thus we can simplify the causal graphs by removing any oriented edges before performing
further interventions.

6.3.1 Characterization of verifying sets

The characterization is proven in two directions separately. For necessity, we show that
all four Meek rules (which are known to be consistent and complete) will not orient any
unoriented covered edge of G that is not separated by any intervention. Our proof is
simple due to the usage of covered edges. For sufficiency, we show that every unoriented
non-covered edge of G will be oriented by Meek rules if all covered edges are separated.
We prove this using a subtle induction over a valid topological ordering of the vertices π
of G∗: Let Vi be the first i smallest vertices in π, for i = 1, 2, . . . , n. Consider subgraph
E(G∗)[Vi] induced by Vi with Vi being the last vertex in the ordering of Vi. By induction,
it then suffices to show that all non-covered U → Vi edges are oriented for U ∈ Vi−1.

6.3.2 Verification

For efficient computation of optimal verifying sets, we first prove several additional prop-
erties of covered edges, which may be of independent interest. For instance, the second
property is used to easily identify covered edges in Fig. 6.2.

Lemma 6.15 (Properties of covered edges).

1. Let H be the edge-induced subgraph by covered edges of a DAG G. Then, every
vertex inH has at most one incoming edge and thusH is a forest of directed trees.

2. If a DAG G is a clique on n ≥ 3 vertices V1, V2, . . . , Vn with π(V1) < π(V2) < . . . <

π(Vn) with topological ordering π, then V1 → V2, . . . , Vn−1 → Vn are the covered
edges of G.

3. If U → V is a covered edge in a DAG G, then U cannot be a sink of any maximal
clique of G.

The forest property enables us to utilize standard dynamic programming techniques
to compute minimum vertex covers for the unoriented covered edges of G in an efficient
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manner. In contrast, it is known that minimum vertex covers are NP-complete to compute
in general [Kar72].

6.3.3 Search

To obtain our results, we are not simply improving the analysis of [SMG+20]. Algorithmi-
cally, we developed a new approach that is based on graph separators [GRE84] which is a
much simpler concept than directed clique trees. This ensures that our proposed algorithm
terminates in O(log n) iterations. To argue that each iteration uses at most O(ν1(G))
atomic interventions, we prove the following stronger universal lower bound that is built
upon the lower bound of [SMG+20] stated in Lemma 6.16.

Lemma 6.16 (Lemma 6 of [SMG+20]). LetG be a moral DAG. Then, ν1(G) ≥ ⌊ω(skel(G))2
⌋.

Lemma 6.17. Fix an essential graph E(G∗) with an underlying ground truth DAG G∗.

ν1(G∗) ≥ max
atomic intervention set I ⊆ 2V

∑
H∈CC(EI(G∗))

⌊
ω(H)
2

⌋

Observe that the lower bound of Lemma 6.17 not computable because it involves a
maximization over all possible atomic interventions and we do not know the interventional
essential graphs EI(G∗). Nevertheless, it is a very powerful lower bound for analysis: In
Fig. 6.6, we give an example where ν1(G∗) ≈ n while the lower bound of [SMG+20] on
CC(E(G∗)) is a constant. Meanwhile, there exists a set of atomic interventions I such
that applying [SMG+20] on CC(EI(G∗)) yields a much stronger Ω(n) bound.

6.3.4 Extension: Subset verification and search

For subset verification and search, we are interested in oriented the edges of a subset
of target edges T ⊆ E. Despite a simple generalization, our earlier approaches fail to
directly extend to this setting. We generalize the notions of minimum size verifying set
(Definition 6.4) and verfication number (Definition 6.5) accordingly.

Definition 6.18 (Minimum size subset verifying set). An intervention set I ⊆ 2V is
called a verifying set for a DAG G∗ = (V ,E) and subset of target edges T ⊆ E if
EI(G∗)[T ] = G∗[T ] and is said to have minimum size if EI′(G∗)[T ] ̸= G∗[T ] for any
I ′ ⊆ 2V such that |I ′| < |I|.

Definition 6.19 (Subset verification number). Given k ∈ N+, the verification νk(G) of a
DAG G = (V ,E) and subset of target edges T ⊆ E is defined as νk(G,T ) = |I|, where
I is a minimum size verifying set for G and T such that any intervention in I ∈ I involves
at most |I| ≤ k vertices, i.e. k-bounded interventions.
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E(G∗)

EI(G∗)

CC(EI(G∗))

Figure 6.6: A DAG G∗ where minimum vertex cover of the unoriented covered edges
(dashed arcs) is much larger than the size of the maximal clique (triangle): ν1(G∗) ≈ n
while the lower bound of [SMG+20] onE(G∗) is a constant. LetI be an atomic intervention
set on the middle triangle, i.e. the three vertices boxed up in E(G∗). The partially directed
graph EI(G∗) shows the learnt arc directions after intervening on I and applying Meek
rules. Applying the lower bound of [SMG+20] onCC(EI(G∗)) now gives a much stronger
lower bound of ≈ n due to the single edge components.

Subset verification

For subset verification, we first establish interesting properties of the Hasse diagrams for
moral DAGs which enables us to obtain structural properties regarding the arc directions
that are recovered by an atomic intervention and then show that the atomic subset verifi-
cation problem is equivalent to the problem of interval stabbing on a rooted tree, which
we define later in Definition 6.47. The interval stabbing problem on a rooted tree can
be viewed both as a special case of the set cover problem, and as a generalization of the
interval stabbing problem on a line. The former is NP-hard [Kar72] while the latter can
be solved using a polynomial time greedy algorithm (e.g. see [Eri19, Chapter 4, Exercise
4]). Our subset verification result follows from our polynomial time algorithm to solve the
problem of interval stabbing on a rooted tree.

Theorem 6.20. For any DAG G = (V ,E) and subset of target edges T ⊆ E, there exists
a polynomial time algorithm to compute the minimum sized atomic subset verifying set.

Subset search

Since we obtained a bound of O(log n · ν1(G∗,E)) in Theorem 6.13, it may be natural to
wonder if we can obtain a bound of O(log n · ν1(G∗,T )) for any subset of target edges
T ⊆ E. Unfortunately, this is not possible in general.

While a vertex cover of the target edges is a trivial upper bound for atomic subset
search, we show that one needs to perform that many number of atomic interventions
asymptotically in the worst case when facing an adaptive adversary which gets to see the
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interventions made by the adaptive algorithm and then gets to choose the ground truth
DAG among the set of all DAGs that are consistent with the already revealed information.

Lemma 6.21. Given a subset of target edges T ⊆ E, intervening on the vertices in a
vertex cover of T atomically will fully orient all edges in T .

Lemma 6.22. Fix any integer n ≥ 1. There exists a fully unoriented essential graph on
2n vertices and a subset T ⊆ E on n edges such that the size of the minimum vertex cover
of T is vc(T ) and any algorithm needs at least vc(T ) − 1 number atomic interventions
to orient all the edges in T against an adaptive adversary that reveals arc directions
consistent with a DAG G∗ ∈ [G] with ν1(G∗,T ) = 1.

The above results tell us that we cannot hope for non-trivial subset search results in
general for subset of target edges. On the other hand, if we restrict the class of target edges
to be edges within a node-induced subgraphH, then we can actually obtain the following
non-trivial subset search result based on the definition of relevant nodes, which we define
next. The special case of T = E(H) is interesting because instances of local causal graph
discovery often involve node-induced subgraphs.

Definition 6.23 (Relevant nodes). Fix a DAG G∗ = (V ,E) and arbitrary subset V ′ ⊆ V .
For any intervention set I ⊆ 2V and resulting interventional essential graph EI(G∗), we
define the relevant nodes ρ(I,V ′) ⊆ V ′ as the set of nodes within V ′ that is adjacent to
some unoriented arc within the node-induced subgraph EI(G∗)[V ′].

Theorem 6.24. Fix an essential graph E(G∗) of an unknown underlying DAG G∗ and letH
be an node-induced subgraph ofG∗. There exists an algorithm that runs in polynomial time
and computes an atomic intervention set I ⊆ 2V in a deterministic and adaptive manner
such that EI(G∗)[V (H)] = G∗[V (H)] and |I| ∈ O(log(|ρ(I,V (H))|) · ν1(G∗,E)).

Note that Theorem 6.24 compares against ν1(G∗,E) and not ν1(G∗,E(H)). Since
node-induced subgraphs of a chordal graph are also chordal, the chain components in
EI(G∗)[V (H)] are chordal. Our subset search algorithm generalizes the algorithm of
Theorem 6.13, where we employ the weighted chordal graph separator guarantees from
[GRE84]; see Lemma 2.44.

6.3.5 Extension: k-bounded interventions

We begin with a structural result relating ν1(G) and νk(G) which our guarantees for
k-bounded interventions heavily rely upon.

Theorem 6.25. For any DAG G, we have νk(G) ≥ ⌈ν1(G)k
⌉.
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For bounded size verifying sets, we exploit the fact that trees are bipartite and so we
can divide the minimum vertex covers into two partitions. Since vertices within each
partite are non-adjacent, we can group them into larger interventions without affecting the
overall number of separated edges, giving us the desired guarantees.

Theorem 6.26. If ν1(G) = ℓ, then νk(G) ≥ ⌈ℓ/k⌉ and there exists a polynomial time
algorithm to compute a bounded size intervention set I of size |I| ≤ ⌈ ℓ

k
⌉+ 1.

To the best of our knowledge, our work provides the first known efficient algorithm for
computing near-optimal bounded sized verifying sets for general graphs.

A similar proof strategy also works for subset verification but we will need a slightly
different argument for why there is a tree with respect to the target edges T ⊆ E of
interest. We defer the details for the subset case to Appendix B.1.4.

The (subset) search algorithms in both Theorem 6.13 and Theorem 6.24 can be also
be generalized to perform bounded size interventions on the computed clique separators
to yield a multiplicative optimality gap ofO(log(n) · log(k)) with respect to νk(G∗). That
is, we pay an additional factor of log(k) when competing against νk(G∗). Again, this is
the first competitive result of its kind that holds on general graphs. We achieve this via
black-box applications of the labelling scheme due to [SKDV15]; see Algorithm 12.

Lemma 6.27 (Lemma 1 of [SKDV15]). Let (n, k, a) be parameters where k ≤ n/2. There
is a polynomial time labeling scheme that produces distinct ℓ length labels for all elements
in [n] using letters from the integer alphabet {0} ∪ [a] where ℓ = ⌈loga n⌉. Further, in
every digit (or position), any integer letter is used at most ⌈n/a⌉ times. This labelling
scheme is a separating system: for any i, j ∈ [n], there exists some digit d ∈ [ℓ] where the
labels of i and j differ.

Algorithm 12 Labeling scheme subroutine for producing non-atomic interventions.
Input: Set of vertices A, size upper bound k ≥ 1.
Output: A k-separating system B ⊆ 2A.

1: if k = 1 then
2: Set B = A.
3: else
4: Define k′ = min{k, |A|/2}, a = ⌈|A|/k′⌉ ≥ 2, and ℓ = ⌈loga |A|⌉.
5: Compute labelling scheme of [SKDV15, Lemma 1] on A with (|A|, k′, a).
6: Set B = {Sx,y}x∈[ℓ],y∈[a], where Sx,y ⊆ A is the subset of vertices whose xth

letter in the label is y.
7: return B

Theorem 6.28. Fix an essential graph E(G∗) with an unknown underlying ground truth
DAG G∗. For any integer k > 1, there is an algorithm that runs in polynomial time and
computes a k-bounded intervention set I ⊆ 2V in a deterministic and adaptive manner
such that EI(G∗) = G∗ and |I| ∈ O(log(n) · log(k) · νk(G∗)).
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Theorem 6.29. Fix an essential graph E(G∗) of an unknown underlying DAG G∗ and let
H be an node-induced subgraph of G∗. For any integer k > 1, there is an algorithm
that runs in polynomial time and computes a k-bounded intervention set I ⊆ 2V in
a deterministic and adaptive manner such that EI(G∗)[V (H)] = G∗[V (H)] and |I| ∈
O(log(|ρ(I,V (H))|) · log(k) · νk(G∗,E)).

Theorem 6.25 enables us to easily relate ν1(G) with νk(G) while our approach for k-
bounded intervention guarantees have an additional multiplicative log k factor compared
to their atomic counterparts due to applications of Lemma 6.27 to efficiently compute
k-bounded intervention sets of a given set of nodes.

6.4 Properties about interventional essential graph

In this section, we prove Theorem 6.14 which provide some structural properties of
interventional essential graphs EI(G); note that the observational essential graph E(G) =
E∅(G) is a special case. These properties enable us to ignore v-structures and justify
the study of the (subset) verification and search problems solely on moral DAGs without
v-structures.

We prove each statement in Theorem 6.14 in separate lemmas for ease of reading. Our
proofs are greatly simplified by Lemma 6.30, an observation that triangles in interventional
essential graphs cannot have exactly one oriented arc, whose proof relies on Lemma 2.52.
A similar argument to Lemma 6.30 was made in [GSKB18, Appendix B, Figure 4,
Structure S0] for their case analysis proof of Lemma 2.54.

Lemma 6.30 (Triangle lemma). Fix a DAG G = (V ,E) and an intervention set I ⊆ 2V .
For any triangle induced by vertices U, V,W ∈ V with edges U −V, V −W,U −W ∈ E,
it cannot be the case that exactly one of {U − V, V −W,U −W} is oriented in R(G, I).

Proof. We know by Lemma 2.52 that EI(G) is a chain graph, so it is does not contain
directed cycles. Suppose, for a contradiction, that there is a triangle induced by the vertices
{U, V,W} and exactly one of {U − V, V −W,U −W} is oriented in R(G, I). W.l.o.g.,
by relabeling, suppose U → V ∈ R(G, I). Then, U → V −W −U is a directed cycle in
EI(G), contradicting the fact that EI(G) is a chain graph.

Note that there exists partially oriented chain graphs that are not interventional essential
graphs where every triangle does not have exactly one oriented arc, and the edge-induced
subgraph on the unoriented edges do not form v-structures for any acyclic completion.
Fig. 6.7 provides such an example.

Lemma 6.31. Consider the setting of Theorem 6.14. Any v-structures in GA are also
present in G.
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Figure 6.7: In the partially oriented chain graph G = (V ,E), all triangles have exactly
two oriented arcs. Since A − B and C − D could be independently oriented in either
directions, there are four possible acyclic completions of G. The edge-induced subgraph
of G on the unoriented edges does not have any v-structures for any of these possible
acyclic completions. However, G cannot be an interventional essential graph as there are
no v-structures and every vertex is incident to some unoriented edge.

Proof. To be false, there must exist a triangle in G on 3 vertices U, V,W such that U →
V ∈ R(G,A) and U → W,V → W ̸∈ R(G,A). This is impossible by Lemma 6.30.

Lemma 6.32. Consider the setting of Theorem 6.14. Any acyclic completion of E(GA)
that does not form new v-structures can be combined with R(G,A) to obtain a valid DAG
belonging to both E(G) and EA(G).

Proof. Fix an acyclic completion G ′ of E(GA). Suppose, for a contradiction, that there is
a cycle in E(G ′) ∪R(G,A). Let C = V0 → V1 → . . . → Vk → V0 be the smallest such
cycle. Since G ′ is an acyclic completion, we know that at least one arc of C was from
R(G,A). W.l.o.g., suppose that V0 → V1 ∈ R(G,A). Since G∗ is acyclic to begin with,
we also know that at least one arc of C is not from R(G,A).

If k = 2, then C = V0 → V1 → V2 → V0. From above, we know V0 → V1 ∈ R(G,A)
and at least one arc of C is not in R(G,A). Meanwhile, Lemma 6.30 implies that either
V1 → V2 ∈ R(G,A) or V2 → V0 ∈ R(G,A). In either case, we get a contradiction:

• IfV0 → V1, V1 → V2 ∈ R(G,A) andV2 → V0 ̸∈ R(G,A), then Meek R2 will orient
V0 → V2 via V0 → V1 → V2 − V0. So, V0 − V2 ̸∈ E[E(GA)] but V2 → V0 ∈ E(G ′).

• IfV2 → V0, V0 → V1 ∈ R(G,A) andV1 → V2 ̸∈ R(G,A), then Meek R2 will orient
V2 → V1 via V2 → V0 → V1 − V2. So, V1 − V2 ̸∈ E[E(GA)] but V1 → V2 ∈ E(G ′).

Now, consider the case where k > 2. From above, we know V0 → V1 ∈ R(G,A)
and at least one arc of C is not in R(G,A). Let Vi → Vj ̸∈ R(G,A) be the arc of C
with the smallest source index i ≥ 1, where we write j = (i + 1) mod k for notational
convenience. By minimality of i, we know that Vi−1 → Vi ∈ R(G,A). Now, since
Vi → Vj ̸∈ R(G,A), it must be the case that the arc Vi−1−Vj exists in G, otherwise Meek
R1 will orient Vi → Vj via Vi−1 → Vi − Vj . By Lemma 6.30 and the assumptions that
Vi−1 → Vi ̸∈ R(G,A) and Vi → Vj ̸∈ R(G,A), it must be the case that Vi−1 − Vj is
oriented in R(G,A). In either of the two cases below, we get a contradiction.
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• If Vi−1 → Vj ∈ R(G,A), then V0 → . . . → Vi−1 → Vj → . . . → Vk → V0 is a
smaller cycle than C in G ′ ∪R(G,A).

• If Vj → Vi−1 ∈ R(G,A), then Meek R2 orients Vj → Vi via Vj → Vi−1 → Vi−Vj .
So, Vi − Vj ̸∈ E[E(GA)] but Vi → Vj ∈ E(G ′).

Therefore, the claim follows since there are no cycles in E(G ′) ∪R(G,A).

Lemma 6.33. Consider the setting of Theorem 6.14. We have

R(GA,B) = R(G,B) \R(G,A)

Proof. We show containment in both directions.
Direction 1: R(GA,B) ⊆ R(G,B) \R(G,A)
Suppose, for a contradiction, that there exists an arc A → B ∈ R(GA,B) but A →

B ̸∈ R(G,B) \ R(G,A). Note that A → B ̸∈ R(G,A) otherwise A → B ̸∈ E(GA)
and thus A → B ̸∈ R(GA,B). So, to show a contradiction, it suffices to argue that
A→ B ∈ R(G,B).

There are two possible situation explaining A → B ∈ R(GA,B): either (i) there is
some intervention I ∈ B such that |I ∩ {A,B}| = 1, or (ii) Meek rules oriented A−B.

(i) In the first situation where there is some intervention I ∈ B such that |I∩{A,B}| =
1, then the edgeA−B is separated by I and soA→ B ∈ R(G,B) as well. Contradiction.

(ii) In the second situation, let us consider the sequence of Meek rule configurations
that oriented A→ B in R(GA,B). By definition of R(GA,B), all the edges (oriented or
not) involved in these configurations do not belong to R(G,A). If these configurations
also appear in R(G,B), then A → B ∈ R(G,B) as well. The only reason why any of
these configurations may not appear in R(G,B) is because there was some other edge in
the node-induced subgraph that was removed due to being in R(G,A). So, it suffices to
consider missing edges within the node-induced subgraph of each Meek rule configuration:

• Suppose the R1 configuration involving three verticesU → V −W andU \− W was
one of the configurations used by R(GA,B) to orientA→ B, but this configuration
did not appear for R(G,B). Then, it was because U −W appears in G and was
removed from GA due to it being oriented in R(G,A). However, this contradicts
Lemma 6.30 since U → V ∈ R(G,A) and {U −W,V −W} are not in R(G,A).

• All possible edges are present in the node-induced subgraph of the R2 configuration.

• There is only one possible edge removed by R(G,A) in configurations R3 and R4.
By the same argument to the R1 configuration above, one can check that this implies
that there is some triangle on three vertices contradicting Lemma 6.30.
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In other words, A→ B ∈ R(G,B) whenever A→ B ∈ R(GA,B) due to Meek rules.
Direction 2: R(G,B) \R(G,A) ⊆ R(GA,B)
For any arc A → B ∈ R(G,B) \R(G,A), we have that A → B ̸∈ R(G,A) and so

the edge A−B appears unoriented in E(GA), which implies that A−B appears in E(G)
as an unoriented edge. So, we may ignore v-structure arcs in R(G,B). There are two
possible situation explaining why an arc A → B belongs in R(G,B): either (i) there is
some intervention I ∈ B such that |I ∩ {A,B}| = 1, or (ii) Meek rules oriented A−B.

(i) In the first situation, we have A→ B ∈ R(GA,B) as well.
(ii) We prove the second situation by contradiction. For notation simplicity, let us write

S = (R(G,B) \R(G,A)) \R(GA,B) = R(G,B) \ (R(G,A) ∪R(GA,B)). Suppose,
for a contradiction, that S ̸= ∅. Let A → B ∈ S be oriented via a sequence of Meek
rule configurations such that only the last configuration does not appear in R(GA,B). By
calling such a Meek rule configuration a bad configuration, we can see why such an arc
A → B exists: for any arc in S that uses more than one bad configuration, one of the
oriented arcs in the bad configuration is an arc in S that is oriented with strictly fewer bad
orientations. Now, consider the last Meek rule configuration used to orient A → B in
R(G,B). We make two observations:

O1 If none of the oriented arcs of this Meek rule configuration belongs to R(G,A), then
these arcs appear in GA and will be oriented due to B, thus A → B ∈ R(GA,B).
This contradicts to A→ B ∈ S.

O2 If all of the oriented arcs of this Meek rule configuration belong to R(G,A), then
A→ B ∈ R(G,A). This contradicts to A→ B ∈ S.

There is only one arc in the R1 configuration, so either O1 or O2 applies. Meanwhile, the
arcs in the R3 configuration form a v-structure and so both of them belong to S, so O2
applies. In R2 or R4 configurations, there are two arcs. If none or both arcs are inR(G,A),
then we can apply O1 or O2 to reach a contradiction. If exactly one of the arcs are in
R(G,A), then there will be a triangle on three vertices contradicting Lemma 6.30.

Lemma 6.34. Consider the setting of Theorem 6.14. We have

R(G,A ∪ B) = R(GA,B) ⊔R(G,A)

Proof. By Lemma 2.54, we have that R(G,A ∪ B) = R(G,A) ∪R(G,B). The claim
follows using Lemma 6.33.

Lemma 6.35. Consider the setting of Theorem 6.14. We have

R(G,A ∪ B) = R(GA,B) ⊔R(GB,A) ⊔ (R(G,A) ∩R(G,B))



CHAPTER 6. CAUSAL GRAPH DISCOVERY WITH ADAPTIVE INTERVENTIONS 91

Proof. The disjointness follows from definitions ofGA andGB. We now argue containment
in both directions.

Direction 1: R(G,A ∪ B) ⊆ R(GA,B) ⊔R(GB,A) ⊔ (R(G,A) ∩R(G,B))
By Lemma 2.54, we know that R(G,A ∪ B) = R(G,A) ∪ R(G,B). Consider

an arbitrary arc e ∈ E such that e ∈ R(G,A) ∪ R(G,B). Suppose e ̸∈ R(G,A) ∩
R(G,B). If e ∈ R(G,A) \ R(G,B), then e appears in GB and so e ∈ R(GB,A). If
e ∈ R(G,B) \R(G,A), then e appears in GA and so e ∈ R(GA,B). In either case, we
see that e ∈ R(GB,A)∪R(GA,B) = R(GA,B)⊔R(GB,A) ⊆ R(GA,B)⊔R(GB,A)⊔
(R(G,A) ∩R(G,B)).

Direction 2: R(GA,B) ⊔R(GB,A) ⊔ (R(G,A) ∩R(G,B)) ⊆ R(G,A ∪ B)
We argue that each of R(GA,B), R(GB,A), and R(G,A) ∩R(G,B) is a subset of

R(G,A∪B). By Lemma 6.34, R(GA,B) ⊆ R(G,A∪B) and R(GB,A) ⊆ R(G,A∪B).
By Lemma 2.54, we know that R(G,A ∪ B) = R(G,A) ∪R(G,B) and so R(G,A) ∩
R(G,B) ⊆ R(G,A) ∪R(G,B) ⊆ R(G,A ∪ B).

Lemma 6.36. Consider the setting of Theorem 6.14. R(G, ∅) does not contain any covered
edge of G.

Proof. By definition, covered edges are not v-structure edges. By Theorem 6.7, covered
edges will not be oriented by Meek rules and we need to intervene on either of the endpoints
to orient it. Therefore, R(G, ∅) does not contain any covered edges.

Theorem 6.14 follows from the combination of the above lemmas.

Theorem 6.14 (Properties of interventional essential graphs). Fix a DAG G = (V ,E).
For any intervention set I ⊆ 2V and any vertex U ∈ V , let R(G, I) ⊆ E denote the set
of oriented arcs in the I-essential graph of G, GI be the fully directed subgraph DAG of
G obtained by arcs in R(G, I), and PaG,I(U) = {X ∈ V : X → U ∈ R(G, I)} be the
parents of U recovered by I. The following statements are true with respect to any two
arbitrary intervention sets A ⊆ 2V and B ⊆ 2V :

1. Any v-structures in GA are also present in G.

2. Any acyclic completion of E(GA) that does not form new v-structures can be com-
bined with R(G,A) to obtain a valid DAG belonging to both E(G) and EA(G).

3. R(GA,B) = R(G,B) \R(G,A).

4. R(G,A ∪ B) = R(GA,B) ⊔R(G,A).

5. R(G,A ∪ B) = R(GA,B) ⊔R(GB,A) ⊔ (R(G,A) ∩R(G,B)).

6. R(G, ∅) does not contain any covered edge of G.

Proof. Combine Lemma 6.31, Lemma 6.32, Lemma 6.33, Lemma 6.34, Lemma 6.35,
and Lemma 6.36.
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6.5 Characterization of verifying sets

In this section, we formally prove Theorem 6.7 by proving both directions separately.

Lemma 6.37 (Necessary). Fix an essential graph E(G∗) and G ∈ [G∗]. If I ⊆ 2V is a
verifying set, then I separates all unoriented covered edge U − V of G.

Proof. Let U → V be an arbitrary unoriented covered edge in E(G∗) and I be an
intervention set where U and V are never separated by any S ∈ I. Then, interventions
will not orient U → V and we can only possibly orient it via Meek rules. We check that
all four Meek rules will not orient U → V :

(R1) For R1 to trigger, we need to have W → U → V and W \− V for some vertex
W ∈ V \ {U, V }. However, such a vertex W will imply that U → V is not a
covered edge.

(R2) For R2 to trigger, we need to have U → W → V for some W ∈ V \ {U, V }.
However, such a vertex W will imply that U → V is not a covered edge.

(R3) For R3 to trigger, we must have W −U −X , W → V ← X , and W \− X for some
W,X ∈ V \{U, V }. Since U → V is a covered edge, we must haveW → U ← X .
This implies that W → U ← X appears as a v-structure in E(G∗) and thus R3 will
not trigger due to interventions from I.

(R4) For R4 to trigger, we must have W −U −X , W → X → V , and W \− V for some
W,X ∈ V \ {U, V }. Since U → V is covered, we must have X → U . To avoid
directed cycles, it must be the case thatW → U . However, this implies that U → V

is not covered since W → U while W \− V .

Therefore, I cannot be a verifying set if U and V are never separated by any S ∈ I.

Lemma 6.38 (Sufficient). Fix an essential graph E(G∗) and G ∈ [G∗]. If I ⊆ 2V is an
intervention set that separates every unoriented covered edge U − V of G, then I is a
verifying set.

Proof. Let I be an arbitrary intervention set such that every unoriented covered edge
U − V of G has an set S ∈ I that separates U and V . Fix an arbitrary valid vertex
permutation π : V → [n] of G. For any i ∈ [n], define Vi = {π−1(1), . . . , π−1(i)} ⊆ V

as the i smallest vertices according to π’s ordering. We argue that any unoriented edges
in E(G∗)[Vi] will be oriented by I by performing induction on i.

Base case (i = 1): There are no edges in G[V1] so E(G∗)[V1] is trivially fully oriented.
Inductive case (i > 1): Suppose V = π−1(i). By induction hypothesis, E(G∗)[Vi−1]

is fully oriented so any unoriented edge in E(G∗)[Vi] must have the form U → V , where
π(U) < π(V ). For any U → V is an unoriented covered edge in E(G∗)[Vi], there will
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be an intervention S ∈ I that separates U and V , and hence covered edges will all be
oriented. Now suppose, for a contradiction, that there exists unoriented edges in E(G∗)[Vi]

that are not covered edges. Let U → V be the unoriented edge where π(U) is maximized.
Since U → V is not a covered edge, one of the two cases must occur:

Case 1 ∃W ∈ V \ {U, V } such that W → U and W ̸→ V in G∗

Since W → U and U → V in G∗, we see that π(V ) > π(W ). So, W ̸→ V implies
W \− V in G∗. By induction, W → U will be oriented. So, Meek R1 will orient
U → V .

Case 2 ∃W ∈ V \ {U, V } such that W → V and W ̸→ U in G∗

If W \− U in G∗, then U → V ← W is a v-structure in G∗ and U → V would have
been oriented. If W −U in G∗, then we must have U → W and π(U) < π(W ). By
induction, U → W will be oriented. Since π(U) < π(W ) and π(U) is maximized
out of all possible unoriented edges in E(G∗)[Vi] involving V , W → V must be an
oriented edge and will be oriented by I. So, Meek R2 will orient U → V .

In either case, U → V will be oriented. Contradiction.

Combining Lemma 6.37 and Lemma 6.38 yields our characterization of verifying sets.

Theorem 6.7. Fix a DAG G = (V ,E). An intervention set I ⊆ 2V is a minimum sized
verifying set for G if and only if every covered edge of G is separated by some intervention
in I.

Proof. Combine Lemma 6.37 and Lemma 6.38.

As mentioned in Section 6.3, we can use Theorem 6.7 to prove Corollary 6.11

Corollary 6.11. Given an essential graph E(G∗) of an unknown ground truth DAG G∗

and a causal DAG G ∈ [G∗], we can test if G ?
= G∗ by intervening on any verifying set of

G. Furthermore, in the worst case, any algorithm that correctly resolves G ?
= G∗ using

k-bounded interventions needs at least νk(G) interventions.

Proof. Using Theorem 6.7, we know that the minimal verifying set for G is the smallest
possible set of interventions I such that all covered edges of G is separated by some
intervention S ∈ I. If the graph is fully oriented after intervening on all S ∈ I, then it
must be the case that G = G∗. Otherwise, we will either detect that some edge orientation
disagrees with G or there remains some unoriented edge at the end of all our interventions.
In the first case, we trivially conclude that G ̸= G∗. In the second case, Theorem 6.7
tells us that any such unoriented edge must be an unoriented covered edge of G∗ (but I
separated all covered edges of G) and so we can also conclude that G ̸= G∗.

Suppose, for a contradiction, that some algorithm managed to use strictly less than
νk(G) interventions to verify a graph G. Then, there exists at least one covered edge
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U → V in G that is not separated by the interventions used. Define G ′1 = G and G ′2 as G
with this covered edge reversed (i.e. V → U instead). Note that G ′2 is also a DAG in the
same MEC due to Lemma 2.49. We see that this algorithm cannot distinguish between
G ′1 and G ′2 and thus cannot correctly output G = G ′ or G ̸= G ′ respectively. This is a
contradiction, i.e. at least νk(G) interventions are needed in the worst case.

6.6 Verification using atomic interventions

In this section, we show how to obtain an efficient computation of minimum atomic
verifying set. We begin by showing some properties of covered edges.

Lemma 6.15 (Properties of covered edges).

1. Let H be the edge-induced subgraph by covered edges of a DAG G. Then, every
vertex inH has at most one incoming edge and thusH is a forest of directed trees.

2. If a DAG G is a clique on n ≥ 3 vertices V1, V2, . . . , Vn with π(V1) < π(V2) < . . . <

π(Vn) with topological ordering π, then V1 → V2, . . . , Vn−1 → Vn are the covered
edges of G.

3. If U → V is a covered edge in a DAG G, then U cannot be a sink of any maximal
clique of G.

Proof.

1. Suppose, for a contradiction, that there exists some vertex W with two incoming
covered edges U → W ← V . For U → W to be covered, we must have V → U .
Similarly, for V → W to be covered, we must have U → V . However, we cannot
simultaneously have both U → V and V → U , as it would lead to a contradiction as
G is a DAG. Furthermore, since G itself is acyclic, it implies that the edge-induced
subgraphH must also be acyclic. Therefore,H is a forest of directed trees.

2. Note that π is the only valid topological ordering since G is a complete graph. Let
A = {V1 → V2, V2 → V3, . . . , Vn−1 → Vn} be the set of arcs of interest. For any arc
Vi → Vi+1 ∈ A, one can check that they share the same parents by the topological
ordering π. Consider an arbitrary arc Vi → Vj ̸∈ A. Since Vi → Vj ̸∈ A, there
exists Vk ∈ V such that π(Vi) < π(Vk) < π(Vj). Then, since G is a clique, we must
have Vi → Vk → Vj and so Vi → Vj cannot be covered since Vk ∈ Pa(Vj) \ {Vi}
but Vk ̸∈ Pa(Vi) \ {Vj}.

3. Suppose, for a contradiction, that U is a sink of some maximal clique K of size
h and U → V is a covered edge. Then, we must have Pa(V ) \ {U} = Pa(U).
However, that means that V (K)∪{V } forms a clique of size h+1. This contradicts
the assumption that K was a maximal clique.
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Using Lemma 6.15, we can design an efficient algorithm to compute a minimum
atomic verifying set for any given DAG G.

Theorem 6.12. A minimum sized atomic verifying set for G can be computed in polynomial
time in the size of G.

Proof. An atomic intervention set I ⊆ 2V separates every unoriented covered edge in
E(G) if and only if the vertex set

⋃
S∈I S is a vertex cover of the unoriented covered edges

in E(G). Since Lemma 6.15 tells us that the edge-induced subgraph on covered edges of
G is a forest, one can perform the standard dynamic programming algorithm to efficiently
compute the minimum vertex cover on each tree.

6.7 Adaptive search algorithm using atomic interventions

Here, we give our search algorithm based on graph separators and prove Theorem 6.13.

Algorithm 13 Search algorithm via graph separators and atomic interventions.
Input: Essential graph E(G∗)
Output: A fully oriented graph G ∈ [G∗]

1: Initialize i = 0 and I0 = ∅.
2: while the essential graph EIi(G∗) still has undirected edges do
3: For each chain componentH ∈ CC(EIi(G∗)) of size |H| ≥ 2, find a 1/2-clique

separator KH ⊆ V using Theorem 2.43.
4: Define Q =

⋃
H∈CC(EIi (G

∗))

|V (H)|≥2

KH as the union of clique separator nodes.

5: Increment i← i+ 1 and form a new intervention set Si = {{V } : V ∈ Q} by
interpreting Q as a collection of |Q| atomic interventions.

6: Intervene on Si to obtain EIi(G∗) and update Ii ← Ii−1 ∪ Si.

To analyze Algorithm 13, we first prove that it terminates in O(log n) iterations.

Lemma 6.39. Algorithm 13 terminates after at most O(log n) iterations.

Proof. Fix an iteration i and chain component H with 1/2-clique separator KH. By
construction, edges within each clique separator KH will be fully oriented when we
perform atomic interventions on Q atomically. Note that by doing so, any edge with
exactly one endpoint in KH will also be oriented. Thus, after each iteration, the only
remaining unoriented edges lie completely within the separated components that are of
half the size.

Since the algorithm always recurse on graphs of size at least half the previous iteration,
we see that |V (H)| ≤ n/2i for any H ∈ CC(EIi(G∗)). Thus, all chain components will
become singletons after O(log n) iterations and the algorithm terminates with a fully
oriented graph.
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To bound the number of interventions used in each iteration, we prove a stronger
universal lower bound that is built upon the lower bound of [SMG+20].

Lemma 6.17. Fix an essential graph E(G∗) with an underlying ground truth DAG G∗.

ν1(G∗) ≥ max
atomic intervention set I ⊆ 2V

∑
H∈CC(EI(G∗))

⌊
ω(H)
2

⌋

Proof. Consider an arbitrary set of atomic interventions I ⊆ 2V and the resulting I-
essential graph EI(G∗). LetH ∈ CC(EI(G∗)) be an arbitrary chain component and define
SH = {{V } :∈ V (H)} as the set of vertices of V (H). Now, let I ′ ⊆ 2V be an arbitrary
atomic verifying set of G∗. Since I ′ is a verifying set of G∗, we have EI′(G∗) = G∗ and
EI′(G∗)[V (H)] = G∗[V (H)]. Then, we see that

E(I′\I)∩SH(G∗[V (H)]) = EI∪(I′\I)(G∗)[V (H)] By Lemma 2.53

= EI′(G∗)[V (H)] Since I ∪ (I ′ \ I) = I ′

= G∗[V (H)] Since I ′ is a verifying set of G∗

So, (I ′ \ I)∩ SH is a verifying set for G∗[V (H)], and so is I ′ ∩ SH. Thus, by minimality
of ν1, we have

ν1(G∗[V (H)]) ≤ |I ′ ∩ SH| (6.1)

for any atomic verifying set I ′ ⊆ 2V of G∗. SinceH ∈ CC(EI(G∗)), the graph G∗[V (H)]
is a moral DAG. Since H is a subgraph of G∗[V (H)], ω(H) ≤ ω(G∗[V (H)]). Thus, by
Lemma 6.16, we have

ν1(G∗[V (H)]) ≥
⌊
ω(G∗[V (H)])

2

⌋
≥
⌊
ω(H)
2

⌋
(6.2)

Now, suppose I∗ is a minimum size verifying set of G∗. Then,

ν1(G∗) = |I∗| By definition of I∗

≥
∑

H∈CC(EI(G∗))

|I∗ ∩ SH| Since the chain componentsH are disjoint

≥
∑

H∈CC(EI(G∗))

ν1(G[V (H)]) By Eq. (6.1)

≥
∑

H∈CC(EI(G∗))

⌊
ω(H)
2

⌋
By Eq. (6.2)

The claim follows maximizing over all possible atomic interventions I ⊆ 2V .

Theorem 6.13. Fix an essential graph E(G∗) with an unknown underlying ground truth
DAG G∗. There is an algorithm that runs in polynomial time and computes an atomic
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intervention set I ⊆ 2V in a deterministic and adaptive manner such that EI(G∗) = G∗

and |I| ∈ O(log(n) · ν1(G∗)).

Proof. Algorithm 13 runs in polynomial time because 1/2-clique separators can be com-
puted efficiently (see Theorem 2.43).

Fix an arbitrary iteration i of Algorithm 13 and let Gi be the partially oriented graph
obtained after intervening on Ii. By Lemma 6.17,

∑
H∈CC(EIi (G

∗))⌊
ω(H)
2
⌋ ≤ ν1(G∗). By

definition of ω, we always have |KH| ≤ ω(H). Thus, Algorithm 13 uses at most 2 ·ν1(G∗)
interventions in each iteration.

By Lemma 6.39, there are O(log n) iterations and so O(log(n) · ν1(G∗)) atomic
interventions are used by Algorithm 13.

6.8 Extension: Subset verification and search

6.8.1 Subset verification

Our subset verification results are based on the Hasse diagrams for moral DAGs. As such,
we begin by defining and stating some properties about them. After which, we show that
the atomic subset verification problem is equivalent to the problem of interval stabbing on
a rooted tree. Full proofs are deferred to the Appendix B.1.2.

Definition 6.40 (Partial order). The tuple (X,≤) is a partially ordered set (a.k.a. poset)
whenever the partial order ≤ on a set X satisfies three properties:

1. Reflexivity: For all X ∈X , X ≤ X;

2. Anti-symmetric: For all X, Y ∈X , if X ≤ Y and Y ≤ X , then X = Y ;

3. Transitivity: For all X, Y, Z ∈X , if X ≤ Y and Y ≤ Z, then X ≤ Z.

There may be incomparable pairs of elements in X . For any two elementsX, Y ∈X , we
say that Y covers X if X ≤ Y and there is no Z ∈X \ {X, Y } such that X ≤ Z ≤ Y .

Definition 6.41 (Transitive reduction). A transitive reduction of a directed graph G =

(V ,E) is another directed graph Gt = (V ,E′) with minimum sized |E′| such that there
is a directed path from U to V in G if and only if there is a directed path from U to V in
Gt for any U, V ∈ V .

Definition 6.42 (Directed Hasse diagram). Any poset (X,≤) can be uniquely represented
by a directed Hasse diagramH(X,≤), a directed graph where each element in X is a vertex
and there is an arc Y → X whenever Y covers X for any two elements X, Y ∈ X . We
call these arcs as Hasse arcs.
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Any DAG G = (V ,E) induces a poset on the vertices V with respect to the ancestral
relationships in the graph: X ≤An Y whenever X ∈ An[Y ]. Furthermore, it is known
(e.g. see [AGU72]) that the transitive reduction Gt of a DAG G is unique, is defined on
a subset of edges (i.e. E ′ ⊆ E), is polynomial time computable, and is exactly the Hasse
diagramH(V ,≤An) defined with respect to (V ,≤An). Since “covers” correspond to “direct
children” for DAGs, we will say “Y is a direct child ofX” instead of “X covers Y ” to avoid
confusion with the notion of covered edges. In the following, we will useHG = H(V ,≤An)

to denote the Hasse diagram corresponding to a DAG G. Note thatHG can be computed in
polynomial time and may have multiple roots (vertices without incoming arcs) in general.

Lemma 6.43. If moral DAG G = (V ,E) is a single connected component, then the Hasse
diagramHG is a directed tree with a unique root vertex.

As it is known [HB12, Lemma 23] that any moral DAG whose skeleton is a connected
chordal graph has exactly one source vertex, Lemma 6.43 is not entirely surprising.
However, it enables us to properly define the notion of rooted subtrees in a Hasse diagram.

Definition 6.44 (Rooted subtree). Let HG be a Hasse diagram of a single component
moral DAG G = (V ,E). By Lemma 6.43, HG is a rooted tree. For any vertex Y ∈ V ,
the rooted subtree TY has vertices V (TY ) = {U ∈ V : Y ∈ An[U ]} and edges E(TY ) =
{A→ B : A,B ∈ V (TY )}. See Fig. 6.8 for an illustration.

Using rooted subtrees, we prove several structural properties regarding the arc direc-
tions that are recovered by an atomic intervention, cumulating into Theorem 6.45 which
states that the set R−1(G, U → V ) of vertices whose intervention recovers U → V forms
a consecutive sequence of vertices in some branch in the Hasse diagramHG .

Theorem 6.45. Let G = (V ,E) be a moral DAG and U → V be an unoriented arc in
E(G). Then, R−1(G, U → V ) = De[W ] ∩ An[V ] for some W ∈ An[U ].

Meanwhile, the following lemma tells us that covered edges correspond directly to an
interval involving only the endpoints. We will later see that our subset verification result
(Theorem 6.20) is a non-trivial generalization of our verification result (Theorem 6.12).

Lemma 6.46. If G be a moral DAG, then the covered edges of G are a subset of the Hasse
edges inHG .

Now, for any rooted tree Ĝ = (V ,E), an ordered pair [U, V ]Ĝ ∈ V × V is called an
interval ifU ∈ An(V ). If the graph is clear from context, we will drop the subscript Ĝ. We
say that a vertexZ ∈ V stabs an interval [U, V ] if and only ifZ ∈ De[U ]∩An[V ], and that
a subset S ⊆ V stabs [A,B] if S has a vertex that stabs it. Interpreting Theorem 6.45 with
respect to the definition of an interval, we see that every edge U → V can be associated
with some interval [W,V ]HĜ

, for some W ∈ An[U ], such that U → V ∈ R(G, I) if and
only if I stabs [W,V ]HĜ

. As such, we can reduce the subset verification problem on moral
DAGs to the following problem.
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R

Z

W

A BY

C

...

Z = Pa(W )An(W )

Ch(W )

Ty

Figure 6.8: A Hasse diagram HG of some DAG G with root R where triangles represent
unexpanded subtrees. For a vertex W , An(W ) is the set of vertices (in red) along the
unique path from R to W and Z = Pa(W ) is the vertex directly before W . The direct
children (in blue) of W are Ch(W ) = {A,B, Y }. If the arc W → C exists in G, it will
not appear in HG because W → Y → C exists, i.e. C ̸∈ Ch(W ). The rooted subtree (in
orange) TY at Y includes all the nodes that have Y as an ancestor.

Definition 6.47 (Interval stabbing problem on a rooted tree). Given a rooted tree Ĝ =

(V ,E) with root R ∈ V and a set J ⊆ 2V ×V of intervals of the form [U, V ], find a set
I ⊆ V of minimum size such that I stabs [U, V ] for all [U, V ] ∈ J .

The interval stabbing problem on a rooted tree can be viewed both as a special case
of the set cover problem, and as a generalization of the interval stabbing problem on a
line. The former is NP-hard [Kar72], while the latter can be solved using a polynomial
time greedy algorithm (e.g. see [Eri19, Chapter 4, Exercise 4]). The next two results
formally shows that one can reduce the subset verification problem on moral DAGs to the
interval stabbing problem in polynomial time, and that the latter can be solved efficiently
(see Section 6.8.1), and thus we obtain an efficient algorithm for the subset verification
problem.

Lemma 6.48. Let G = (V ,E) be a connected moral DAG,H be the Hasse tree of G, and
T ⊆ E be a subset of target edges. Then, there exists a set of intervals J ⊆ 2V ×V on H
such that any solution to minimum interval stabbing problem on (H,J) is a solution to
the minimum sized atomic subset verification set (G,T ).
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Lemma 6.49. There exists a polynomial time algorithm for solving the interval stabbing
problem on a rooted tree.

Theorem 6.20. For any DAG G = (V ,E) and subset of target edges T ⊆ E, there exists
a polynomial time algorithm to compute the minimum sized atomic subset verifying set.

Proof. Since closure under Meek rules can be computed in polynomial time (e.g. via
[WBL21, Algorithm 2]), we can compute all R(G, {{V }}) for each V ∈ V , and thus
R−1(U → V ) in polynomial time. The reduction given in Lemma 6.48 runs in polynomial
time and we can apply the polynomial time algorithm of Lemma 6.49 to solve the resulting
interval stabbing instance.

Interestingly, any instance of interval stabbing on a rooted tree can also be reduced in
polynomial time to an instance of subset verification on moral DAGs.

Lemma 6.50. LetH be a rooted tree and J ⊆ 2V ×V be a set of intervals onH, for some
set V . Then, there exists a connected moral DAG G = (V ,E) and a subset T ⊆ E of
edges such that any solution to the minimum sized atomic subset verification set (G,T ) is
a solution to minimum interval stabbing problem on (H,J).

Interval stabbing on a rooted tree

Here, we formulate a recurrence relation for the interval stabbing problem on a rooted tree
and give an efficient dynamic programming implementation in Appendix B.1.3.

To formally describe the recurrence relation, we will use the following definitions to
partition the given set of intervals. Given a set of intervals J , we define the following
subsets of intervals with respect to an arbitrary vertex V ∈ V :

EV = {[A,B] ∈ J : B = V } (End with V )

MV = {[A,B] ∈ J : V ∈ (A,B)} (Middle with V )

SV = {[A,B] ∈ J : A = V } (Start with V )

WV = {[A,B] ∈ J : A,B ∈ V (TV ) \ {V }} (Without V )

IV = EV ∪MV ∪ SV ∪WV (Intersect TV )

BV = SV ∪WV (Back of IV )

CV = EV ∪MV ∪ SV (Covered by V )

Note that IV includes all the intervals in J that intersect with the subtree TV , i.e. has some
vertex in V (TV ). Meanwhile, CV includes all the intervals that will be covered whenever
V is chosen in the output set, i.e. V will stab intervals in CV . Observe that IY ⊆ IV for
any Y ∈ De(V ). See Fig. 6.9 for an example illustrating these definitions.
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V1 V2 V3 V4 V5 V6 V7 V8

J1

J2

J3

J4 J5

Figure 6.9: Consider the rooted tree Ĝ with V1 → . . .→ V8 and J = {J1, . . . ,J5}, where
J1 = [V1, V6], J2 = [V2, V4], J3 = [V2, V5], J4 = [V4, V7], and J5 = [V7, V8]. Then,
EV4 = {J2}, MV4 = {J1,J3}, SV4 = {J4}, WV4 = {J5}.

To solve the interval stabbing problem, we perform recursion from the root towards
the leaves, solving subproblems defined on subsets of the intervals that are still “relevant”
at each subtree. More formally, for any set of intervals U ⊆ J , let opt(U , V ) denote the
size of the optimum solution to stab all the intervals in U using only vertices V (TV ) in
the subtree TV rooted at V . There are three possible cases while recursing from the root
towards the leaves:

Case 1. If U ∩EV ̸= ∅, then V must be in any valid solution output and we recurse on
the set (U \CV ) ∩ IY for subtree TY rooted at each child Y ∈ Ch(V ).

Case 2. IfU∩EV = ∅ and V is in the output, then we can recurse on the set (U \CV )∩IY
for subtree TY rooted at each child Y ∈ Ch(V ).

Case 3. If U ∩ EV = ∅ and V is not in the output, then we need to recurse on the set
U ∩ IY subtree TY rooted at each child Y ∈ Ch(V ).

For any V ∈ V and Y ∈ Ch(V ), we have CV ∩ IY ⊆ EY ∪MY by definition. So,
(U \CV ) ∩ IY = U ∩BY . The correctness of the first case is trivial while Lemma 6.51
formalizes the correctness of the second and third cases.

Lemma 6.51. At least one of the following must hold for any optimal solution opt with
size opt(U , R) to the interval stabbing problem with respect to ordering π and any vertex
V ∈ V with EV = ∅:

1. Either V ∈ opt or opt includes some ancestor of V .

2. For Y ∈ Ch(V ) such that CV ∩ IY ̸= ∅, we must have WV,Y ∈ opt for some
WV,Y ∈ De(V ) ∩ An[BV,Y ], where [AV,Y , BV,Y ] = argmin

[A,B]∈U ∩CV ∩ IY

{π(B)}.

Therefore, we have the following recurrence relation:

opt(U , V ) =


∞ if U ̸⊆ IV

αV if U ⊆ IV , U ∩EV ̸= ∅

min{αV , βV } if U ⊆ IV , U ∩EV = ∅

(6.3)
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where αV = 1 +
∑

Y ∈Ch(V )

opt(U ∩BY , Y )

βV =
∑

Y ∈Ch(V )

opt(U ∩ IY , Y )

That is, we must pick V to be in the output set whenever EV ̸= ∅, while αV and
βV correspond to the decisions of picking V into the output and ignoring V from the
output respectively. Then, opt(J , R) is the optimum solution size to the interval stabbing
problem, where R as the root of the given rooted tree.

In Appendix B.1.3, we explain how to implement Eq. (6.3) efficiently using dynamic
programming. To do so, we first compute the Euler tour data structure on G and use it to
define an ordering on J so that our state space ranges over the indices of a sorted array
instead of a subset of intervals.

6.8.2 Subset search

We first give the proofs of Lemma 6.21 and Lemma 6.22 to justify why a bound of
O(log n · ν1(G∗,T )) for any subset of target edges T ⊆ E is unattainable in general.
Then, we propose a subset search algorithm SubsetSearch for a given node-induced
subgraphH and prove Theorem 6.24.

Lemma 6.21. Given a subset of target edges T ⊆ E, intervening on the vertices in a
vertex cover of T atomically will fully orient all edges in T .

Proof. Each intervention will orient all the incident edges.

Lemma 6.22. Fix any integer n ≥ 1. There exists a fully unoriented essential graph on
2n vertices and a subset T ⊆ E on n edges such that the size of the minimum vertex cover
of T is vc(T ) and any algorithm needs at least vc(T ) − 1 number atomic interventions
to orient all the edges in T against an adaptive adversary that reveals arc directions
consistent with a DAG G∗ ∈ [G] with ν1(G∗,T ) = 1.

Proof. Let the vertex set be {V1, . . . , V2n}. Fig. 6.10 illustrates our lower bound construc-
tion: form a clique {V1, . . . , Vn} and add an edge between vertex Vi − Vn+i for i ∈ [n],
then let T = {Vi → Vn+i : i ∈ [n]} be the set of target edges. We will restrict the vertices
outside the clique come after the clique nodes in any topological ordering and allow the
adversary to adaptively decide on the relative orderings of vertices within the clique based
on the performed interventions.

By construction, the essential graph has no v-structures and the minimum vertex cover
of T has size ω(n). To orient all the edges in set T , we just need to orient on the
source vertex of the clique and then apply Meek rules. Therefore, ν1(G∗,T ) = 1 for any
graph G∗ in this equivalence class. Meanwhile, an adaptive adversary can always decide
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that vertices outside the clique have come after the the clique nodes in the ordering, and
always decide that the ith vertex V in the clique that we intervene on within the clique has
ordering π(V ) = n− i+ 1, and thus we only learn the orientations of arcs incident to V .
Since intervening on vertices outside the clique only learns the incident arc itself while
intervening on the other endpoint in the clique recovers more arc orientations, we may
assume w.l.o.g. that search algorithms will only intervene on vertices within the clique.
So, to orient all the edges in the set T , we need to figure out the source vertex and this
is as hard to finding an item in unsorted array of length n, which requires at least n − 1

queries.

S

Kn

Figure 6.10: Adaptive lower bound construction of G with n = 5: Given an integer n ≥ 1,
construct a directed clique Kn and have each clique node point to a fresh node outside
of the clique. The dashed n dashed arcs are chosen to be the target edges T ⊆ E. The
essential graph E(G) is completely undirected and any permutation ordering on the clique
nodes are valid. Intervening on the source S of the clique is sufficient to fully orient T
with the aid of Meek rules. However, an adaptive adversary can always decide that vertices
outside the clique have come after the the clique nodes in the ordering, and always decide
that the ith vertex V in the clique that we intervene on within the clique has ordering
π(V ) = n− i+ 1, and thus we only learn the orientations of arcs incident to V .

We design SubsetSearch by modifying Algorithm 13 to only assign non-zero weights
on vertices from the given node-induced subgraphH.

For analysis, we rely on the following known results Lemma 2.44 and Lemma 6.17
and mirrors the approach of Theorem 6.13: we first argue that Algorithm 14 terminates
after O(log |V (H)|) iterations, and then argue that each iteration uses at most O(ν1(G∗))
atomic interventions.

Lemma 6.52. SubsetSearch terminates after at most O(log |ρ(I,V (H))|) iterations.

Proof. For any iteration i, the chain components in EIi(G∗)[V (H)] are chordal since
node-induced subgraphs of a chordal graph are also chordal. By choice of c(V ) and
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Algorithm 14 SubsetSearch
Input: Essential graph E(G∗) and node-induced subgraphH
Output: A partially oriented graph G such that G[V (H)] = G∗[V (H)].

1: Initialize i = 0 and I0 = ∅.
2: while the essential graph EIi(G∗)[V (H)] still has undirected edges do
3: For each chain componentHCC ∈ CC(EIi(G∗)) with |ρ(Ii ∪ I,V (HCC))| ≥ 2,

find a 1/2-clique separator KHCC
using Lemma 2.44, with respect to

c(V ) =

{
n

ρ(Ii∪I,V (HCC))
for V ∈ V (H)

0 for V ∈ V \ V (H)

4: Define Q =
⋃

H∈CC(EIi (G
∗))

|V (H)|≥2

KHCC
as the union of clique separator nodes.

5: Increment i← i+ 1 and form a new intervention set Si = {{V } : V ∈ Q} by
interpreting Q as a collection of |Q| atomic interventions.

6: Intervene on Si to obtain EIi(G∗) and update Ii ← Ii−1 ∪ Si.

Lemma 2.44, all connected components will have the same total weight. Since each vertex
in V (HCC) ∩ V (H) is assigned the same weight via c(V ), the number of vertices from
V (H) within any connected component HCC is at least halved per iteration. Thus, after
O(log |V (H)|) iterations, all connected components have at most one vertex from V (H),
which in turn means that all edges within the node-induced graphH has been oriented.

Theorem 6.24. Fix an essential graph E(G∗) of an unknown underlying DAG G∗ and letH
be an node-induced subgraph ofG∗. There exists an algorithm that runs in polynomial time
and computes an atomic intervention set I ⊆ 2V in a deterministic and adaptive manner
such that EI(G∗)[V (H)] = G∗[V (H)] and |I| ∈ O(log(|ρ(I,V (H))|) · ν1(G∗,E)).

Proof. Fix an arbitrary iteration i of SubsetSearch and let Gi be the partially oriented
graph obtained after intervening on Ii. By Lemma 6.17,

∑
H∈CC(EIi (G

∗))⌊
ω(H)
2
⌋ ≤

ν1(G∗,E). By definition of ω, we always have |KH| ≤ ω(H). Thus, SubsetSearch
uses at most 2 · ν1(G∗,E) interventions in each iteration. Meanwhile, Lemma 6.52 states
that SubsetSearch terminates after O(log |ρ(I,V (H))|) iterations and so the algorithm
uses at most O(log(|ρ(I,V (H))|) · ν1(G∗,E)) atomic interventions in total.

6.9 Extension: k-bounded interventions

The proof of Theorem 6.25 relies on an intermediate result that performing bounded sized
interventions atomically can only increase the number of oriented edges; this result is
intuitive because doing so only increases the total number of separated edges.

Lemma 6.53. Fix an essential graph E(G∗) and G ∈ [G∗]. Suppose I is an arbitrary
bounded size intervention set. Intervening on vertices in ∪S∈IS one at a time, in an
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atomic fashion, can only increase the number of separated covered edges of G.

Proof. Consider an arbitrary covered edge U −V that was separated by some intervention
S ∈ I. This means that |{U, V } ∩ S| = 1. W.l.o.g., suppose U ∈ S. Then, when we
intervene on U in an atomic fashion, we would also separate the edge U − V .

Theorem 6.25. For any DAG G, we have νk(G) ≥ ⌈ν1(G)k
⌉.

Proof. A bounded size intervention set of size strictly less than ⌈ ℓ
k
⌉ involves strictly less

than ℓ vertices. By Theorem 6.12 and Lemma 6.53, such an intervention set cannot be a
verifying set.

Theorem 6.26. If ν1(G) = ℓ, then νk(G) ≥ ⌈ℓ/k⌉ and there exists a polynomial time
algorithm to compute a bounded size intervention set I of size |I| ≤ ⌈ ℓ

k
⌉+ 1.

Proof. By Lemma 6.15, the edge-induced subgraph on covered edges of G is a forest and
is thus 2-colorable.

Let A be any minimum sized atomic verifying set of G involving ℓ vertices. Split
the vertices in A into partitions according to the 2-coloring. By construction, vertices
belonging in the same partite will not be adjacent and thus choosing them together to be
in an intervention S will not reduce the number of separated covered edges. Now, form
interventions of size k by greedily picking vertices in A within the same partite. For the
remaining unpicked vertices (strictly less than k of them), we form a new intervention
with them. Repeat the same process for the other partite.

This greedy process forms groups of size k and at most 2 groups of sizes strictly less
than k, one from each partite. Suppose that we formed z groups of size k in total and
two “leftover groups” of sizes x and y, where 0 ≤ x, y < k. Then, ℓ = z · k + x + y,
ℓ
k
= z + x+y

k
, and we formed at most z + 2 groups. If 0 ≤ x+ y < k, then ⌈ ℓ

k
⌉ = z + 1.

Otherwise, if k ≤ x + y < 2k, then ⌈ ℓ
k
⌉ = z + 2. In either case, we use at most ⌈ ℓ

k
⌉ + 1

interventions, each of size ≤ k.
One can compute a bounded size intervention set efficiently because the following

procedures can all be run in polynomial time: (i) checking if each edge is a covered edge;
(ii) computing a minimum vertex cover on a tree; (iii) 2-coloring a tree; (iv) greedily
grouping vertices into sizes ≤ k.

The claim follows by invoking Theorem 6.25 and recalling thatA is a minimum sized
atomic verifying set of G, i.e. ν1(G) = ℓ.

Observe that there exists graphs and values k such that the optimal bounded size
verifying set requires at least ⌈ ℓ

k
⌉+ 1, and thus our upper bound is tight in the worst case:

Fig. 6.11 shows there exists a family of graphs (and values k) such that the optimal bounded
size verifying set requires ⌈ ℓ

k
⌉ + 1. However, we do not have a proof that Theorem 6.26

is optimal in general, or counter example that it is not.



CHAPTER 6. CAUSAL GRAPH DISCOVERY WITH ADAPTIVE INTERVENTIONS 106

Conjecture 6.54. The construction of bounded size verifying set given in Theorem 6.26
is optimal for all causal graphs.

. . .

. . .. . . . . .
. . . . . .

. . . . . .

Induced graph H

k − 1

Figure 6.11: A DAG with its covered edges given in dashed arcs. The edge-induced
subgraph of the covered edges is a tree and the minimum vertex cover is all the non-leaf
vertices (the boxed vertices) of size ℓ. Denote the graph induced by the boxed vertices byH
(right figure). Now consider the star graphH on ℓ = k nodes with k−1 leaves. All the leaf
nodes can be put in the same intervention without affecting the separation of any covered
edges. However, including the root with any of the leaf nodes in a same intervention will
cause covered edges to be unseparated. Thus, using bounded size interventions of size at
most k, verifying such a DAG requires at least ⌈ ℓ

k
⌉+ 1 = 2 interventions.

We now show how to apply the label computation of Algorithm 12 as a black-box to
generalize our (subset) search results to the setting with k-bounded interventions.

Theorem 6.28. Fix an essential graph E(G∗) with an unknown underlying ground truth
DAG G∗. For any integer k > 1, there is an algorithm that runs in polynomial time and
computes a k-bounded intervention set I ⊆ 2V in a deterministic and adaptive manner
such that EI(G∗) = G∗ and |I| ∈ O(log(n) · log(k) · νk(G∗)).

Proof. Recall from Algorithm 13 that, in each of the O(log n) iterations, we repeatedly
compute 1/2-clique separators and aggregate the nodes into Q, which we interpret as a
collection of atomic intervention set. We modify the algorithm by invoking Algorithm 12
on Q to k-bounded intervention sets. The produced k-bounded intervention set Si will
separate all edges separated by Q whilst having size |Si| ≤

⌈
|Q|
k′

⌉
·
⌈
log⌈ |Q|

k′ ⌉ |Q|
⌉
, where

k′ = min{k, |Q|/2} > 1. Note that our modified algorithm still runs in polynomial time
because the additional step of label computation runs in polynomial time.

For analysis, let us fix an arbitrary iteration i of our modified algorithm and let Gi be
the partially oriented graph obtained after intervening on Ii. Then,

νk(G∗) ≥
⌈
ν1(G∗)
k

⌉
By Theorem 6.25

≥

1k ·
∑

H∈CC(E(G∗))

⌊
ω(H)
2

⌋ By Lemma 6.17

≥ Ω(|Q|/k) Since Q is the union of clique separator nodes
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Note that νk(G∗) ≥ 1 always. We now consider the two cases of k′.
Case 1: k ≤ |Q|/2. Then, k′ = k and

|Si| ≤
⌈
|Q|
k

⌉
·
⌈
log⌈ |Q|

k ⌉ |Q|
⌉
≤
⌈
|Q|
k

⌉
·

⌈
log |Q|
log |Q|

k

⌉

≤
⌈
|Q|
k

⌉
· ⌈log(k) + 1⌉ ∈ O

(
|Q|
k
· log(k)

)
Case 2: k ≥ |Q|/2. Then, k′ = |Q|/2 and

|Si| ≤ 2 · ⌈log2 |Q|⌉ ∈ O(log(k))

In either case, we see that |Si| ∈ O (νk(G∗) · log k). By Lemma 6.39, there are
O(log n) iterations and so the total number of k-bounded interventions used by our
modified algorithm is O(log(n) · log(k) · νk(G∗)).

Theorem 6.29. Fix an essential graph E(G∗) of an unknown underlying DAG G∗ and let
H be an node-induced subgraph of G∗. For any integer k > 1, there is an algorithm
that runs in polynomial time and computes a k-bounded intervention set I ⊆ 2V in
a deterministic and adaptive manner such that EI(G∗)[V (H)] = G∗[V (H)] and |I| ∈
O(log(|ρ(I,V (H))|) · log(k) · νk(G∗,E)).

Proof. Fix an arbitrary iteration i of SubsetSearch and let Gi be the partially oriented
graph obtained after intervening on Ii. Applying exactly the same proof as Theorem 6.28,
we see that |Si| ∈ O (νk(G∗,E) · log k). By Lemma 6.52, there are O(log |ρ(I,V (H))|)
iterations and soO(log(|ρ(I, V (H))|) · log(k) ·νk(G∗,E)) bounded size interventions are
used by SubsetSearch.



Chapter 7

Probably approximately correct
high-dimensional causal effect
estimation given a valid adjustment set

“Causa latet: vis est notissima.”
(“The cause is hidden: the effect is well known.”)

- Ovid in Metamorphoses

7.1 Introduction

Suppose that we can draw i.i.d. samples from an unknown probability distribution P(V )

over discrete random variables V , and that we wish to estimate the interventional dis-
tribution of Y ⊂ V when X ⊂ V is set to x. This causal problem has been studied
under different assumptions in the two major causal frameworks commonly referred to as
Neyman-Rubin’s potential outcomes (PO) framework [Rub74, SN90, Sek09] and Pearl’s
graphical causal modeling framework [Pea09a], where the desired estimand is written as
P(Y (x) = y) and Px(y) = P(Y = y | do(X = x)) respectively. In both frameworks,
this problem is known as causal effect estimation and has important downstream implica-
tions such as estimating treatment effects E(Y | do(X = x))− E(Y | do(X = x′)), or
E(Y (x))−E(Y (x′)) in the potential outcome notation, for x ̸= x′ and where the expec-
tations are taken over the values of Y . In this chapter, we consider the following problem
from the viewpoint of distribution learning [KMR+94] under the Probably Approximately
Correct (PAC) learning model [Val84].

108
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The PAC causal effect estimation problem. Given (1) estimation tolerance
λ > 0, (2) failure tolerance δ > 0, (3) sample access to a distribution P(V ),
and (4) an interventional query Px(y), output an estimate P̂x(y) such that

Pr
(∣∣∣P̂x(y)− Px(y)

∣∣∣ ≤ λ
)
≥ 1− δ

For this problem to be well-posed, one must be able to relate the observational distri-
bution P(V ) to the interventional distribution Px(y) via some identification formula, i.e.
Px(y) must be uniquely determined by P(V ). While identifiability of Px(y) requires
additional assumptions in general, here we focus on a commonly studied identification
formula that involve a set of variables Z ⊂ V \ (X ∪ Y ) such that

Px(y) = TZ,x,y, where TZ,x,y :=
∑

z∈ΣZ

P(Y = y | Z = z,X = x) · P(Z = z),

(7.1)
where ΣZ denotes the alphabet of the variables Z. For instance, in the PO framework,
Eq. (7.1) holds under the assumptions of consistency and conditional ignorability of X
with respect to Z; see Lemma B.11 for a simple derivation. Meanwhile, the graphical
framework models the observational and interventional distributions via a causal graph G∗

overV , whereG∗ is possibly known or unknown, and may contain directed, bidirected, and
other kinds of edges depending on the context. Then, Eq. (7.1) can be shown to hold if Z
satisfies certain graphical criterion with respect to Px(y), such as the (generalized) back-
door criterion or the (generalized) adjustment criteria [Pea95, SVR10, MC15, PTKM18].
Following the latter viewpoint, we call Z a valid adjustment set for Px(y) if Z satisfies
Px(y) = TZ,x,y in Eq. (7.1), but we emphasize that our results are framework-agnostic,
i.e., they do not depend on how Eq. (7.1) is derived.

In particular, we establish our PAC guarantees by directly analyzing the sample com-
plexity required to produce an estimate T̂Z,x,y of TZ,x,y. A recent work [ZBHK24]
shows that Ω

(
1

λ2αZ
+ |ΣZ |

λαZ

)
samples are sufficient to ensure an expectation bound of

E
(
|TZ,x,y − T̂Z,x,y|

)
≤ λ, where αZ is a positivity (a.k.a. overlap) parameter that is

common in causal effect estimation; see Appendix B.2.2 for derivation translating their
stated bound into this form. [ZBHK24] also presented a minimax lower bound showing
that linear dependency on |ΣZ | is unavoidable. Since |ΣZ | grows exponentially with the
size of Z (e.g. when all variables are binary, we have |ΣZ | = 2|Z|), it is critical to use
small adjustment sets whenever possible.

Given a valid adjustment set Z ⊆ V as an initial input, we explore the possibility
of searching for smaller adjustment sets with the objective of using less total samples
than directly producing a λ-good estimate T̂Z,x,y. We are able to obtain lower sample
complexities because of the adage from the property testing literature that “testing can
be cheaper than learning”. In particular, we develop testing-based algorithms to find a
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candidate adjustment set S ⊆ Z, then estimate T̂S,x,y and bound its error from Px(y) =

TZ,x,y via triangle inequality:∣∣∣Px(y)− T̂S,x,y

∣∣∣ = ∣∣∣TZ,x,y − T̂S,x,y

∣∣∣ ≤ |TZ,x,y − TS,x,y|+
∣∣∣TS,x,y − T̂S,x,y

∣∣∣
≤ ε1 + ε2 = λ

The overall error bound (λ) will then be a function of the misspecification bias error term
(ε1) and the estimation error term (ε2). There is a natural tradeoff between these two
sources of error: using S ⊆ Z for adjustment introduces misspecification bias if S is
not a valid adjustment set, but this bias may dominated by a corresponding reduction in
estimation error if S is smaller than Z. While our approach is best appreciated through
the lens of the graphical causality framework, it also applies in the PO setting since our
method only relies on conditional independence tests using i.i.d. samples from P(V ).

7.1.1 Valid adjustment sets in the context of different frameworks

In this chapter, we take as our starting point knowledge of some Z ⊂ V that is a valid
adjustment set for Px(y), i.e., we assume that Eq. (7.1) holds for some known set Z ⊂ V .
Instead of starting directly from this point, one may prefer to derive Eq. (7.1) from more
foundational assumptions. We emphasize that our results hold in any framework from
which Eq. (7.1) can be derived, and briefly describe two such examples here.

In the potential outcomes (PO) framework, Px(y) is usually written asP(Y (x) = y),
where Y (x) is a random variable denoting the potential outcome under an intervention
that sets X to x. Then, Eq. (7.1) is implied under the standard consistency assumption
and conditional ignorability of X with respect to Z; see Lemma B.11.

Alternatively, Eq. (7.1) can be derived in the graphical causality framework, which
relates the distributions P(V ) and Px(y) to a (possibly unknown) causal graph G over
the random variables V . In the graphical causality framework, one typically assumes that
the distributions P(V ) and Px(y) are related via d-separation in G and related graphs.
Thus, Eq. (7.1) can be derived from these assumptions and graphical conditions on Z, see
Section 8.1 for examples of such conditions.

For sake of clarity, we have positioned this work from the perspective of causal effect
estimation, and emphasized how our primary assumption (knowledge of a valid adjustment
set Z) is compatible with both the potential outcomes (PO) and graphical frameworks for
causality; see Section 8.1 for related work and connections between this work and existing
work from both of these perspectives.
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7.2 Our main results

We denote X as the intervened treatment variables and Y as the outcome variables of
interest. For some x ∈ ΣX and y ∈ Σ, our goal is to estimate Px(y), which denotes the
probability that Y takes on the value y if we intervene to set X equal to x. Throughout
this chapter, for any A ⊆ V \ (X ∪ Y ) arbitrary, we define

αA = min
a∈ΣA

P(x | a) (7.2)

Our first main result extends the result of [ZBHK24] to the PAC setting by bounding the
estimation error |TA,x,y−T̂A,x,y| for arbitrary subsetsA ⊆ V , where T̂A,x,y is the estimate
of TA,x,y obtained using empirical sample estimates of P(Y = y | A = a,X = x) and
P(A = a) for all a ∈ ΣA.

Theorem 7.1 (Estimation error). Suppose we are given (1) estimation tolerance ε > 0, (2)
failure tolerance δ > 0, (3) sample access to P(V ), and (4) a subset A ⊆ V \ (X ∪Y ).
Then, there is an algorithm that uses Õ

((
|ΣA|
εαA

+ 1
ε2αA

+ |ΣA|
ε2

)
· log 1

δ

)
samples and

produces an estimate T̂A,x,y such that Pr(|T̂A,x,y − TA,x,y| ≤ ε) ≥ 1− δ.

Note that, up to logarithmic factors and the additional |ΣA|
ε2

factor, the sample com-
plexity of the PAC bound matches the sample complexity of the expectation bound. Here,
we switched from λ to ε and from Z to A to emphasize that the estimation error is only
one part of our overall bound. Surprisingly, although covariate adjustment is one of the
simplest and most widely-used estimation techniques in causality, this result is (to the best
of our knowledge) the first PAC bound on causal effect estimation for discrete variables. In
particular, previous works either focus on different estimands (under additional assump-
tions such as knowing a causal graph) or consider continuous variables and primarily
provide only asymptotic results; we discuss related works in Section 8.1.

Importantly, the sample complexity depends exponentially on |A|, and so when A is
large, it is of great practical interest to use another adjustment set S of smaller size, i.e.
|S| < |A|. As a paradigmatic example, consider the causal graph given in Fig. 7.1: instead
of directly using Z = {A1, . . . , Ak, B}, there are two possible smaller subsets within Z

itself that satisfy the (generalized) backdoor adjustment criterion [Pea95, SVR10, MC15,
PTKM18], and that therefore also serve as valid adjustment sets.

As a first approach for obtaining smaller adjustment sets, we consider Markov blankets
of the treatments X . In particular, we say that S ⊆ Z is a Markov blanket of X

with respect to Z when X ⊥⊥Z \ S | S, and one can show that TS,x,y = TZ,x,y when
this conditional independence holds. In the example given in Fig. 7.1, the parental set
Pa(X) = {A1, . . . , Ak} satisfies this condition: X ⊥⊥{B} | Pa(X). To adapt this notion in
the finite sample setting, we consider an approximate version of conditional independence
and define a parameter ∆X ⊥⊥Z\S|S that measures how much the conditional independence
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G

X Y

A1
. . . Ak

B

Figure 7.1: Consider the graphical causality framework and suppose we are given Z =
{A1, . . . , Ak, B} as a valid adjustment set for Px(y) in the above causal graph G. Both
the parental set Pa(X) = {A1, . . . , Ak} and the singleton set {B} satisfy the backdoor
adjustment criterion [Pea95] and are also valid adjustment sets.

condition is violated in P(V ); see Definition 2.40. When ∆X ⊥⊥Z\S|S ≤ ε, we say that S
is an ε-Markov blanket of X with respect to Z.

Definition 7.2 ((Approximate) Markov blanket). Consider an arbitrary subset A ⊆ V \
(X ∪ Y ). A subset S ⊆ A is called a Markov blanket of X with respect to A if
X ⊥⊥A \ S | S and an ε-Markov blanket if X ⊥⊥ε A \ S | S.

We show that |TA,x,y − TS,x,y| ≤ ε
αS

whenever S is an ε-Markov blanket of A. In
particular, if A = Z is a valid adjustment set, then this bound applies to the misspecifica-
tion bias mentioned above. Our next result bounds the sample complexity for discovering
an ε-Markov blanket.

Theorem 7.3 (Approximate Markov blanket discovery). Suppose we are given (1) ε > 0,
(2) δ > 0, (3) sample access to a distribution P(V ), and (4) an arbitrary subset A ⊆
V \ (X ∪ Y ). Suppose that there is a Markov blanket of X with respect to A with k
variables. Then, there is an algorithm that uses Õ

(
|S|
ε2
·
√
|ΣX | · |ΣA| · log 1

δ

)
samples

and produces a subset S ⊆ A such that |S| ≤ k, Pr
(
∆X ⊥⊥A\S|S > ε

)
≥ 1 − δ, and

Pr
(
|TS,x,y − TA,x,y| ≤ ε

αS

)
≥ 1− δ.

Now, suppose that Theorem 7.3 outputs S ⊆ Z when given a valid adjustment set
Z. While |S| may be smaller than |Z|, it may still be much larger than the smallest valid
adjustment set for Px(y). For example, we see that |Z| = k + 1 > k = |Pa(X)| ≫
|{B}| = 1 in Fig. 7.1 where Z, Pa(X), and {B} are all valid adjustment sets. Our next
result aims to find an adjustment set S′ ⊆ Z of minimal size given a valid adjustment
set Z and an ε-Markov blanket S ⊆ Z of it. To this end, we introduce the more general
concept of a screening set of an arbitrary subset A ⊆ V \ (X ∪ Y ).

Definition 7.4 ((Approximate) Screening set). Let A ⊆ V \ (X ∪ Y ) and S ⊆ A. A
subset B ⊆ A is called a screening set for (S,A,X,Y ) if Y ⊥⊥S \ B | X ∪ B and
X ⊥⊥B \ S | S. Meanwhile, the subset B is called an ε-screening set for (S,A,X,Y )

if Y ⊥⊥ε S \B |X ∪B and X ⊥⊥ε B \ S | S.
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As a technical side note (see the exposition after Lemma 7.9), given an adjustment set
S, the screening set condition for (S,A,X,Y ) is sound for B to be a valid adjustment
set, but it is incomplete in general, in that sense that there may exist valid adjustment
sets that do not satisfy the screening set condition. In the worst case, our algorithm in
Theorem 7.5 will output S′ = S.

Theorem 7.5 (Beyond approximate Markov blankets). Suppose we are given (1) ε >
0, (2) δ > 0, (3) sample access to P(V ), (4) an arbitrary subset A ⊆ V \ (X ∪
Y ), and (5) an ε-Markov blanket S ⊆ A. Suppose there is a screening set B for
(S,A,X,Y ) such that |B| = k′ and |ΣB| ≤ |ΣS|. There is an algorithm that uses
Õ
(

|S′|
ε2
·
√
|ΣX | · |ΣY | · |ΣA| · log 1

δ

)
samples and produces a subset S′ ⊆ A such that

|S′| ≤ k′, |ΣS′| ≤ |ΣS| and Pr
(
|TS′,x,y − TA,x,y| ≤ 2ε

αS

)
≥ 1− δ.

As we shall see, unlike many existing causal discovery methods, e.g. the PC algorithm
[SGS00], which perform a sequence of dependent conditional independence checks, our
algorithms for Theorem 7.3 and Theorem 7.5 use a non-dependent collection of condi-
tional independence tests, allowing us to avoid error propagation and control the sample
complexity of our procedures.

Finally, one can combine the PAC bound results above to yield an overall PAC bound
guarantee for solving the causal effect estimation problem as follows. Since Lemma 7.7
tells us that TS,x,y and TZ,x,y are close whenever S is an ε-Markov blanket of X with
respect to Z, we can employ the algorithm in Theorem 7.3 to find a subset S ⊆ Z such
that TS,x,y ≈ TZ,x,y. Using the ε-Markov blanket S, we can further use the algorithm in
Theorem 7.5 to find a subset S′ ⊆ Z such that TS′,x,y ≈ TZ,x,y. Depending on whether
|ΣS| or |ΣS′ | is smaller, we can employ Theorem 7.1 to obtain an estimate T̂S,x,y or
T̂S′,x,y, and use that as an estimate for TZ,x,y = Px(y).

In practical situations where one is given a fixed number of samples, we can re-express
the results of Theorem 7.1, Theorem 7.3 and Theorem 7.5 in terms of an error upper bound.
Then, one can derive a condition under which a combined approach based on above results
estimates P̂x(y) via T̂S′,x,y, for some S′ ⊆ Z, and provably achieves a smaller asymptotic
error than directly estimating P̂x(y) via T̂Z,x,y. The condition relies on the positivity of
αS for subsets S,S′ ⊆ Z which are unknown a priori. However, if one is willing to make
lower bound assumptions on these α values, possibly due to background knowledge, then
one can obtain a result in the same vein as Theorem 7.6.

Theorem 7.6 (PAC causal effect estimation with positivity). Suppose we are given (1)
ε > 0, (2) δ > 0, (3) n i.i.d. samples from P(V ), (4) an interventional query Px(y), (5)
a valid adjustment set Z ⊆ V \ (X ∪ Y ), and (6) guaranteed that αS ≥ α ∈ (0, 1) for
any S ⊆ Z. Then, there is an algorithm that outputs a subset S∗ ⊆ Z and an estimate
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P̂x(y) = T̂S∗,x,y such that Pr
(∣∣∣P̂x(y)− Px(y)

∣∣∣ ≤ ε
)
≥ 1− δ for some error term

ε ∈ Õ

(
1

n
· |ΣS∗ |

α
+

1√
n
·

(√
|Z| · (|ΣX | · |ΣY | · |ΣZ |)

1
4

α
+

1√
α
+
√
|ΣS∗|

))
.

Moreover, if there exists a Markov blanket S of X such that
|S| ·

√
|ΣX |
|ΣZ | < max

{
|ΣZ |
n
, αS

|ΣZ | , α
2
S

}
, then |S∗| ≤ k.

7.3 Technical overview

While our notation and language is closer to Pearl’s graphical causal modeling framework
[Pea09a], all of our results are compatible with both the PO and graphical frameworks as
long as Eq. (7.1) holds for the givenZ. This is because our analysis is purely probabilistic in
nature, with the causal interpretation always going back to assuming that Px(y) = TZ,x,y

as a starting point. As such, the technical results presented here may be of independent
interest for future work.

The sample complexity bound of Theorem 7.1 heavily relies on a common technique
in the property testing literature known as Poissonization; see Section 2.5.1. The high
level idea is that instead of drawing n i.i.d. samples, we will draw NPoi ∼ Poi(n) i.i.d
samples, where NPoi is a random Poisson variable, so that the random count for each
realized value will be independent. Meanwhile, in our error analyses in Theorem 7.3
and Theorem 7.5, we manipulate approximate conditional independence terms ∆A⊥⊥ε B|C

(from Definition 2.40) and adjustment terms TA,x,y (from Eq. (7.1)) for various subsets
A,B,C ⊆ V . We begin by formally defining αA with respect to any x ∈ ΣX and any
arbitrary subset A ⊆ V \ (X ∪ Y ):

αA = min
a∈ΣA

P(x | a) (7.3)

By standard probability manipulations, one can easily obtain the following alternative
representation of ∆A⊥⊥ε B|C for arbitrary disjoint subsets A,B,C ⊆ V .

∆A⊥⊥ε B|C =
∑
a,b,c

P(c) · |P(a, b | c)− P(a | c) · P(b | c)|

=
∑
a,b,c

P(a, c) · |P(b | a, c)− P(b | c)| ≤ ε (7.4)

Meanwhile, for any arbitrary disjoint subsets A,B ⊆ V \ (X ∪ Y ), TA,x,y can be
re-expressed in multiple ways (depending on the desired analytical use case) using law of
total probability as
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TA,x,y =
∑
a

P(y | a,x) · P(a) =
∑
a,b

P(y | a, b,x) · P(b | a,x) · P(a)

=
∑
a,b

P(y | a,x) · P(a) · P(b | a) (7.5)

The correctness of Theorem 7.3 follows from the following result that TS,x,y and TA,x,y

are close whenever S is an ε-Markov blanket of S with respect to A, and that there is a
sample efficient way to obtain such an ε-Markov blanket.

Lemma 7.7 (Misspecification error). IfS ⊆ A ⊆ V \(X∪Y ) such thatX ⊥⊥ε A\S | S,
then |TS,x,y − TA,x,y| ≤ ε

αS
.

We additionally complement Lemma 7.7 with a hardness result of Lemma 7.8.

Lemma 7.8 (Misspecification error lower bound). Let 0 ≤
√
ε ≤ α ≤ 1/2. There exists

P(V ) such that (i) Z is a valid adjustment set, (ii) S ⊂ Z satisfies X ⊥⊥ε Z \S | S, (iii)
αS ≥ α, and (iv) |TS,x,y − TZ,x,y| ≥ ε

16α
.

Similar in spirit to Theorem 7.3, the correctness of Theorem 7.5 relies on the relating
TS,x,y andTA,x,y via some conditional independence relations. Given an ε-Markov blanket
S ⊆ A, we will search for a minimal sized S′ ⊆ A satisfying Y ⊥⊥S \ S′ | X ∪ S′ and
X ⊥⊥S′ \ S | S. This is a sound approach because of Lemma 7.9.

Lemma 7.9 (Adjustment soundness). Let A ⊆ V \ (X ∪ Y ) be an arbitrary subset.
If S ⊆ A and S′ ⊆ A such that Y ⊥⊥S \ S′ | X ∪ S′ and X ⊥⊥S′ \ S | S, then
TS′,x,y = TS,x,y.

While this approach is always sound, it may not discover the smallest possible subset
satisfying TS′,x,y = TS,x,y for any choice of S ⊆ A. However, there exists special
scenarios in which this approach is also complete; see Appendix B.2.3. In the context
of valid backdoor adjustments, the intuition behind the additional Y ⊥⊥S \ S′ | X ∪ S′

condition can be appreciated by setting A = {A1, . . . , Ak, B}, S = {A1, . . . , Ak}, and
S′ = {B} in Fig. 7.1. In this setup, we see that S is a valid backdoor adjustment set
because it blocks all non-causal backdoor paths fromX to Y , Y ⊥⊥{A1, . . . , Ak} | {X,B},
and X ⊥⊥B | {A1, . . . , Ak}. Observe that conditioning on X blocks any paths from S to
Y that has a causal path fromX to Y as a subpath. So, Y ⊥⊥S \S′ |X ∪S′ would imply
that S′ also blocks non-causal X to Y paths since any such paths passing through S \ S′

has to pass through S′ to reach Y .
Finally, there is nothing technically special about Theorem 7.6 besides simply combin-

ing the results Theorem 7.1, Theorem 7.3, and Theorem 7.5 in a straightforward fashion.
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7.4 Sample complexity for empirical estimation

In this section, we prove Theorem 7.1, our upper bound on the sample complexity of
estimating TA,x,y given anyA ⊆ V . For analysis purposes, we will use the Poissonization
sampling process (Section 2.5.1) so that we invoke Lemma 2.38 to obtain PAC style bounds.

Lemma 7.10. Suppose we have i.i.d. sample access to P(V ). Given integer n > 0 as a
sampling parameter, we take NPoi ∼ Poi(n) samples. For any U ⊆ V , let the random
variable Nu denote the number of times u ∈ ΣU was realized within the nPoi samples.
Then, the following statements hold:

1. Let A,B ⊆ V be disjoint sets of variables. For any a,a′ ∈ ΣA and b, b′ ∈ ΣB

with b ̸= b′, the ratios of random variables Na,b

Nb
and Na′,b′

Nb′
are independent.

2. Let A,B ⊆ V be disjoint sets of variables. For any a ∈ ΣA, b ∈ ΣB, and integer
k ≥ 1, we have

(
Na,b

Nb
− P(a | b) | Nb ≥ k

)
∼ subG

(
1
4k

)
.

Proof. We prove each item one at a time.

1. By Lemma 2.38, the random variables Nb and Nb′ are independent since b ̸=
b′. Then since Na,b and Na′,b′ are subcounts of Nb and Nb′ respectively, so the
corresponding ratios are also independent.

2. By Lemma 2.38, we have (Na,b | Nb = k) ∼ Bin(k,P(a | b)). Conditioned on
Nb = k, Lemma 2.14 implies that (Na,b − E(Na,b)) = (Na,b − k · P(a | b)) ∼
subG(k

4
). Thus,

(
Na,b

Nb
− P(a | b) | Nb = k

)
∼ subG( 1

4k
). The claim follows via

Lemma 2.35.

Theorem 7.1 (Estimation error). Suppose we are given (1) estimation tolerance ε > 0, (2)
failure tolerance δ > 0, (3) sample access to P(V ), and (4) a subset A ⊆ V \ (X ∪Y ).
Then, there is an algorithm that uses Õ

((
|ΣA|
εαA

+ 1
ε2αA

+ |ΣA|
ε2

)
· log 1

δ

)
samples and

produces an estimate T̂A,x,y such that Pr(|T̂A,x,y − TA,x,y| ≤ ε) ≥ 1− δ.

Proof. By definition, we have

TA,x,y − T̂A,x,y =
∑
a

(
P(a) · P(y | x,a)− Na

NPoi

· Ny,x,a

Nx,a

)
=
∑
a

P(a) ·
(
P(y | x,a)− Ny,x,a

Nx,a

)
+
∑
a

(
P(a)− Na

NPoi

)
· Ny,x,a

Nx,a

where Na, NPoi, Ny,x,a, and Nx,a are random Poisson variables from the Poissonization
process with NPoi ∼ Poi(n) for some parameter n; see Section 2.5.1. Since NPoi =∑

aNa =
∑

a,xNx,a =
∑

a,x,yNy,x,a, we see that 0 ≤ Na

NPoi
≤ 1 and 0 ≤ Ny,x,a

Nx,a
≤ 1 for

each of these fractional terms.
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Let us define a threshold τ > 0 and partition the values of A accordingly:

ΣA≥τ = {a ∈ ΣA : P(x,a) ≥ τ}

Since αA = mina∈ΣA
P(x | a), we see that P(a) ≤ τ

αA
for a ̸∈ ΣA≥τ . Now, let us

define three summations J<τ , J≥τ , and K so that TA,x,y − T̂A,x,y = J<τ + J≥τ +K:

J<τ =
∑

a̸∈ΣA≥τ

P(a) ·
(
P(y | x,a)− Ny,x,a

Nx,a

)
(7.6)

J≥τ =
∑

a∈ΣA≥τ

P(a) ·
(
P(y | x,a)− Ny,x,a

Nx,a

)
(7.7)

K =
∑
a

(
P(a)− Na

NPoi

)
· Ny,x,a

Nx,a

(7.8)

We will proceed to bound each of |J<τ |, |J≥τ |, and |K|.
The easiest is |J<τ |, which follows from the definition of ΣA≥τ :

|J<τ | =

∣∣∣∣∣∣
∑

a̸∈ΣA≥τ

P(a) ·
(
Ny,x,a

Nx,a

− P(y | x,a)
)∣∣∣∣∣∣ (Definition of |J<τ |)

≤
∑

a̸∈ΣA≥τ

P(a) ·
∣∣∣∣Ny,x,a

Nx,a

− P(y | x,a)
∣∣∣∣ (By triangle inequality and P(a) ≥ 0)

≤
∑

a̸∈ΣA≥τ

P(a) (Since
∣∣∣Ny,x,a

Nx,a
− P(y | x,a)

∣∣∣ ≤ 1)

≤ τ · |ΣA|
αA

(Since P(a) ≤ τ
αA

for a ̸∈ ΣA≥τ and |ΣA≥τ | ≤ |ΣA|)

To bound |J≥τ |, consider the concentration event EJ≥τ defined as follows:

EJ≥τ =
⋂

a∈ΣA≥τ

{
Nx,a >

n · P(x,a)
2

}
(7.9)

We first observe that the event EJ≥τ holds with good probability.

1− Pr(EJ≥τ ) ≤
∑

a∈ΣA≥τ

Pr

(
Nx,a ≤

n · P(x,a)
2

)
(Union bound)

≤
∑

a∈ΣA≥τ

exp

(
−n · P(x,a)

12

)
(Using that Nx,a ∼ Poi(n · P(x,a)) and applying Lemma 2.36)

≤ |ΣA| · exp
(
−nτ
12

)
(Since P(x,a) ≥ τ for z ∈ ΣA≥τ ⊆ ΣA≥τ )
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Under the event EJ≥τ , we have Nx,a > n·P(x,a)
2

for any a ∈ ΣA≥τ , so item 2 of
Lemma 7.10 implies that(

Ny,x,a

Nx,a

− P(y | x,a)
∣∣∣∣ Nx,a ≥

n · P(x,a)
2

)
∼ subG

(
1

4
· 2

n · P(x,a)

)
= subG

(
1

2n · P(x,a)

)
,

for any a ∈ ΣA≥τ . For any two disjoint a,a′ ∈ ΣA, we see that (x,a) and (x,a′)

are distinct values in the domain ΣX × ΣA, so item 1 of Lemma 7.10 tells us that
the terms Ny,x,a

Nx,a
and Ny,x,a′

Nx,a′
are independent. Lemma 2.34 further tells us that J≥τ =∑

a∈ΣA≥τ
P(a)·

(
Ny,x,a

Nx,a
− P(y | x,a)

)
∼ subG

(∑
a∈ΣA≥τ

P(a)2

2n·P(x,a)

)
since coefficients

{P(a)}a∈A are just (unknown) real numbers. Then, for any t > 0, Definition 2.33 states
that

Pr
(
|J≥τ | > t | EJ≥τ

)
≤ 2 exp

(
− t2

2
∑

a∈ΣA≥τ

P(a)2

2n·P(x,a)

)
≤ 2 exp

(
−nαAt

2
)

where the last inequality is because αA = mina∈ΣA
P(x | a) and ΣA≥τ ⊆ ΣA:

∑
a∈ΣA≥τ

P(a)2

2n · P(x,a)
=

∑
a∈ΣA≥τ

P(a)
2n · P(x | a)

≤
∑

a∈ΣA≥τ

P(a)
2n · αA

≤ 1

2n · αA

To bound |K|, we reduce to the analysis to the problem of producing an ε-close estimate
of P(A) by observing that 0 ≤ Ny,x,a

Nx,a
≤ 1 and Na

NPoi
is the empirical estimate of P(a) for

each a ∈ ΣA. That is,

|K| =

∣∣∣∣∣∑
a

(
P(a)− Na

NPoi

)
· Ny,x,a

Nx,a

∣∣∣∣∣ (By Eq. (7.8))

=
∑
a

∣∣∣∣P(a)− Na

NPoi

∣∣∣∣ · ∣∣∣∣Ny,x,a

Nx,a

∣∣∣∣ (By triangle inequality)

≤
∑
a

∣∣∣∣P(a)− Na

NPoi

∣∣∣∣ (Since 0 ≤ Ny,x,a

Nx,a
≤ 1)

≤
∑
a

∣∣∣P(a)− P̂(a)∣∣∣ (By defining empirical distribution P̂(a) = Na

NPoi
)

By Lemma 2.39, when NPoi ≥ c0 ·
(

|ΣA|+log 1
δ′

(ε′)2

)
for some tolerance parameters ε′, δ′ > 0

and absolute constant c0 > 0, we will have

Pr (|K| ≤ ε′) ≤ Pr

(∑
a∈ΣA

|P(a)− P̂(a)| ≤ ε′

)
≥ 1− δ′
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Before we proceed to wrap up the proof, let us collect the proven bounds below:

|J<τ | ≤
τ · |ΣA|
αA

deterministically (7.10)

Pr(¬EJ≥τ ) ≤ |ΣA| · exp
(
−nτ
12

)
(7.11)

Pr
(
|J≥τ | > t | EJ≥τ

)
≤ 2 exp

(
−nαAt

2
)

for any t > 0 (7.12)

Pr (|K| ≤ ε′) ≤ 1− δ′ for any ε′, δ′ > 0 (7.13)

when NPoi ∈ O
( |Σ|+ log 1

δ′

(ε′)2

)
(7.14)

Now, observe that |J<τ | ≤ ε
3
, |J≥τ | ≤ ε

3
and |K| ≤ ε

3
jointly implies |J<τ+J≥τ+K| ≤

|J<τ |+ |J≥τ |+ |K| ≤ ε by triangle inequality. So,

Pr
(∣∣∣TA,x,y − T̂A,x,y

∣∣∣ > ε
)

= Pr (|J<τ + J≥τ +K| > ε) (By definition)

≤ Pr
(
|J<τ | >

ε

3

)
+ Pr

(
|J≥τ | >

ε

3

)
+ Pr

(
|K| > ε

3

)
(Triangle inequality)

≤ 0 + Pr
(
|J≥τ | >

ε

3

)
+ Pr

(
|K| > ε

3

)
(If we set ε

3
= τ ·|ΣA|

αA
in the deterministic bound of Eq. (7.10))

≤ Pr
(
|J≥τ | >

ε

3

)
+
δ

3

(If we set ε′ = ε
3

and δ′ = δ
3

in Eq. (7.14) with NPoi ∈ O
(

|ΣA|+log 1
δ′

(ε′)2

)
)

≤ Pr(¬EJ≥τ ) + Pr
(
|J≥τ | >

ε

3
| EJ≥τ

)
+
δ

3
(Conditioning on event EJ≥τ )

≤ |ΣA| · exp
(
−nτ
12

)
+ 2 exp

(
−nαAt

2
)
+
δ

3
(If we set t = ε

3
then apply Eq. (7.11) and Eq. (7.12))

Recall that we set ε
3
= τ ·|ΣA|

αA
⇐⇒ τ = εαA

|3ΣA| and t = ε
3

above. So, if we set

n =
36|ΣA|
εαA

log

(
3|ΣA|
δ

)
+

9

ε2αA

log

(
6

δ

)
+O

( |ΣA|+ log 1
δ

ε2

)
∈ Õ

((
|ΣA|
εαA

+
1

ε2αA

+
|ΣA|
ε2

)
· log

(
1

δ

))

then Pr
(∣∣∣TA,x,y − T̂A,x,y

∣∣∣ > ε
)
≤ δ

3
+ δ

3
+ δ

3
= δ.

7.5 Approximate Markov blankets

As discussed in Section 7.2, the bound in Theorem 7.1 motivates the use of small adjust-
ment sets whenever possible. Since TS,x,y = TA,x,y if S is a Markov blanket of X with
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respect to A, a straightforward approach to finding a smaller adjustment set is to search
for an approximate Markov blanket of X . In this section, we study ε-Markov blankets of
X with respect to A.

In this section, we prove Lemma 7.7, which extends the equality TS,x,y = TA,x,y for
exact Markov blankets to a bound on the misspecification error |TS,x,y−TA,x,y| for approx-
imate Markov blankets. To accompany this result, we give a matching worst case lower
bound on the misspecification error in Lemma 7.8. Finally, we show Theorem 7.3, our PAC
style sample complexity upper bound for finding an ε-Markov blanket ofX with respect to
an arbitrary setA ⊆ V \(X∪Y ), using the ApproximateMarkovBlanketAdjustment
algorithm (Algorithm 15).

Lemma 7.7 (Misspecification error). IfS ⊆ A ⊆ V \(X∪Y ) such thatX ⊥⊥ε A\S | S,
then |TS,x,y − TA,x,y| ≤ ε

αS
.

Proof. Since S ⊆ A, we see that

|TS,x,y − TA,x,y| =

∣∣∣∣∣∑
a

P(y | a,x) · P(a \ s | s,x) · P(s)−
∑
a

P(y | a,x) · P(a)

∣∣∣∣∣
(By Eq. (7.5) and S ⊆ A)

=

∣∣∣∣∣∑
a

P(y | a,x) · P(s) · (P(a \ s | s,x)− P(a \ s | s))

∣∣∣∣∣
(Pull out common terms)

=

∣∣∣∣∣∑
a

P(y | a,x) · P(s,x)
P(x | s)

· (P(a \ s | s,x)− P(a \ s | s))

∣∣∣∣∣
≤
∑
a

P(s,x)
P(x | s)

· |P(a \ s | s,x)− P(a \ s | s)|

(Triangle inequality, non-negativity of probabilities, and since P(y | a,x) ≤ 1)

≤ 1

αS

·
∑
a

P(s,x) · |P(a \ s | s,x)− P(a \ s | s)| (By Eq. (7.3))

≤ ε

αS

(Since X ⊥⊥ε A \ S | S and using Eq. (7.4))

Lemma 7.8 (Misspecification error lower bound). Let 0 ≤
√
ε ≤ α ≤ 1/2. There exists

P(V ) such that (i) Z is a valid adjustment set, (ii) S ⊂ Z satisfies X ⊥⊥ε Z \S | S, (iii)
αS ≥ α, and (iv) |TS,x,y − TZ,x,y| ≥ ε

16α
.

Proof. Consider the following probability distribution P defined over 4 binary variables
{A,B,X, Y } in a topological ordering of A ≺ B ≺ X ≺ Y : see Fig. 7.2.

We show in Appendix B.2.4 that all the (conditional) probabilities of P are well-
defined, and that we have the following conditional probabilities for P:
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G

A B

X Y

A =

{
1 w.p. ε

4α
· α−ε/4
1−

√
ε/2

0 else

B =


1− A w.p. 1−

√
ε

0 w.p.
√
ε/2

1 w.p.
√
ε/2

X =


A w.p. 1− α
1− A w.p. α−

√
ε/2

B w.p.
√
ε/2

Y =

{
1 if X = 0, A = 1, B = 0

0 else

Figure 7.2: Probability distribution P defined over 4 binary variables {A,B,X, Y } in a
topological ordering of A ≺ B ≺ X ≺ Y with parameters ε and α, where 0 <

√
ε ≤

α ≤ 1/2.

a b P(b | a) P(X = 0 | a, b) P(X = 0 | a)
∑

x |P(x | a, b)− P(x | a)|

0 0
√
ε/2 1− α +

√
ε/2 1− α + ε/4

√
ε− ε/2

0 1 1−
√
ε/2 1− α 1− α + ε/4 ε/2

1 0 1−
√
ε/2 α α− ε/4 ε/2

1 1
√
ε/2 α−

√
ε/2 α− ε/4

√
ε− ε/2

Let us identify Z with {A,B} and S with {A}, so Z \ S = {B}. We now show the
four properties.

1. Z is a valid adjustment set

This is true since {A,B} satifies the backdoor adjustment criterion [Pea95].

2. S ⊂ Z satisfies X ⊥⊥ε Z \ S | S

Recall that Z = {A,B} and S = {A}. To see that X ⊥⊥εB | A, observe the
following:∑

x,a,b

P(a) · |P(x, b | a)− P(x | a) · P(b | a)|

=
∑
a,b

P(a) · P(b | a) ·
∑
x

|P(x | a, b)− P(x | a)|

= P(A = 0) · P(B = 0 | A = 0) · (
√
ε− ε/2)

+ P(A = 0) · P(B = 1 | A = 0) · (ε/2)

+ P(A = 1) · P(B = 0 | A = 1) · (ε/2)

+ P(A = 1) · P(B = 1 | A = 1) · (
√
ε− ε/2)

= P(A = 0) · (
√
ε/2) · (

√
ε− ε/2) + P(A = 0) · (1−

√
ε/2) · (ε/2)

+ P(A = 1) · (1−
√
ε/2) · (ε/2) + P(A = 1) · (

√
ε/2) · (

√
ε− ε/2)

= (
√
ε/2) · (

√
ε− ε/2) + (1−

√
ε/2) · ε/2

= ε
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3. αS ≥ α

Since S = {A} and ε ≤ α/2, we have minaP(x | a) = α− ε/4 ≥ α/2.

4. |TS,x,y − TZ,x,y| ≥ ε
16α

|TS,x,y − TZ,x,y|

=

∣∣∣∣∣∑
a

P(a) · P(y | x, a)−
∑
a,b

P(a, b) · P(y | x, a, b)

∣∣∣∣∣
(Since S = {A}, Z = {A,B}, and by definition of TS,x,y and TZ,x,y)

=

∣∣∣∣∣∑
a,b

P(a) · P(y | x, a, b) · (P(b | a)− P(b | x, a))

∣∣∣∣∣
(Since P(y | x, a) =

∑
bP(y | x, a, b) · P(b | x, a) and P(a, b) = P(a) · P(b | a))

=

∣∣∣∣∣∑
a,b

P(a) · P(y | x, a, b) · P(b | a)
P(x | a)

· (P(x | a)− P(x | a, b))

∣∣∣∣∣
(Since P(b | x, a) = P(b|a)·P(x|a,b)

P(x|a) )

= P(A = 1) · P(B = 0 | A = 1)

P(X = 0 | A = 1)

·
∣∣∣P(X = 0 | A = 1)− P(X = 0 | A = 1, B = 0)

∣∣∣
(Since Y is an indicator variable for whether (A,B,X) = (1, 0, 0))

=
ε

4α
· α− ε/4
1−
√
ε/2
· 1−

√
ε/2

α− ε/4
· ε
4

(From construction in Fig. 7.2)

=
ε

16α

Algorithm 15 ApproximateMarkovBlanketAdjustment (AMBA)
Input: ε, δ > 0, dataset D of n i.i.d. samples from P(V ), and subset A ⊆ V
Output: S ⊆ A

1: for k = 0, 1, 2, . . . , |A| do
2: Let wk =

(
|A| ·

(|A|
k

))−1

3: Let Ck =
{
S ⊆ A : |S| = k, where

ApproxCondInd(X ⊥⊥A \ S | S, ε, δwk,D) outputs YES
}

4: if |Ck| > 0 then
5: return any S ∈ Ck

6: return A

Theorem 7.3 (Approximate Markov blanket discovery). Suppose we are given (1) ε > 0,
(2) δ > 0, (3) sample access to a distribution P(V ), and (4) an arbitrary subset A ⊆
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V \ (X ∪ Y ). Suppose that there is a Markov blanket of X with respect to A with k
variables. Then, there is an algorithm that uses Õ

(
|S|
ε2
·
√
|ΣX | · |ΣA| · log 1

δ

)
samples

and produces a subset S ⊆ A such that |S| ≤ k, Pr
(
∆X ⊥⊥A\S|S > ε

)
≥ 1 − δ, and

Pr
(
|TS,x,y − TA,x,y| ≤ ε

αS

)
≥ 1− δ.

Proof. Suppose the Amba algorithm (Algorithm 15) terminates at some iteration |S| ∈
{0, 1, . . . , |A|}.

Correctness. Suppose all calls to ApproxCondInd succeed, then Lemma 2.41 tells us
that any produced S ⊆ A satisfies the property that ∆X ⊥⊥A\S|S ≤ ε. Lemma 7.7 then
further tells us that ∆X ⊥⊥A\S|S ≤ ε implies |TS,x,y − TA,x,y| ≤ ε

αS
.

Failure rate. Note that there are at most
(|A|

k

)
possible candidate sets in Ck for each

k ∈ {0, 1, . . . , |A|}. Since we invoked each call to ApproxCondInd with δwk in iteration
k, union bound tells us that the probability of any call failing across all calls is at most

|S|∑
k=0

δwk ·
(
|A|
k

)
=

|S|∑
k=0

δ · 1

|A| ·
(|A|

k

) · (|A|
k

)
=

|S|∑
k=0

δ

|A|
≤ δ · |S|
|A|

≤ δ

Sample complexity. Since we are using union bound to bound our overall failure prob-
ability, we can reuse samples in all our calls to ApproxCondInd. Thus, the total sam-
ple complexity is attributed to the final call when k = |S|. Such an invocation of
ApproxCondInd uses Õ

(
1
ε2
·
√
|ΣX | · |ΣA\S| · |ΣS| · log 1

δwk

)
samples according to

Lemma 2.41 and wk =
(
|A| ·

(|A|
k

))−1

, so the total number of samples used is at most

Õ
(

1

ε2
·
√
|ΣX | · |ΣA\S| · |ΣS| · log

1

δwk

)
⊆ Õ

(
|S|
ε2
·
√
|ΣX | · |ΣA| · log

1

δ

)
We omit log |A| within Õ(·) because |A| ≤ |ΣA|.

We can combine Amba (Algorithm 15) with the estimation procedure of Theorem 7.1
to yield an overall PAC bound guarantee for searching for a small adjustment set S when
given a valid adjustment set Z ⊆ V to begin with; see Section 7.7.

7.6 Beyond approximate Markov blankets

Motivated by Fig. 7.1, which shows that the Markov blanket of X with respect to Z may
still be large compared to the smallest adjustment set, we study in this section an approach
for finding smaller adjustment sets than the Markov blanket.
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We begin by proving Lemma 7.9, which establishes conditions on sets S′ ⊆ V \ (X ∪
Y ) and S ⊆ V \ (X ∪ Y ) such that TS′,x,y = TS,x,y; this result suggest an approach
for going beyond adjustment by Markov blankets. Then, we prove Theorem 7.5, our
upper bound on the sample complexity of finding a set S′ that approximately satisfies the
conditions of Lemma 7.9 with respect to an ε-Markov blanket S.

Lemma 7.9 (Adjustment soundness). Let A ⊆ V \ (X ∪ Y ) be an arbitrary subset.
If S ⊆ A and S′ ⊆ A such that Y ⊥⊥S \ S′ | X ∪ S′ and X ⊥⊥S′ \ S | S, then
TS′,x,y = TS,x,y.

Proof. Consider arbitrary subsets S ⊆ A ⊆ V and S′ ⊆ A ⊆ V . Observe that

TS,x,y =
∑
s,s′\s

P(y | x, s, s′ \ s) · P(s′ \ s | x, s) · P(s) (By Eq. (7.5))

=
∑
s,s′\s

P(y | x, s, s′ \ s) · P(s′ \ s | s) · P(s) (Since X ⊥⊥S′ \ S | S)

=
∑

s′,s\s′
P(y | x, s′, s \ s′) · P(s′ \ s | s) · P(s) (Regrouping)

=
∑

s′,s\s′
P(y | x, s′) · P(s′ \ s | s) · P(s) (Since Y ⊥⊥S \ S′ |X ∪ S′)

= TS′,x,y (By Eq. (7.5))

Algorithm 16 BeyondApproximateMarkovBlanketAdjustment (Bamba)
Input: ε, δ > 0, dataset D of n i.i.d. samples from P(V ), subset A ⊆ V , and
ε-Markov blanket S ⊆ A
Output: S′ ⊆ A such that |ΣS′ | ≤ |ΣS|

1: for k = 0, 1, 2, . . . , |A| do
2: Let wk =

(
|A| ·

(|A|
k

))−1

3: Let Ck =
{
S′ ⊆ A : |S′| = k, where

ApproxCondInd(Y ⊥⊥S \S′ |X ∪S′, ε, δwk

2
,D) outputs YES,

ApproxCondInd(X ⊥⊥S′ \ S | S, ε, δwk

2
,D) outputs YES,

and |ΣS′ | ≤ |ΣS|
}

4: if |Ck| > 0 then
5: return any S′ ∈ Ck

6: return S

Theorem 7.5 (Beyond approximate Markov blankets). Suppose we are given (1) ε >
0, (2) δ > 0, (3) sample access to P(V ), (4) an arbitrary subset A ⊆ V \ (X ∪
Y ), and (5) an ε-Markov blanket S ⊆ A. Suppose there is a screening set B for
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(S,A,X,Y ) such that |B| = k′ and |ΣB| ≤ |ΣS|. There is an algorithm that uses
Õ
(

|S′|
ε2
·
√
|ΣX | · |ΣY | · |ΣA| · log 1

δ

)
samples and produces a subset S′ ⊆ A such that

|S′| ≤ k′, |ΣS′| ≤ |ΣS| and Pr
(
|TS′,x,y − TA,x,y| ≤ 2ε

αS

)
≥ 1− δ.

Proof. Suppose the Bamba algorithm (Algorithm 16) terminates at some iteration |S′| ∈
{0, 1, . . . , |A|}.

Correctness. If Bamba returns the ε-Markov blanket S ⊆ A (e.g. in Line 8), then
|TS′,x,y − TA,x,y| = |TS,x,y − TA,x,y| ≤ ε

αS
≤ 2ε

αS
by Definition 7.2 and Lemma 7.7.

Suppose all calls to ApproxCondInd succeed across all iterations. Then, Lemma 2.41
tells us that ∆Y ⊥⊥S\S′|X∪S′ ≤ ε, ∆X ⊥⊥S′\S|S ≤ ε, and |ΣS′ | ≤ |ΣS| whenever Ck ̸= ∅.

For subsequent analytical purposes, let us define an intermediate term Zx,y as follows:

Zx,y =
∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · P(y | x, s′) (7.15)

By triangle inequality, we have

|TS,x,y − TS′,x,y| = |TS,x,y − Zx,y + Zx,y − TS′,x,y| ≤ |TS,x,y − Zx,y|+|Zx,y − TS′,x,y|

We will bound each of these terms separately.
1. Bounding |TS,x,y − Zx,y|.

|TS,x,y − Zx,y| =
∣∣∣∑
s∪s′
P(y | x, s ∪ s′) · P(s′ \ s | x, s) · P(s)

−
∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · P(y | x, s′)

∣∣∣
(By Eq. (7.5) and Eq. (7.15))

=
∣∣∣∑
s∪s′
P(y | x, s ∪ s′) · P(x, s ∪ s′)

P(x, s)
· P(s)

−
∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · P(y | x, s′)

∣∣∣
=

∣∣∣∣∣∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · (P(y | x, s ∪ s′)− P(y | x, s′))

∣∣∣∣∣
(Pull out common terms)

≤
∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · |P(y | x, s ∪ s′)− P(y | x, s′)|

(Triangle inequality and non-negative of probabilities)
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≤ 1

αS

·
∑
s∪s′
P(x, s ∪ s′) · |P(y | x, s ∪ s′)− P(y | x, s′)|

(By definition of αS in Eq. (7.3))

≤ 1

αS

·
∑

y,x,s∪s′
P(x, s ∪ s′) · |P(y | x, s ∪ s′)− P(y | x, s′)|

(Summing over more terms)

≤ ε

αS

(Since ∆Y ⊥⊥S\S′|X∪S′ ≤ ε and using Eq. (7.4))

2. Bounding |Zx,y − TS′,x,y|.

|TS′,x,y − Zx,y|

=
∣∣∣∑
s∪s′
P(y | x, s′) · P(s′) · P(s \ s′ | s′)

−
∑
s∪s′

1

P(x | s)
· P(x, s ∪ s′) · P(y | x, s′)

∣∣∣ (By Eq. (7.5) and Eq. (7.15))

=

∣∣∣∣∣∑
s∪s′

1

P(x | s)
· P(y | x, s′) · P(s ∪ s′) · (P(x | s)− P(x | s ∪ s′))

∣∣∣∣∣
(Pull out common terms)

≤
∑
s∪s′

1

P(x | s)
· P(s ∪ s′) · |P(x | s)− P(x | s ∪ s′)|

(Triangle inequality, non-negativity of probabilities, and since P(y | x, s′) ≤ 1)

≤ 1

αS

·
∑
s∪s′
P(s ∪ s′) · |P(x | s)− P(x | s ∪ s′)| (By definition of αS in Eq. (7.3))

≤ ε

αS

(Since ∆X ⊥⊥S′\S|S ≤ ε and using Eq. (7.4))

Putting together.
We see that

|TS,x,y − TS′,x,y| ≤ |TS,x,y − Zx,y|+ |Zx,y − TS′,x,y| ≤
ε

αS

+
ε

αS

=
2ε

αS

Failure rate. Note that there are at most
(|A|

k

)
possible candidate sets in Ck for each

k ∈ {0, 1, . . . , |A|}. Since we invoked two calls to ApproxCondInd in iteration k, each
with failure parameter δwk/2, union bound tells us that the probability of any call failing
across all calls is at most

|S′|∑
k=0

2 · δwk

2
·
(
|A|
k

)
=

|S′|∑
k=0

δ · 1

|A| ·
(|A|

k

) · (|A|
k

)
=

|S′|∑
k=0

δ

|A|
≤ δ · |S|
|A|

≤ δ
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Sample complexity. Since we are using union bound to bound our overall failure
probability, we can reuse samples in all our calls to ApproxCondInd. Thus, the total
sample complexity is attributed to the final call when k = |S′|. Such an invocation
of ApproxCondInd uses Õ

(
1
ε2
·
√
|ΣX | · |ΣY | · |ΣA\S′ | · |ΣS′ | · log 1

δwk

)
samples ac-

cording to Lemma 2.41 and wk =
(
|A| ·

(|A|
k

))−1

, so the total number of samples used is
at most

Õ
(

1

ε2
·
√
|ΣX | · |ΣY | · |ΣA\S′| · |ΣS′| · log 1

δwk

)
⊆ Õ

(
|S′|
ε2
·
√
|ΣX | · |ΣY | · |ΣA| · log

1

δ

)
We omit log |A| within Õ(·) because |A| ≤ |ΣA|.

7.7 Estimating causal effects using AMBA and BAMBA

By re-expressing Theorem 7.1, Theorem 7.3 and Theorem 7.5 in terms of an upper bound
on error for a fixed number of samples n, we get the following three corollaries.

Corollary 7.11 (Estimation corollary). Suppose we are given (1) failure tolerance δ >
0, (2) n i.i.d. samples from distribution P(V ), (3) a subset A ⊆ V with αA =

maxa∈ΣA
P(x | a). Then, there is an algorithm that produces an estimate T̂A,x,y such

that Pr(|T̂A,x,y − TA,x,y| ≤ ε) ≥ 1− δ for some error term

ε ∈ Õ

(
|ΣA|
nαA

+
1

√
nαA

+

√
|ΣA|
n

)

Proof. From Theorem 7.1, we know that Õ
((

|ΣA|
εαA

+ 1
ε2αA

+ |ΣA|
ε2

)
· log

(
1
δ

))
samples

suffice to produce an estimate T̂A,x,y such that Pr(|T̂A,x,y − TA,x,y| ≤ ε) ≥ 1 − δ.
Ignoring the logarithmic terms and constant factors, the result follows by re-expressing
n ≤ |ΣA|

εαA
+ 1

ε2αA
+ |ΣA|

ε2
in terms of ε.

Corollary 7.12 (Amba corollary). Suppose we are given (1) failure tolerance δ > 0, (2) n
i.i.d. samples from distributionP(V ), and (3) an arbitrary subsetA ⊆ V \(X∪Y ). Then,
there is an algorithm that produces a subsetS ⊆ A such thatPr

(
∆X ⊥⊥A\S|S > ε

)
≥ 1−δ

and Pr (|TS,x,y − TA,x,y| ≤ ε) ≥ 1− δ for some error term

ε ∈ Õ

(
1

αS

·
√
|S|
n
· (|ΣX | · |ΣA|)

1
4

)

Proof. From Theorem 7.3, we know that Õ
(

|S|
ε2
·
√
|ΣX | · |ΣA| · log 1

δ

)
samples suffice
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to produce a subset S ⊆ A such that

• Pr
(
∆X ⊥⊥A\S|S > ε

)
≥ 1− δ

• Pr
(
|TS,x,y − TA,x,y| ≤ ε

αS

)
≥ 1− δ

Ignoring the logarithmic terms and constant factors, the result follows by re-expressing
n = |S|

(ε′)2
·
√
|ΣX | · |ΣA| in terms of ε′ = εαS ≤ ε.

Corollary 7.13 (Bamba corollary). Suppose we are given (1) failure tolerance δ > 0,
(2) n i.i.d. samples from distribution P(V ), (3) an arbitrary subset A ⊆ V \ (X ∪ Y ),
and (4) an ε-Markov blanket S ⊆ A. Then, there is an algorithm that produces a subset
S′ ⊆ A such that |ΣS′| ≤ |ΣS| and Pr (|TS′,x,y − TA,x,y| ≤ ε) ≥ 1 − δ for some error
term

ε ∈ Õ

(
1

αS

·
√
|S′|
n
· (|ΣX | · |ΣY | · |ΣA|)

1
4

)

Proof. From Theorem 7.5, we know that Õ
(

|S′|
ε2
·
√
|ΣX | · |ΣY | · |ΣA| · log 1

δ

)
samples

suffice to produce a subset S′ ⊆ A such that

• |ΣS′| ≤ |ΣS|

• Pr
(
|TS′,x,y − TA,x,y| ≤ ε

αS

)
≥ 1− δ

Ignoring the logarithmic terms and constant factors, the result follows by re-expressing
n = |S′|

(ε′)2
·
√
|ΣX | · |ΣY | · |ΣA| in terms of ε′ = εαS ≤ ε.

In light of Corollary 7.11, Corollary 7.12, and Corollary 7.13, there are a couple of ways
one could attempt to estimatePx(y)when given a valid adjustment setZ ⊆ V \(X∪Y ):

1. Directly estimate using Z. By Corollary 7.11, this yields an error of

|Px(y)− P̂x(y)| = |TZ,x,y − T̂Z,x,y| ∈ Õ

(
|ΣZ |
nαZ

+
1

√
nαZ

+

√
|ΣZ |
n

)

2. Use Amba onZ to produce a subsetS ⊆ Z and estimate usingS. By Corollary 7.11
and Corollary 7.12, this yields an error of

|Px(y)− P̂x(y)| = |TZ,x,y − T̂S,x,y| ≤ |TZ,x,y − TS,x,y|+ |TS,x,y − T̂S,x,y|

∈ Õ

(
1

αS

·
√
|S|
n
· (|ΣX | · |ΣZ |)

1
4 +
|ΣS|
nαS

+
1

√
nαS

+

√
|ΣS|
n

)

3. Use Amba on Z to produce a subset S ⊆ Z, then use Bamba to further produce
subset S′, and then estimate using S′. By Corollary 7.11, Corollary 7.12, and
Corollary 7.13, this yields an error of
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|Px(y)− P̂x(y)| = |TZ,x,y − T̂S,x,y| ≤ |TZ,x,y − TS′,x,y|+ |TS′,x,y − T̂S′,x,y|

∈ Õ

(
1

αS

·
√
|S|
n
· (|ΣX | · |ΣZ |)

1
4 +

1

αS

·
√
|S′|
n
· (|ΣX | · |ΣY | · |ΣZ |)

1
4

+
|ΣS′ |
nαS′

+
1

√
nαS′

+

√
|ΣS′ |
n

)

In both cases 2 and 3, with appropriate constant factors, we see that

|Px(y)−P̂x(y)| = |TZ,x,y− T̂S,x,y| ≤ |TZ,x,y−TS,x,y|+ |TS,x,y− T̂S,x,y| ≤ ε+ε = 2ε

The following lemma tells us that αZ ≤ αS and αZ ≤ αS′ , i.e. 1
αS
≤ 1

αZ
and 1

αS′
≤ 1

αZ
,

so it is always beneficial to use a smaller subset with respect to the error incurred by
estimation in Corollary 7.11.

Lemma 7.14. For any value x for X and subsets A ⊆ B ⊆ V \X , we have

αA = min
a
P(x | a) ≥ min

b
P(x | b) = αB

Proof. Fix an arbitrary values of x for X and a for A, we see that

P(x | a) =
∑
b\a

P(x, b \ a | a) ≥ min
b
P(x | b) ·

∑
b\a

P(b \ a | a) = min
b
P(x | b)

Therefore, minaP(x | a) ≥ minbP(x | b).

Observe that 1
αS
≤ 1

αZ
from Lemma 7.14 and |ΣS| ≤ |ΣZ | since S ⊆ Z. So,

the second approach of estimating Px(y) using the subset S ⊆ Z produced by Amba
would yield an asymptotically smaller error than directly using Z whenever 1

αS
·
√

|S|
n
·

(|ΣX | · |ΣZ |)
1
4 ≤ |ΣZ |

nαS
+ 1√

nαS
+
√

|ΣZ |
n

. This happens when

|S| ·

√
|ΣX |
|ΣZ |

< max

{
|ΣZ |
n

,
αS

|ΣZ |
, α2

S

}
(7.16)

Observe that we know all terms in Eq. (7.16) except for αS . For small n, say when
n≪ |ΣZ |, the first term justifies estimating using the subset S produced by Amba instead
of directly estimating using Z. However, for large n, one would need to make the decision
based on αS . A similar kind of decision has to be made whether the third approach, of
running Amba to produce S ⊆ Z then Bamba to produce S′ ⊆ Z, would yield a smaller
estimation error. Note that |ΣS′| ≤ |ΣS| would imply |S′| ≤ |S| when all variables have
the same domain size.
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Theorem 7.6 (PAC causal effect estimation with positivity). Suppose we are given (1)
ε > 0, (2) δ > 0, (3) n i.i.d. samples from P(V ), (4) an interventional query Px(y), (5)
a valid adjustment set Z ⊆ V \ (X ∪ Y ), and (6) guaranteed that αS ≥ α ∈ (0, 1) for
any S ⊆ Z. Then, there is an algorithm that outputs a subset S∗ ⊆ Z and an estimate
P̂x(y) = T̂S∗,x,y such that Pr

(∣∣∣P̂x(y)− Px(y)
∣∣∣ ≤ ε

)
≥ 1− δ for some error term

ε ∈ Õ

(
1

n
· |ΣS∗ |

α
+

1√
n
·

(√
|Z| · (|ΣX | · |ΣY | · |ΣZ |)

1
4

α
+

1√
α
+
√
|ΣS∗|

))
.

Moreover, if there exists a Markov blanket S of X such that
|S| ·

√
|ΣX |
|ΣZ | < max

{
|ΣZ |
n
, αS

|ΣZ | , α
2
S

}
, then |S∗| ≤ k.

Proof. Consider the following algorithm:

1. Run Amba to obtain S ⊆ Z

2. Check if |S| ·
√

|ΣX |
|ΣZ | < max

{
|ΣZ |
n
, αS

|ΣZ | , α
2
S

}
according to Eq. (7.16)

3. If so, run Bamba to obtain S′ ⊆ Z and produce estimate P̂x(y) = T̂S′,x,y

4. Otherwise, produce estimate P̂x(y) = T̂Z,x,y

That is, depending on Eq. (7.16), we decide to perform estimation based on S∗ = S′ or
S∗ = Z. It remains to show that the bound holds for each case separately while noting
that αS, αS′ , αZ ≥ α.

Case 1: |S| ·
√

|ΣX |
|ΣZ | < max

{
|ΣZ |
n
, αS

|ΣZ | , α
2
S

}
So, we estimate using S∗ = S′ produced from Bamba. This incurs an error of

|Px(y)− P̂x(y)| = |TZ,x,y − T̂S,x,y| ≤ |TZ,x,y − TS′,x,y|+ |TS′,x,y − T̂S′,x,y|

∈ Õ

(
1

α
·
√
|S|
n
· (|ΣX | · |ΣZ |)

1
4 +

1

α
·
√
|S′|
n
· (|ΣX | · |ΣY | · |ΣZ |)

1
4

+
|ΣS′ |
nα

+
1√
nα

+

√
|ΣS′ |
n

)
(From Corollary 7.11, Corollary 7.12, and Corollary 7.13)

⊆ Õ

(
1

α
·
√
|Z|
n
· (|ΣX | · |ΣY | · |ΣZ |)

1
4 +
|ΣS′ |
nα

+
1√
nα

+

√
|ΣS′ |
n

)
(Since max{|S|, |S′|} ≤ |Z|)

⊆ Õ

(
1

n
· |ΣS∗|

α
+

1√
n
·

(√
|Z| · (|ΣX | · |ΣY | · |ΣZ |)

1
4

α
+

1√
α
+
√
|ΣS∗|

))
(Since S∗ = S′)

Case 2: |S| ·
√

|ΣX |
|ΣZ | ≥ max

{
|ΣZ |
n
, αS

|ΣZ | , α
2
S

}
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So, we estimate using S∗ = Z. This incurs an error of

|Px(y)− P̂x(y)| = |TZ,x,y − T̂Z,x,y|

∈ Õ

(
|ΣZ |
nα

+
1√
nα

+

√
|ΣZ |
n

)
(From Corollary 7.11)

⊆ Õ

(
|ΣS∗ |
nα

+
1√
nα

+

√
|ΣS∗|
n

)
(Since S∗ = S′)

⊆ Õ

(
1

n
· |ΣS∗|

α
+

1√
n
·

(√
|Z| · (|ΣX | · |ΣY | · |ΣZ |)

1
4

α
+

1√
α
+
√
|ΣS∗|

))
(Adding more terms)

Therefore, we see that the error upper bound holds for either case.



Chapter 8

Conclusion for Part II

The results presented in Chapter 6 and Chapter 7 are from the works of [CSB22, CS23c]
and [CSBS25] respectively.

In Chapter 6, we gave a complete understanding of the verification problem and an
improved search algorithm under some standard causal inference assumptions, and solved
the verification and search problems on a variety of settings. However, if our assumptions
are violated by the data, then wrong causal conclusions may be drawn and possibly lead to
unintended downstream consequences. A crucial limitation of this work is that we study an
idealized setting with hard interventions and infinite samples while soft interventions may
be more realistic in certain real-life scenarios (e.g. effects from parental vertices are not
completely removed but only altered) and sample complexities play a crucial role when one
has limited experimental budget (e.g. see [KJSB19] and [ABDK18] respectively). As such,
we view our work as initiating the study of a flexible off-target model and establishing the
theoretical foundations for the problem of causal discovery under off-target inteventions.
There are several interesting extensions and open problems that remain. For instance, it
would be of great practical interest to extend our results to more general causal models
that include latents or even cycles. Furthermore, we did not consider sample complexity
concerns nor study possible effects of non-compliance of interventions.

In Chapter 7, we focused on the problem of estimating the causal effect Px(y) in the
PAC setting, given access to a valid adjustment set Z, i.e. Z such that Px(y) = TZ,x,y,
defined in Eq. (7.1). Our sample complexity and algorithmic results of Amba and Bamba
hold for any arbitrary subset A ⊆ V and thus also apply to the setting when A = Z

is a valid adjustment set, allowing us to relate the estimated quantities TS,x,y and TS′,x,y

to TZ,x,y = Px(y). These results pave the way for future connections between causal
discovery and causal effect estimation, while each standing alone as results of independent
interest for fields such as local causal discovery. In [CSBS25], we also discuss how
our methods relate to and are applicable to settings with latents. Three immediate open
problems follow from the results of Chapter 7, which we expect to be of immediate future
interest. Firstly, in comparison with the expectation bound of [ZBHK24], our PAC bounds

132
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contains an additional Õ
(

|ΣA|
ε2

)
term. Can this term be eliminated, or can a matching lower

bound show that it is necessary? Secondly, our Amba algorithm for ε-Markov blanket
discovery performs an exhaustive search over subsets of increasing size. Fortunately, this
search is embarrassingly parallel, but is computationally prohibitive without access to
parallel computing. Is there a more computationally efficient algorithm for this problem
with (nearly) the same sample complexity? Thirdly, our Bamba algorithm introduces an
unclear tradeoff between using S′ and S for adjustment, due to the potential of having
αS′ < αS when the conditions relating S′ and S hold only approximately. Is there an
algorithm which optimally combines Bamba and Amba to achieve the better of their two
sample complexities?

8.1 Some additional related work

We begin by reviewing graphical characterizations of valid adjustment sets given a causal
graph (or an equivalence class of graphs) as input in Section 8.1.1. In some domains,
these causal graphs may be constructed from expert knowledge, but when V is large or the
system under consideration is not well-studied, practitioners may be unable to specify an
accurate causal graph. Thus, we also review conditions for causal effect estimation which
require minimal graphical knowledge. In Section 8.1.2, we review a different approach to
the unspecified graph setting and discuss methods for learning all or part of a causal graph
from data and interventions. Finally, we pivot to the potential outcomes (PO) perspective
in Section 8.1.3, focusing on existing results on the statistical aspects of causal effect
estimation.

8.1.1 Causal effect identification in the graphical setting

In the graphical framework, several classes of graphs have been used to formally define
causal assumptions about a system, with the nodes of these graphs corresponding to the
observed variables V . Here, we focus our discussion on the causally sufficient setting
where there are no unobserved variables in the causal DAGs.

Causal effect identification given a graph

For an intervention set X , the graph G and GX can be used to model the behavior of the
system, and to derive relationships between the observational distribution P(V ) and the
interventional distribution Px(V ). The details of these definitions are not necessary for
our discussion; instead, we describe some of the major results which have been shown
when taking these definitions as a starting point. Most importantly for our discussion,
these definitions can be used to derive identification formulas, which express interventional
queries Px(y) in terms of equations which only involve P(V ), and thus permit causal
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effects to be estimated from only observational data. These identification formulas can be
derived algorithmically, for example using the ID Algorithm [TP02], which is both sound
and complete [SP06, HV06]. PAC bounds have also been established for the ID algorithm
in [BGK+22].

Importantly, the ID Algorithm may be able to construct an identification formula even
if the adjustment formula (Eq. (7.1)) does not hold for any set A ⊆ V \ (X ∪ Y ).
However, in practice, the adjustment formula remains one of the most widely-used and
well-studied identification approaches, due in part to its simplicity and its familiarity in
the potential outcomes literature (see Appendix B.2.1). Particular attention has been given
to developing graphical criteria for determining whether a set A ⊆ V \ (X ∪ Y ) is a
valid adjustment set for Px(y), and algorithmically finding such a set if one exists. A
simple and intuitive condition for adjustment validity is the backdoor criterion [Pea95] in
DAGs, which is sound, but not complete. This criterion has been refined by long line of
work on sound and complete conditions [SVR10, vdZLT14, MC15, PTKM18, Per20] for
different classes (and equivalence classes) of causal graphs. Our results further contribute
to this line of work: as we discuss in Section 7.1, Lemma 7.9 directly implies a graphical
condition that is sound for determining whether a subset is an adjustment set given a valid
adjustment set; Appendix B.2.3 shows that under additional assumptions, this condition
is also complete.

Causal effect identification without a graph

While the criteria above are stated in terms of a known causal graph G, they can also be
used in our setting to derive conditions under which Eq. (7.1) holds, even when the graph
is an unknown. Indeed, using Eq. (7.1) requires quite minimal background knowledge
of G, as we now discuss. For simplicity, we limit our discussion to a single treatment
variable X . In the case of DAGs, the backdoor criterion implies that Z = ND(X) is
a valid adjustment set, where ND(X) denotes the set of non-descendants of X in G.
Thus, assuming causal sufficiency, our method can be employed given only knowledge
of ND(X), a quite common setting in applications such as healthcare, where a doctor’s
treatment assignment X can only depend on pre-treatment patient covariates. Under
causal sufficiency and Z = ND(X), the Markov blanket of X with respect to Z is the set
S = Pa(X), and our Amba algorithm can be interpreted as searching for the parents of
X .

In light of these connections, our results fit into a recent line of work establishing
identifiability of causal effects with minimal graphical background knowledge. [EHS13]
consider a setting that matches ours in the DAG setting with Z = ND(X), and establish
a condition similar to Lemma 7.9 to determine whether A ⊆ V \ (X ∪ Y ) is a valid
adjustment set. While our condition is sound, their condition is both sound and complete,
but relies on conditional dependence checks instead of only conditional independence
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checks. Furthermore, in contrast with our work, where statistical guarantees are a primary
focus, their work does not provide any guarantees outside of the oracle setting, though it
would be interesting to study their approach in the finite-sample setting.

Follow-up works in this space have extended this problem to the causally insufficient
setting by incorporating additional background knowledge on G; all of the works discussed
assume knowledge of Z = ND(X). For example, [CLL+22] assumes knowledge of some
variable A that is a “cause or spouse of treatment only (COSO)” variable, i.e. that A is
adjacent toX but not to Y in G, and establishes a sound condition for determining whether
S ⊆ Z is an adjustment set. Relatedly, [SSA22] assumes knowledge of some variable A
that is a parent of X and establishes a similar condition. Both conditions are sound, but
not complete; in contrast, we show in Appendix B.2.3 that the Bamba approach is both
sound and complete in the causally sufficient setting whenZ = ND(X). Finally, [SSK23]
goes beyond using the adjustment formula for identification, in particular studying when
background knowledge is sufficient to identify the causal effect using frontdoor adjustment.

8.1.2 Causal graph discovery

Chapter 7 is strongly motivated by our recognition of the pressing need for better con-
nections between the areas of causal effect estimation and causal structure learning. In
a typical causal discovery (a.k.a. causal structure learning) task, one takes data on the
observed variables V as input, and seeks to return a causal graph G (or an equivalence
class of graphs) that provides an accurate causal model of the system. Traditionally, this
goal is (implicitly or explicitly) motivated by the utility of such a model for generating
causal predictions, e.g. predicting Px(y) as discussed in Chapter 7.

Causal discovery and faithfulness

The field of causal discovery is quite well-developed, and has been the subject of sev-
eral surveys, e.g. [HDMM18, GZS19, VCB22, SU23]. Various approaches address
settings such as learning from observational data in the causally sufficient setting [SGS00,
Chi03, ZARX18, SWU21] and in the causally insufficient setting [SGS00, CMKR12],
as well as learning from interventional data, possibly involving actively chosen interven-
tions [EGS05, EGS06, Ebe07, HB12, HLV14, SKDV15, WSYU17, KDV17, LKDV18,
GKS+19, JKSB20, SMG+20, CSB22, CS23c, CGB23, CS23b, CS23a].

Table 8.1 and Table 8.2 summarize some existing upper (sufficient) and lower (worst
case necessary) bounds on the size (|I|, or E(|I|) for randomized algorithms) of inter-
vention sets that fully orient a given essential graph using ideal interventions. These
lower bounds are “worst case” in the sense that there exists a graph, typically a clique,
which requires the stated number of interventions. Observe that there are settings where
adaptivity and randomization strictly improves the number of required interventions.
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Size Adaptive Randomized Graph Upper bound Reference

1 ✗ ✗ General n− 1 [EGS06]
1 ✗ ✓ General 2

3
n− 1

3
for n > 3 [Ebe10]

1 ✓ ✗ Tree O(log n) [SKDV15]
1 ✓ ✗ Tree ⌈log n⌉ [GKS+19]
≤ k ✗ ✗ General (n

k
− 1) + n

2k
log2 k [EGS05]

≤ k ✓ ✗ Tree ⌈logk+1 n⌉ [GKS+19]
≤ k ✓ ✓ Clique O(n

k
log log k) [SKDV15]

∞ ✗ ✗ General log2 n [EGS05]
∞ ✗ ✗ General ⌈log2(ω(E(G))⌉ [HB14]
∞ ✗ ✓ General O(log log n) [HLV14]

Table 8.1: Some known upper bounds on the size (|I|, or E(|I|) for randomized algo-
rithms) of the intervention set sufficient to fully orient a given essential graph E(G). The
first three columns indicate the setting which the algorithm operates in terms of interven-
tion size, adaptivity, and randomness. The fourth column indicate whether the algorithm
is for special graph classes. Roughly speaking, the algorithm has more power as we move
down the rows since it can use larger intervention sets, be adaptive, utilize randomization,
and possibly only work on special graph classes.

Size Adaptive Randomized Lower bound Reference

1 ✗ ✓ 2
3
n− 1

3
for n > 3 [Ebe10]

1 ✓ ✗ n− 1 [EGS06]
≤ k ✗ ✗ (n

k
− 1) + n

2k
log2 k [EGS05]

≤ k ✓ ✓ n
2k

[SKDV15]
∞ ✗ ✗ log2 n [EGS05]
∞ ✗ ✓ Ω(log log n) [HLV14]
∞ ✓ ✓ ⌈log2(ω(E(G))⌉ [HB14]

Table 8.2: Some known lower bounds on the size (|I|, orE(|I|) for randomized algorithms)
of the intervention set necessary to fully orient a given essential graph E(G). The first
three columns indicate the setting which the algorithm operates in terms of intervention
size, adaptivity, and randomness. Roughly speaking, the setting becomes easier as we
move down the rows so the lower bounds are stronger as we move down the rows. On
cliques, [SKDV15] also showed that ≥ n/2 vertices must be intervened.
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A few comments are in order:

Intervention size Since interventions are expensive, natural restrictions on the size of
any intervention S ∈ I has been studied. Bounded size interventions enforce that
an upper bound of |S| ≤ k always while unbounded size interventions allow k to
be as large as n/2. Note that it does not make sense to intervene on a set S with
|S| > n/2 since intervening on S yields the same information while being a strictly
smaller interventional set. Atomic interventions are a special case where k = 1.

Adaptivity A passive/non-adaptive/simultaneous algorithm is one which, given an essen-
tial graph E(G∗), decides a set of interventions without looking at the outcomes of
the interventions. Meanwhile, active/adaptive algorithms can provide a sequence
of interventions one-at-a-time, possibly using any information gained from the out-
comes of earlier chosen interventions.

Determinism An algorithm is deterministic if it always produces the same output given
the same input. Meanwhile, randomized algorithms produces an output from a
distribution. Analyses of randomized algorithms typically involve probabilistic
arguments and their performance is measured in expectation with probabilistic
success. Typically, they will be shown to succeed with high probability in n: as the
size of the graph n increases, the failure probability decays quickly in the form of
n−c for some constant c > 1. The ability to use random bits (e.g. outcome of coin
flips) is very powerful and may allow one to circumvent known deterministic lower
bounds.

Special graph classes Two graph classes of particular interest are cliques and trees. If
CC(E(G∗)) is a clique, then all

(
n
2

)
edges are present and fully orienting the clique is

equivalent to finding the unique valid permutation on the vertices. As such, cliques
are often used to prove worst case lower bounds. Meanwhile, if CC(E(G∗)) is a
tree, then there must be a unique root (else there will be v-structures) and it suffices
to intervene on the root node to fully orient the tree. This will later be obvious
through the lenses of covered edges: all covered edges are incident to the root.

Separating systems [HEH13] drew connections between causal discovery via interven-
tions and the concept of separating systems from the combinatorics literature. This
was extended by [SKDV15] to the bounded size and adaptive settings. An (n, k)-
separating system is a Boolean matrix with n columns where each row has at most k
ones, indicating which vertex is to be intervened upon. Using their proposed separat-
ing system construction based on “label indexing”, [SKDV15] showed that roughly
n
k
logn

k
n interventions is sufficient to fully an essential graph G with bounded size

interventions. On cliques (i.e. worst case lower bound), [SKDV15] showed that
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the bound is tight while only roughly χ(E(G))
k

logχ(E(G))
k

χ(E(G)) interventions are
necessary for general graphs, even if the interventions are chosen adaptively or in a
randomized fashion. Note that there is a slight gap between χ(E(G))

k
logχ(E(G))

k

χ(E(G))
and n

k
logn

k
n on general graphs.

Universal bounds for minimum sized atomic interventions Beyond worst case lower
bounds, recent works have studied universal bounds for orienting essential graphs
E(G∗) using atomic interventions [SMG+20, PSS22]. These universal bounds de-
pend on graph parameters of E(G) beyond the number of nodes n. [SMG+20]
showed that search algorithms must use at least

∑
H∈CC(E(G∗))⌊

ω(H)
2
⌋ interventions,

where H is a chain component of E(G∗) and the summation across chain com-
ponents is a consequence of Lemma 2.53. They also introduced a graph concept
called directed clique trees and designed an adaptive, deterministic algorithm. On
intersection-incomparable chordal graphs, their algorithm outputs an intervention
set of size O(log2(maxH∈CC(E(G∗)) ω(H)) · ν1(G∗)). More recently, [PSS22] in-
troduced the notion of clique-block shared-parents orderings and showed that any
search algorithm for an essential graph E(G∗) with r maximal cliques requires at
least ⌈n−r

2
⌉ interventions and ν1(G) ≤ n− r for any G ∈ [G∗].

Non-atomic interventions The randomized algorithm of [HLV14] fully orients an essen-
tial graph using O(log(log(n))) unbounded interventions in expectation. Building
upon this, [SKDV15] shows that O(n

k
log(log(k))) bounded sized interventions

(each involving at most k nodes) suffice.

Additive vertex costs [KDV17, GSKB18, LKDV18] studied the non-adaptive search set-
ting where vertices may have different intervention costs and intervention costs
accumulate additively. [GSKB18] studied the problem of maximizing number of
oriented edges given a budget of atomic interventions while [KDV17, LKDV18]
studied the problem of finding a minimum cost (bounded size) intervention set
that fully orients the essential graph. [LKDV18] showed that computing the min-
imum cost intervention set is NP-hard and gave search algorithms with constant
approximation factors.

Random graphs [HLV14, KSSU19] showed that Erdős-Rényi graphs can be easily ori-
ented.

Many of the above described algorithms enjoy theoretical guarantees in the well-
specified setting, i.e. under the assumption that the system is correctly described by some
(unknown) causal graphG∗. In this setting, an algorithm is said to be consistent if it recovers
G∗, or an appropriate equivalence class, with probability one in the limit of infinite data.
Significant attention has been devoted to finding conditions under which various causal
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discovery algorithms are consistent. For example, the well-known faithfulness assumption
requires that if A and B and not d-separated by C in G∗, then A \⊥⊥ B | C in P(V ).
Although faithfulness is a sufficient condition for the consistency of many causal discovery
algorithms, it is often a stronger condition than necessary, and many weaker conditions
have been established, see [Lam23] for a recent review and comparison of such conditions.
The search for weaker consistency conditions is motivated by a practical issue: although the
consistency of an algorithm may depend only on there being no violations of faithfulness,
near violations of faithfulness (where the conditional independence A⊥⊥B | C nearly
holds, e.g. ∆A⊥⊥B|C ≤ ε for some small ε) can significantly affect its finite sample
properties. Therefore, finite sample guarantees for graph recovery [KB07, MKB09,
GDA20, WD21, GTA22] often depend on assumptions such as strong faithfulness, which
may be significantly more restrictive in practice [URBY13].

In Chapter 7, we avoid making any such assumptions. Indeed, since our goal is causal
effect estimation, rather than graph recovery, faithfulness conditions are unnecessary,
and existing sample complexity guarantees for causal discovery are pessimistic for our
purposes. Within the graphical framework, a main message of our work is that accurate
causal effect estimation does not require learning the correct causal graphG∗. For example,
if G∗ has “weak” edges, these may be hard to distinguish from missing edges, but those
edges are also exactly those that do not significantly impact causal effects; in pragmatic
terms, whether an edge is weak or missing is “a difference that doesn’t make a difference”.
We provide a concrete example of this phenomenon in Appendix B.2.5. Nonetheless, such
conditions may be useful in improving the sample complexity and/or the computational
complexity of our approach, as we discuss in Appendix B.2.6.

Cautious approaches and local causal discovery

To better align theory and practice, a few recent works have focused on new kinds of
theoretical guarantees. Two contemporaneous works [Mal24, CGM24] explicitly consider
the interplay between causal discovery and causal effect estimation. As in our work,
[Mal24] advocates the use of conditional dependence tests (as opposed to conditional
independence tests) to control model misspecification, an approach they call “cautious”
causal discovery, where [CGM24] advocate a bootstrap-style approach. However, their
guarantees are for the asymptotic setting, rather than the PAC setting considered in this
chapter, and their approaches aim to recover an entire causal graph, unlike our approach.

More closely related to our approach are methods for local causal discovery, which
aim to recover only part of a causal graph. Indeed, one of the canonical problems in
local discovery is Markov blanket recovery [KS96, FFT+03, TAS03, Ram06, PNBT07,
FD08, AST+10a, AST+10b, GJ17, LYW+20, DW22], potentially combined with partial
edge orientation [YZW+08, WZZG14, GJ15, GCL23] and often used in the context of
full causal discovery algorithms [MC04, TBA06, SWU21, GA21]. A number of these
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algorithms employ greedy search, adding variables to the Markov blanket one at a time
(e.g. [TAS03, FD08, GJ17]). However, greedy search is not guaranteed to return a correct
Markov blanket without additional assumptions, such as those in [GA21], in which the
authors also provide finite sample guarantees. In contrast, many non-greedy algorithms
do enjoy consistency guarantees (i.e. recovery of a correct Markov blanket in the infinite
data limit), but thus far lack finite sample guarantees.

Thus, our finite sample guarantees for the (non-greedy) Amba algorithm contribute
to this important line of work, and may be of independent interest beyond the context of
causal effect estimation. Furthermore, our Bamba highlights that using only local structure
may be suboptimal for some estimation problems. This fact suggests that we extend from
local causal discovery to the more general problem of targeted causal discovery, i.e.,
causal discovery tailored to specific estimation problems, analogous to techniques such as
targeted maximum likelihood estimation [vdLR06, SR17].

8.1.3 Causal effect estimation via covariate adjustment

Now, we relate our results to existing statistical results on causal effect estimation, focusing
on estimation using the adjustment formula. Existing results are largely written in terms of
potential outcomes but, as with our result, are usually applicable as long as Eq. (7.1) holds
and are thus independent of framework choice.12 In many domains such as healthcare and
econometrics, Eq. (7.1) can be justified by domain knowledge. For example, in healthcare,
where X and Y may represent medical treatments and patient outcomes, respectively, it
is sufficient for Z to contain all information that doctors may be using to assign treatment,
e.g. patient demographic information and past medical history. In such domains, Z are
often referred to as a set of covariates; we adopt this terminology here.

As datasets become larger and richer, causal effect estimation is increasingly being
applied to problems with high-dimensional covariates. These problems present novel
challenges, including violations of the overlap assumption [DDF+21] and the breakdown
of traditional asymptotic results. Dimensionality reduction techniques such as feature
selection are often crucial to addressing the challenges. However, in the context of
treatment effect estimation, naïve usage of feature selection methods such as the Lasso can
introduce substantial misspecification bias. Several works aim to address this issue; here,
we focus on methods based on feature selection, pointing readers to [YNB+22] as a starting
point for methods using other forms of dimensionality reduction, and to [WD19, YGL+20]
for a more complete review and comparison of methods based on feature selection.

Whereas our work focuses on discrete covariates, with no additional assumptions on
P(Z), P(X | Z) and P(Y | X,Z), the majority of prior works consider continuous

12When the random variables are continuous or mixed, Eq. (7.1) is written as Ts,x,y = ES [P(Y = y |
X = x,S)].
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covariates Z, and thus require additional assumptions, such as parametric or smoothness
assumptions. When X is a binary treatment, a common assumption is that P(X | Z)

follows a logit model, so that P(X | Z) is parameterized by a vector β ∈ R|Z|. Similarly,
when Y is a scalar outcome, a common assumption is that P(Y | X,Z) follows a linear
model, i.e. it is parameterized by a vector γ ∈ R|Z|. Sparsity assumptions may be
imposed on one or both of β and γ; for example, [SE17] and [WS20] assume sparsity
on β, [BWZ19] and [AIW18] assume sparsity on γ, and [GSK21] assumes sparsity on
both. Other common assumptions include semiparametric restrictions, e.g. partially linear
models [BCH14, CCD+18], and smoothness assumptions [FLM21].

In these works, sparse regression methods (e.g. Lasso and its variants) play a role
similar to our search for a smaller adjustment set S ⊆ Z, and the choice of regularization
parameter plays a role similar to our choice of ε in balancing between misspecification
bias and estimation error. In comparison to these methods, our focus on discrete variables
obviates the need for additional assumptions, and allows us to establish deeper connections
between causal effect estimation and fields such as distribution testing [Can20b] and
property estimation [CSS19]; connections which make the problem accessible to a wider
audience and provide access to a broader range of tools.

8.2 Other unpresented works in Part II

In [CS23a], we define r-adaptivity that interpolates between non-adaptivity (for r =

1) and full adaptivity (for r = n). We provide a r-adaptive algorithm that achieves
O(min{r, log n} · n1/min{r,logn}) approximation with respect to the verification number.
We further extended this to the k-bounded intervention setting and also showed that our
approximation factor is tight for any r.

In [CS23b], we show that the previously considered benchmark of the verification
number is no longer meaningful in the context of weighted causal graphs. More formally,
we prove that no algorithm (even with infinite computational power) can achieve an
asymptotically better approximation than O(n) with respect to the verification cost ν(G∗)
for all ground truth causal graphs on n nodes. Therefore, ν(G∗) is too strong and an
unreasonable benchmark to compare against in the weighted setting. This is similar in
spirit to the negative result of Lemma 6.22 to justify why a bound ofO(log n · ν1(G∗,T ))

for any subset of target edges T ⊆ E is unattainable in general. Both these negative
results are pointing out that comparing against an algorithm that knows G∗ can be overly
pessimistic in certain settings and suggests that one should “compare against the “best”
algorithm that does not know G∗”. Given the abovementioned negative result, we propose
the following new benchmark νmax(G∗) = maxG∈[G∗] ν(G) in [CS23b] which captures
the intuition that any algorithm has to grapple with the worst-case causal graph in the
given MEC, and then provide adaptive search algorithms that are competitive against the
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νmax(G∗).
In [CSU24], we propose and study a stochastic interventional model that aims to

model off-target interventions; the ideal intervention setting that we have studied so far in
Chapter 6 is a special case. After proposing and formalizing the off-target intervention
model, we establish a two-way reduction between the off-target verification problem and
the well-studied stochastic set covering problem. This equivalence allows us to leverage
existing results and techniques in the literature to design our algorithms. Then, we prove
that no algorithm can achieve non-trivial competitive approximation guarantees against
the off-target verification number, even when all actions have unit weight. This shows the
difficulty of the off-target search problem and motivates the need for new benchmarks. With
respect to the benchmark νmax(G∗) = maxG∈[G∗] ν(G) proposed in [CS23b], we propose
algorithms that are competitive against a quantity that captures the performance of any
algorithm against the worst-case causal graph within the same Markov equivalence class.
Our algorithm runs in polynomial time and is guaranteed to use at most a polylogarithmic
number of expected interventions more than the worst-case optimal solution.
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Utilizing imperfect advice
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Chapter 9

Online bipartite matching with
imperfect advice

“As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality.”

- Albert Einstein [Ein22]

“If you aren’t in the moment, you are either looking forward to uncertainty,
or back to pain and regret.”

- Jim Carrey, 60 Minutes [Leu04]

9.1 Introduction

Finding matchings in bipartite graphs is a mainstay of algorithms research. The area’s
mathematical richness is complemented by a vast array of applications — any two-sided
market (e.g., kidney exchange, ridesharing) yields a matching problem. In particular, the
online variant enjoys much attention due to its application in internet advertising. Consider
a website with a number of pages and ad slots (videos, images, etc.). Advertisers specify
ahead of time the pages and slots they like their ads to appear in, as well as the target user.
The website is paid based on the number of ads appropriately fulfilled. Crucially, ads slots
are available only when traffic occurs on the website and are not known in advance. Thus,
the website is faced with the online decision problem of matching advertisements to open
ad slots.

The classic online unweighted bipartite matching problem by [KVV90] features n
offline vertices U and n online vertices V . Each V ∈ V reveals its incident edges
sequentially upon arrival. With each arrival, one makes an irrevocable decision whether
(and how) to match V with a neighboring vertex in U . The final offline graph G =

(U ∪ V ,E) is assumed to have a largest possible matching of size n∗ ≤ n, and we seek
online algorithms producing matchings of size as close to n∗ as possible. More formally, a
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matching in the graph G is a set of edges M ⊆ E such that for every vertex W ∈ U ∪V ,
there is at most one edge in M incident to W .

The performance of a (randomized) algorithm A is measured by its competitive ratio:

min
G=(U∪V,E)

min
V ’s arrival sequence

E[number of matches by A]
n∗ , (9.1)

where the randomness is over any random decisions made by A. Traditionally, one
assumes the adversarial arrival model, i.e., an adversary controls both the final graph G
and the arrival sequence of online vertices.

Since any maximal matching has size at least n∗/2, a greedy algorithm trivially attains
a competitive ratio of 1/2. Indeed, [KVV90] show that no deterministic algorithm can
guarantee better than 1/2 − o(1). Meanwhile, the randomized Ranking algorithm of
[KVV90] attains an asymptotic competitive ratio of 1 − 1/e which is also known to be
optimal [KVV90, GM08, BM08, Vaz22].

In practice, advice (also called predictions or side information) is often available for
these online instances. For example, online advertisers often aggregate past traffic data
to estimate the future traffic and corresponding user demographic. While such advice
may be imperfect, it may nonetheless be useful in increasing revenue and improving upon
aforementioned worst-case guarantees. Designing algorithms that utilize such advice in
a principled manner falls under the research paradigm of learning-augmented algorithms.
In the context of online bipartite matching, a natural design goal for learning-augmented
algorithms is as follows.

Goal 9.1. Let β be the best-known competitive ratio attainable by any classical advice-free
online algorithm. Can we design a learning-augmented algorithm for the online bipartite
matching problem that is 1-consistent and β-robust?

Clearly, Goal 9.1 depends on the form of advice as well as a suitable measure of its
quality. Setting these technicalities aside for now, we remark that Goal 9.1 strikes the best
of all worlds: it requires that a perfect matching be obtained when the advice is perfect,
while not sacrificing performance with respect to advice-free algorithms when faced with
low-quality advice. In other words, there is potential to benefit, but no possible harm when
employing such an algorithm.

Remark 9.2. Throughout this chapter, we will use star (·)∗ and hat (̂·) to denote ground
truth and advice quantities respectively. In particular, we use n∗ ≤ n and n̂ ≤ n to denote
the maximum matching size in the final offline graph G∗ and advice graph Ĝ respectively.
Note that star (·)∗ quantities are not known and exist purely for the purpose of analysis.
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9.2 Our main results

9.2.1 Impossibility in adversarial arrival model

While there has been some learning-augmented results in the space of online bipartite
matching [ACI22, JM22, AGKK23, LYR23], none of them are able to achieve Goal 9.1.

With this in mind, our first main result states that any learning augmented algorithm
that is 1-consistent cannot be strictly more than 1/2-robust under adversarial arrivals. As
this robustness factor is worse than the competitive ratio of 1− 1/e guaranteed by known
advice-free algorithms, Goal 9.1 is unattainable under the adversarial arrival model.

Theorem 9.3. For even n, there exists input graphs G1 and G2 such that no advice can
distinguish between the two within n/2 online arrivals. Consequently, an algorithm cannot
be both 1-consistent and strictly more than 1/2-robust.

While Theorem 9.3 appears simple, we stress that hardness results for learning-
augmented algorithms are rare since the form of advice and its utilization is arbitary.
For instance, [ACI22] only showed that when advice is the true degrees of the offline
vertices, there exist inputs such that any learning-augmented algorithm can only achieve a
competitive ratio of at most 1− 1/e+ o(1). In fact, Theorem 9.3 can be strengthened: for
any α ∈ [0, 1/2], no algorithm can be simultaneously (1−α)-consistent and strictly more
than (1/2 + α)-robust. The proof is essentially identical and deferred to Appendix C.1.1.

9.2.2 Achievability in random order arrival model

Following the TestAndAct framework for designing learning-augmented algorithms,
we propose an algorithm TestAndMatch achieving Goal 9.1 under the weaker random
arrival model. In this arrival model, the offline graph is still worst case adversarial but the
online vertices arrive in random order; see Section 9.3.1.

Theorem 9.4 (Informal; see Theorem 9.5). Given an advice for the offline graph that im-
plies a perfect matching, under the random order arrival model, TestAndMatch produces
a matching with competitive ratio at least max{1− γ, β · (1− on(1))}, where γ ∈ (0, 1)

is a measure of the advice quality, and succeeds with probability 1− δ.

Noting that limn→∞ β · (1 − on(1)) = β, we see that Theorem 9.4 not only achieves
Goal 9.1 asymptotically but also provide a competitive ratio that interpolates smoothly
between 1 and β depending on the quality of the advice. In fact, TestAndMatch is a
meta-algorithm that uses any advice-free baseline algorithm as a black-box and so our
robustness guarantee improves as β improves.

The advice considered here is a histogram over types of online vertices. In the context
of online advertising, this corresponds to a forecast of the user demographic and which
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ads they can be matched to. More formally, a type of an online vertex V ∈ V refers to the
subset of offline vertices {U ∈ U : {U, V } ∈ E} that V is neighbors with [BKP20], and
is only revealed when V itself arrives. Note that the offline graph is fully defined whenever
given the types of the online vertices and that at most n types are realized through V even
though there are 2n possible types.

TestAndMatch assumes perfect advice while simultaneously testing for its accuracy
via the initial arrivals. If the advice is deemed useful, we mimic the matching suggested
by it; else, we revert to an advice-free method. The testing phase is kept short (sublinear
in n) by utilizing state-of-the-art ℓ1 estimators from distribution testing. We analyze our
algorithm’s performance as a function of the quality of advice, showing that its competitive
ratio gracefully degrades to β as quality of advice decays. To the best of our knowledge,
our work is the first that shows how one can leverage techniques from the property testing
literature to designing learning-augmented algorithms.

While our contributions are mostly theoretical, we discuss various practical extensions
of TestAndMatch in Section 9.6 and show preliminary experiments in Appendix C.1.5.

9.3 Technical overview

9.3.1 Some background

Before we give the technical overview of our results, we first give a brief introduction to
the relevant background on the fertile landscape of online bipartite matching to provide
some context for our results.

Arrival models

The degree of control an adversary has over V affects analysis and algorithms. The
adversarial arrival model is the most challenging, with both the final graph G and the order
in which online vertices arrive chosen by the adversary. Here, an algorithm’s competitive
ratio is given by Eq. (9.1). In random arrival models, G remains adversarial but the
arrival order is random. For Theorem 9.4, we assume the Random Order setting, where
an adversary chooses a G, but the arrival order of V is a uniformly random permutation.
In this setting, the competitive ratio is defined as

min
G=(U∪V ,E)

EV ’s arrival sequence
E[number of matches by A]

n∗ . (9.2)

Two even easier random arrival models exist: (i) known-i.i.d. model [FMMM09], where
the adversary chooses a distribution over types (which is known to us), and the arrivals of V
are chosen by sampling i.i.d. from this distribution, and (ii) unknown-i.i.d. model, which is
the same as known-i.i.d. but with the distributions are not revealed to us. The competitive
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ratios between these arrival models are known to exhibit a hierarchy of difficulty [Meh13]:

Adversarial ≤ Random Order ≤ Unknown-i.i.d. ≤ Known-i.i.d.

As our Random Order setting is the most challenging amongst these random arrival
models, our methods also apply to the unknown-i.i.d. and known-i.i.d. settings.

Advice-free online bipartite matching

Table 9.1 summarizes known results about attainable competitive ratios and impossibility
results in the adversarial and Random Order arrival models. In particular, observe that
there is a gap between the upper and lower bounds in the Random Order arrival model
which remains unresolved.

Adversarial Random Order

Deterministic algorithm 1/2 1− 1/e
Deterministic hardness 1/2 3/4
Randomized algorithm 1− 1/e 0.696
Randomized hardness 1− 1/e+ o(1) 0.823

Table 9.1: Known competitive ratios for the classic unweighted online bipartite matching
problem for deterministic and randomized algorithms under the adversarial and Random
Order arrival models. Note that 1− 1/e ≈ 0.63.

On the positive side of things, the deterministic Greedy algorithm which matches
newly arrived vertex with any unmatched offline neighbor attains a competitive ratio of
at least 1/2 in the adversarial arrival model and at least 1 − 1/e in the random arrival
model [GM08]. Meanwhile, the randomized Ranking algorithm of [KVV90] achieves a
competitive ratio of 1− 1/e in the adversarial arrival model. In the Random Order arrival
model, Ranking achieves a strictly larger competitive ratio, shown to be at least 0.653 in
[KMT11] and 0.696 in [MY11]. However, [KMT11] showed that Ranking cannot beat
0.727 in general; so, new ideas will be required if one believes that the tight competitive
ratio bound is 0.823 [MGS12].

On the negative side, the following example highlights the key difficulty faced by
online algorithms. Consider the gadget for n = 2 in Fig. 9.1, where the first online vertex
V1 neighbors with both U1 and U2 and the second online vertex V2 neighbors with only
one of U1 or U2. Even when promised that the true graph is either G1 or G2, any online
algorithm needs to correctly guess whether to match V1 with U1 or U2 to achieve perfect
matching when V2 arrives.

By repeating the gadget of Fig. 9.1 multiple times sequentially, any deterministic
algorithm can only attain competitive ratios of 1/2 and 3/4 in the adversarial and random
arrival models respectively. For randomized algorithms, [KVV90] showed that Ranking
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Figure 9.1: Gadget for n = 2. Red edges observed when V2 arrives.

is essentially optimal for the adversarial arrival model since no algorithm can achieve a
competitive ratio better than 1− 1/e+ o(1). In the Random Order arrival model, [GM08,
Appendix E] showed that a ratio better than 5/6 ≈ 0.83 cannot be attained by brute
force analysis of a 3 × 3 gadget bipartite graph. Subsequently, [MGS12] showed that no
algorithm (deterministic or randomized) can achieve a competitive ratio better than 0.823.

Technically speaking, the hardness result of [MGS12] is for the known i.i.d. model
introduced by [FMMM09], but this extends to the Random Order arrival model since the
former is an easier setting; e.g. see [Meh13, Theorem 2.1] for an explanation. Under the
easier known i.i.d. model, the current state of the art algorithms achieve a competitive
ratio of 0.7299 using linear programming approches [JL14, BSSX20].

9.3.2 Impossibility under adversarial arrivals

Our construction is based on generalizing the gadget in Fig. 9.1 such that the two graphs
are indistinguishable from the first n/2 arrivals. Then since any advice is no stronger than
the 1-bit advice of whether the online graph is G1 or G2, any 1-consistent algorithm has to
“blindly trust” the advice and matching according to predicted graph Gi for i ∈ {1, 2} in
the first n/2 arrivals. However, if the graph was G(i+1) mod 2 instead, then this algorithm
will not be able to match the remaining n/2 arrivals and thus suffer a robustness of 1/2.

9.3.3 TestAndMatch: Achievability under random arrivals

Using realized type counts as advice

Given the final offline graph G∗ = (U ∪V ,E) with maximum matching size n∗ ≤ n, we
define the vector c∗ ∈ N2n indexed by the possible types 2U such that c∗(T ) is the number
of times type T ∈ 2U occurs in G∗. Even though there are 2n possible types, the number
of realized types is at most n. Let T ∗ ⊆ 2U be the set of types with non-zero counts
in c∗. Since |U | = |V | = n, c∗ is sparse and contains r∗ = |T ∗| ≤ n ≪ 2n non-zero
elements; see Fig. 9.2. Note that c∗ fully determines G∗ for our purposes, as vertices may
be permuted but n∗ remains identical.

As mentioned earlier, we consider advice to be an estimate of the realized type counts
ĉ ∈ N2n with non-zero entries in T̂ ⊆ 2U . As before, we assume that ĉ sums to n and
contains r̂ = |T̂ | ≤ n≪ 2n non-zero entries. Just like c∗, the vector ĉ fully defines some
“advice graph” Ĝ = (U ∪V , Ê) that we can find a maximum matching for in polynomial
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U1

U2

U3

U4

V1

V2

V3

V4

Type counts c∗ in G∗

Type Count

{U1, U3} 1
T ∗ {U2, U3} 1

{U1, U2, U4} 2

2U\T ∗ ... 0

Figure 9.2: For n = 4, there may be 24 = 16 possible types but at most n = 4 of them can
ever be non-zero. Here, c∗({U1, U3}) = 1, c∗({U2, U3}) = 1 and c∗({U1, U2, U4}) = 2.
We see that type {U1, U2, U4} appears twice in c∗ and |T ∗| = 3.

time. We discuss the practicality of obtaining such advice in Appendix C.1.2.
The intuition behind TestAndMatch is as follows. If ĉ = c∗, one trivially obtains

a 1-consistency by solving for a maximum matching M̂ on the advice graph Ĝ and then
mimicking matches based on M̂ as vertices arrive. While ĉ ̸= c∗ in general, we may
consider distributions P∗ = c∗/n and Q = ĉ/n and test if P∗ is close to Q in ℓ1 distance
via Theorem 2.37. This is can done sample efficiently using just the first o(n) online
vertices; see Section 9.5.2. If ℓ1(P∗,Q) is less than some threshold τ , we conclude ĉ ≈ c∗

and continue mimicking M̂ , enjoying a competitive ratio close to 1. If not, we revert
to Baseline. Crucially, each wrong match made during the testing phase hurts our final
matching size by at most a constant, yielding a competitive ratio of β · (1− o(1)).

9.4 Impossibility for adversarial arrival model

Here, we give the proof of our impossibility result Theorem 9.3.

Theorem 9.3. For even n, there exists input graphs G1 and G2 such that no advice can
distinguish between the two within n/2 online arrivals. Consequently, an algorithm cannot
be both 1-consistent and strictly more than 1/2-robust.

Proof. Consider the restricted case where there are only two possible final offline graphs
G(1) = (U ∪ V (1),E(1)) and G(2) = (U ∪ V (2),E(2)) where

E(1) =
{
{U (1)

j , V
(1)
j }, {U

(1)
j+n/2, V

(1)
j } : 1 ≤ j ≤ n/2

}
∪
{
{U (1)

j−n/2, V
(1)
j } : n/2 + 1 ≤ j ≤ n

}

E(2) =
{
{U (2)

j , V
(2)
j }, {U

(2)
j+n/2, V

(2)
j } : 1 ≤ j ≤ n/2

}
∪
{
{U (2)

j , V
(2)
j } : n/2 + 1 ≤ j ≤ n

}
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We will even restrict the first n/2 to be exactly V (i)
1 , . . . , V

(i)
n/2, where i ∈ {1, 2} is the

chosen input graph by the adversary. See Fig. 9.3 for an illustration.
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Figure 9.3: Illustration of G1 and G2 for Theorem 9.3

Suppose Gi was the chosen graph, for i ∈ {1, 2}. In this restricted problem input
setting, the strongest possible advice is knowing the bit i since all other viable advice can
be derived from this bit. Thus, for the sake of a hardness result, it suffices to only consider
the advice of î ∈ {1, 2}.

Within the first n/2 arrivals, any algorithm cannot distinguish between G1 and G2, and
will behave in the same manner. Suppose there is a 1-consistent algorithm A given bit î.
In the first n/2 steps, since A is 1-consistent, A needs to match Vj to Uj+n/2 if î = 1 and
Vj to Uj for î = 2. However, if i ̸= î, then A will not be able to match any remaining
arrivals and hence be at most 1/2-robust.

9.5 TestAndMatch for random arrival model

In this section, we present our learning-augmented algorithm TestAndMatch which is
1-consistent, (β − o(1))-robust, and achieves a smooth interpolation on an appropriate
notion of advice quality, where β is any achieveable competitive ratio by some advice-free
baseline algorithm. As discussed in Section 9.3.1, the best known competitive ratio of
β = 0.696 is achieveable using Ranking [KVV90] but it is unknown if it can be improved.
As TestAndMatch is a meta-algorithm that uses any advice-free baseline algorithm as a
black-box, one may choose to treat Baseline as Ranking for concreteness.

TestAndMatch is described in Algorithm 17, which takes as input a number of
additional parameters (δ, ϵ, etc) and subroutines that we will explain in a bit. For now, we
formalize Theorem 9.4 in the context of Algorithm 17.
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Algorithm 17 TestAndMatch

Input: Advice ĉ with r̂ = |T̂ |, Baseline advice-free algorithm with competitive ratio
β < 1, error threshold ε > 0, failure rate δ = δ′ + δpoi for δpoi ∈ O

(
1

poly(r̂)

)
1: Compute advice matching M̂ from ĉ
2: if n̂

n
≤ β then

3: Run Baseline on all arrivals
4: Define sr̂,ε,δ ∈ O

(
(r̂+1)·log(1/δ′)
ε2·log(r̂+1)

)
5: Define testing threshold τ = 2

(
n̂
n
− β

)
− ε

6: Run Mimic on sr̂,ε,δ ·
√

log(r̂ + 1) arrivals while tracking online arrivals in a set A
7: if MinimaxTest(sr̂,ε,δ, ĉn ,A, τ, δ

′) outputs OK then
8: Run Mimic on the remaining arrivals
9: else

10: Run Baseline on the remaining arrivals

Theorem 9.5. For any advice ĉ with |T̂ | = r̂, ε > 0 and δ > 1
poly(r̂)

, let ℓ̂1 be the estimate
of ℓ1(P∗,Q = ĉ

n
) obtained from k = sr̂,ε,δ ·

√
log(r̂ + 1) i.i.d. samples ofP∗. With success

probability ≥ 1 − δ, TestAndMatch produces a matching with competitive ratio at least
n̂
n
− ℓ1(P∗,Q)

2
≥ β when ℓ̂1 ≤ 2

(
n̂
n
− β

)
− ε, and at least β · (1− k

n
) otherwise.

Let m be the size of the produced matching. For sufficiently large n and constants
(ε, δ), we have sr̂,ε,δ ·

√
log(r̂ + 1) ∈ o(1), so Theorem 9.5 implies a lower bound on the

achieved competitive ratio of m
n∗ (see Fig. 9.4) where

m

n∗ ≥
m

n
≥

 n̂
n
− ℓ1(P∗,Q)

2
when ℓ̂1 ≤ 2

(
n̂
n
− β

)
− ε

β · (1− o(1)) otherwise

Under random order arrivals, the competitive ratio is measured in expectation over
all possible arrival sequences; see Eq. (9.2). One can easily convert the guarantees
of Theorem 9.5 to one in expectation by assuming the extreme worst case scenario of
obtaining 0 matches whenever the tester fails. So, the expected competitive ratio is simply
(1− δ) factor of the bounds given in Theorem 9.5. Setting δ = 0.001, we get a robustness
guarantee of β · (1− o(1)) · 0.999 in expectation. Note that our guarantees hold regardless
of what value of ε is used. In the event that a very small ε is chosen and the test always
fails, we are still guaranteed the robustness guarantees of ≈ β. One possible default for ε
could be to assume that the optimal offline matching has size n and just set it to half the
threshold value, i.e. set ε = n̂

n
− β.

Remark 9.6 (Lines 4 and 6 in TestAndMatch). As we subsequently require Poi(sr̂,ε,δ)

i.i.d. samples from P∗ for testing, we collect sr̂,ε,δ ·
√
log(r̂ + 1) online arrivals into the

set A. Note that E[Poi(sr̂,ε,δ)] = sr̂,ε,δ and Poi(sr̂,ε,δ) ≤ sr̂,ε,δ ·
√

log(r̂ + 1) with high
probability. This additional slack of

√
log(r̂ + 1) allows for Theorem 9.5 to hold with

high probability (as opposed to constant) while ensuring that the competitive ratio remains
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n̂
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β
β · (1− on(1))
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(
n̂
n
− β

)
− 2ε

0
L1(P∗,Q = ĉ

n)

Lower bound on achieved competitive
ratio, with probability ≥ 1− δ

Figure 9.4: A (conservative) competitive ratio plot for n̂
n
> β. If MinimaxTest (Algo-

rithm 20) succeeds, we have ℓ1(P∗,Q) < 2
(
n̂
n
− β

)
− 2ε whenever ℓ̂1 < 2

(
n̂
n
− β

)
− ε.

Observe that there is a smooth interpolation between the achieveable competitive ratio as
ℓ1(P∗,Q) degrades whilst paying only o(1) for robustness.

in the β · (1− o(1)) regime. Finally, when r ∈ Ω(n), we remark that sr̂,ε,δ is sublinear in
n only for sufficiently large n; see Section 9.6 for some practical modifications.

The rest of this section is devoted to describing TestAndMatch in greater detail
and formally proving Theorem 9.5. We study in Section 9.5.1 how mimicking poor
advice quality impacts matching sizes, yielding conditions where mimicking is desirable,
which we test for via Theorem 2.37. Section 9.5.2 describes transformations to massage
our problem into the form required by Theorem 2.37. Lastly, we tie up our analysis of
Theorem 9.5 in Section 9.5.3.

9.5.1 Effect of advice quality on matching sizes

Algorithm 18 Mimic

Input: Matching M̂ , advice counts ĉ, arrival type label T
1: if c(T ) > 0 then
2: Mimic an arbitrary unused type T match in M̂
3: Decrement c(T ) by 1
4: return c ▷ Updated counts

Given an advice ĉ of type counts, we first solve optimally for a maximum matching M̂

on the advice graph Ĝ and then mimic the matches for online arrivals whenever possible;
see Algorithm 18. That is, whenever new vertices arrive, we match according to some
unused vertex of the same type if possible and leave it unmatched otherwise.

Let us normalize counts into proper distributions P∗ = c∗/n and Q = ĉ/n. These
are distributions on the realized and predicted (by advice) counts, and have sparse support
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T ∗ and T̂ . Now, suppose M̂ has matching size n̂ ≤ n. By definition of ℓ1(c∗, ĉ) and
Mimic, one would obtain a matching of size at least n̂− ℓ1(c∗, ĉ)/2 by blindly following
advice. This yields a competitive ratio of n̂−ℓ1(c∗,ĉ)/2

n∗ . Rearranging, we see that Mimic
outperforms the advice-free baseline (in terms of worst case guarantees) if and only if

n̂− ℓ1(c∗, ĉ)/2
n∗ > β ⇐⇒ ℓ1(P∗,Q) < 2

n
(n̂− βn∗)

The above analysis suggests a natural way to use advice type counts: use Mimic if
ℓ1(P∗,Q) ≤ 2

n
(n̂− βn∗), and Baseline otherwise. Note that one should always just use

Baseline whenever n̂
n∗ < β, matching the intuition of ignoring advice of poor quality.

Unfortunately, as we only know n but not n∗, our algorithm can only check whether
ℓ1(P∗,Q) < 2

(
n̂
n
− β

)
, and so the resulting guarantee is conservative since n∗ ≤ n.

9.5.2 Estimating advice quality via property testing

As c∗ is unknown, we cannot obtain ℓ1(P∗ = c∗

n
,Q = ĉ

n
). However, as P∗ and Q are

proper distributions, we can apply the property testing method of Theorem 2.37 to estimate
ℓ1(P∗,Q) to some ε > 0 accuracy. Applying Theorem 2.37 raises two difficulties.

Simulating i.i.d. arrivals

Under the Random Order arrival model, online vertices arrive “without replacement”,
which is incompatible with Theorem 2.37. Thankfully, we can apply a standard trick to
simulate i.i.d. “sampling with replacement” from P∗ by “re-observing arrivals”.

Algorithm 19 SimulateP
Input: CollectionA of arrivals and number of desired i.i.d. samples s, where s ≤ |A|
Output: Collection T s

P∗ of types ▷ s i.i.d. samples from P∗

1: T s
P∗ ← ∅ ▷ Collect simulated i.i.d. arrivals from P∗

2: i← 0
3: while |T s

P∗ | < s do
4: if Bern(i/n) == 1 then ▷ Biased coin flip with probability i/n
5: X ← Pick uniformly at random from the set {A[0], . . . ,A[i− 1]}
6: else
7: X ← A[i] ▷ i.i.d. sample from P∗ under the random arrival model
8: i← i+ 1

9: Add X to T s
P∗

10: return T s
P∗

Lemma 9.7. In the output of SimulateP (Algorithm 19), T s
P∗ contains s i.i.d. samples

from the realized type count distribution P∗ while using at most s actual online arrivals.



CHAPTER 9. ONLINE BIPARTITE MATCHING WITH IMPERFECT ADVICE 155

Proof. With probability i/n, we choose a uniform at random item from {A[0], . . . ,A[i−
1]}. With probability 1− i/n, we pick the next itemA[i] from the existing arrivals which
was uniform at random under the random arrival model assumption. Since we could
possibly reuse arrivals, T s

P∗ is formed by using at most s fresh arrivals.

Operating in reduced domains

Strictly speaking, the domain of P∗ and Q could be as large as 2n, since any one of these
types may occur. If all of these types occur with non-zero probability, then applying
Theorem 2.37 for testing could take a near-exponential (in n) number of online vertex
arrivals, which is clearly impossible. However, as established earlier, P∗ and Q enjoy
sparsity; in particular, ĉ and thusQ contain 0 in all but at most r̂ = |T̂ | ≤ n≪ 2n entries.
The key insight is to express ℓ1 distances by operating on T̂ , plus an additional dummy
type T0 which has 0 counts in ĉ. We classify any online vertex with type T ∈ T ∗ \ T̂ as
type T0. Specifically,

ℓ1(P∗,Q) =
∑
T∈2U

|P∗(T )−Q(T )| =
∑

T∈T̂ ∪T ∗

|P∗(T )−Q(T )|

=
∑
T∈T̂

|P∗(T )−Q(T )|+
∑

T∈T ∗\T̂

P∗(T )

That is, we can view ℓ1(P∗,Q) as an ℓ1 distance on distributions with support T̂ ∪{T0}.
Thus, the domain size when applying Theorem 2.37 is r̂ + 1 ≤ n + 1. For any constants
ϵ > 0 and δ > 0, the required samples is then sr̂,ε,δ ·

√
log(r̂ + 1) ∈ o(n).

Property testing

Now that these difficulties are overcome, the estimation of ℓ1(P∗,Q) = ℓ1(
c∗

n
, ĉ
n
) is done

via MinimaxTest (Algorithm 20), whose correctness follows from Theorem 2.37.

Lemma 9.8. Given sr̂,ε,δ ·
√

log(r̂ + 1) online arrivals in a set A and threshold τ =

2
(
n̂
n
− β

)
− ε, we have ℓ1(P∗,Q) < 2

(
n̂
n
− β

)
whenever MinimaxTest (Algorithm 20)

outputs OK. The success probability of MinimaxTest is at least 1− δ.

Proof. The algorithm of Theorem 2.37 guarantees tells us that |ℓ̂1 − ℓ1(P∗,Q)| ≤ ε with
probability at least 1− δ′. Therefore, when MinimaxTest outputs OK, we are guaranteed
that ℓ̂1 < τ . That is, ℓ1(P∗,Q) ≤ ℓ̂1 + ε < τ + ε = 2

(
n̂
n
− β

)
.

Meanwhile, in the analysis of Theorem 2.37, one actually needs to use s1 + s2 i.i.d.
samples from P∗, where s1, s2 ∼ Poi(sr̂,ε,δ′), which can be simulated from the arrival set
A; see SimulateP (Algorithm 19). By Lemma 2.36, we may assume that s1 + s2 ≤ s

with probability at least 1− δpoi(s). Taking a union bound over the failure probability of
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Algorithm 20 MinimaxTest

Input: Sample size s, distributionQ = ĉ/n, s
√
log(r̂ + 1) online arrivalsA, testing

threshold τ , failure rate δ′
1: Compute s1, s2 ∼ Poi(s/2)
2: if s1 + s2 > s

√
log(r̂ + 1) then ▷ Occurs with probability δpoi ≤ 1/poly(r̂)

3: return Fail
4: Collect s1 + s2 i.i.d. samples from P∗ = c∗

n
by running SimulateP with A.

5: Run algorithm of Theorem 2.37 to obtain estimate ℓ̂1 such that |ℓ̂1 − ℓ1(P∗,Q)| ≤ ε
with probability 1− δ′

6: if ℓ̂1 < τ then
7: return OK
8: else
9: return Fail

the “Poissonization” event and the estimator, we see that the overall success probability is
at least 1− (δ′ + δpoi) = 1− δ; note that δ = δ′ + δpoi is defined in TestAndMatch.

9.5.3 Tying up our analysis of TestAndMatch

If we run Baseline from the beginning due to n̂
n
≤ β, then we trivially recover a β-

competitive ratio. The following lemma gives a lower bound on the obtained matching
size if we performed MinimaxTest but decided switch to Baseline due to the estimated
ℓ̂1 being too large.

Lemma 9.9. Suppose we run an arbitrary algorithm for the first k ∈ [n] online arrivals
and then switch to Baseline for the remaining n− k online arrivals. If j matches made in
the first k arrivals, where 0 ≤ j ≤ k, then the overall produced matching size is at least
β · (n− k − j) + j.

Proof. Any match made in the first k arrivals decreases the maximum attainable matching
size by at most two, excluding the match made. As the maximum attainable matching size
was originally n, the maximum attainable matching size on the postfix sequence after the
k is at least n− k − j. Since Baseline has competitive ratio β, running Baseline on the
remaining n− k steps will produce a matching of size at least β · (n− k − j). Thus, the
overall produced matching size is at least β · (n− k − j) + j.

The proof of Theorem 9.5 requires the following lemma.

Lemma 9.10. For any advice ĉwith |T̂ | = r̂, ε > 0 and δ > 1
poly(r̂)

, let ℓ̂1 be the estimate of
ℓ1(P∗,Q = ĉ

n
) in MinimaxTest. If MinimaxTest succeeds, then TestAndMatch produces

a matching with competitive ratio at least n̂
n
− ℓ1(P∗,Q)

2
≥ β when ℓ̂1 ≤ 2

(
n̂
n
− β

)
− ε, and

at least β · (1− sr̂,ε,δ ·
√

log(r̂+1)

n
) otherwise.
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Proof. Let m be the size of the produced matching with competitive ratio m
n∗ . Since

MinimaxTest succeeds, |ℓ̂1 − ℓ1(P∗,Q)| ≤ ε and TestAndMatch executed Mimic for
all online arrivals if ℓ̂1 < τ = 2

(
n̂
n
− β

)
− ε, and switches to Baseline after an initial

batch of k = sr̂,ε,δ ·
√

log(r̂ + 1) otherwise. We consider each case separately.
Case 1: ℓ̂1 ≤ 2

(
n̂
n
− β

)
− ε

TestAndMatch executed Mimic for all online arrivals, yielding a matching of size
m ≥ n̂ − ℓ1(c∗,ĉ)

2
. Since |ℓ̂1 − ℓ1(P∗,Q)| ≤ ε, we see that ℓ1(P∗,Q) ≤ ℓ̂1 + ε ≤

2
(
n̂
n
− β

)
− ε+ ε = 2

(
n̂
n
− β

)
. Therefore,

m

n∗ ≥
m

n
≥ n̂

n
− ℓ1(c

∗, ĉ)

2n
=
n̂

n
− ℓ1(P∗,Q)

2
≥ β

Case 2: ℓ̂1 > 2
(
n̂
n
− β

)
− ε

TestAndMatch executes Baseline after an initial batch of k = sr̂,ε,δ ·
√

log(r̂ + 1)

arrivals that follow Mimic. Suppose we made j matches via Mimic before MinimaxTest.
Then, Lemma 9.9 tells us that the overall produced matching size is at least m ≥ β · (n−
k − j) + j. Since β < 1, we have β · (n− k − j) + j ≥ β · (n− k). Therefore,

m

n∗ ≥
m

n
≥
β · (n− sr̂,ε,δ ·

√
log(r̂ + 1))

n
= β ·

(
1−

sr̂,ε,δ ·
√
log(r̂ + 1)

n

)

Theorem 9.5 follows from bounding the failure probability.

Proof of Theorem 9.5. Whenever MinimaxTest succeeds, the competitive ratio guaran-
tees follow directly from Lemma 9.10. Therefore, it only remains to bound the failure
probability, i.e. the probability that MinimaxTest (Algorithm 20) fails. This can happen
if either line 3 is executed (event E1) or the algorithm in line 5 fails (event E2).

The event E1 occurs when the one of the Poisson random variables in line 1 exceed the
expectation by a

√
log r̂ factor. Since s1, s2 ∼ Poi(s/2), we have that (s1+ s2) ∼ Poi(s).

Thus, by Lemma 2.36 we have that:

δpoi = Pr
[
|(s1 + s2)− s| > s

√
log r̂

]
≤ 2 exp

(
− s2 log r̂

2(s+ s
√
log r̂)

)
∈ O

(
r̂
− s

2(1+
√

log r̂)

)
⊆ O

(
1

poly(r̂)

)

for the value of s ∈ O
(

(r̂+1)·log(1/δ′)
ε2·log(r̂+1)

)
chosen. Meanwhile, E2 occurs with probability δ′ by

choice of parameters while invoking Theorem 2.37. Combining the above with Lemma 9.8
via union bound yields a total failure rate of at most Pr(E1)+Pr(E2) ≤ δpoi+ δ′ = δ.
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9.6 Practical considerations

While our contributions are mostly theoretical, we discuss some practical considerations
here. In particular, we would like to highlight that there is no existing practical im-
plementation of the algorithm of Theorem 2.37 by [JHW18]. As is the case for most
state-of-the-art distribution testing algorithms, this implementation is highly non-trivial
and requires the use of optimal polynomial approximations over functions, amongst other
complicated constructions. The tester proposed by [JHW18] requires a significant amount
of hyperparameter tuning and no off-the-shelf implementation is available [Han24]. For
completeness, we implemented a proof-of-concept based on the empirical ℓ1 estimation
in Appendix C.1.5. While it is known that the estimation error scales with the sample size
in the form Ω(r/ε2), we observe good empirical performance when r is sublinear in n or
when combined with some of the practical extensions that we discussed below.

Section 9.6.1 and Section 9.6.2 can be viewed as ways to extend the usefulness of
a given advice. Section 9.6.3 provides a way to “patch” an advice with n̂ < n to one
with perfect matching, without hurting the provable guarantees. Section 9.6.4 gives a
pre-processing step that can be prepended to any procedure: by losing o(1), one can test
whether |T ∗| is small and if so learn P∗ up to ε error to fully exploit it.

9.6.1 Remapping online arrival types

Consider the graph example in Fig. 9.2 with type counts c∗ and we are given some advice
count ĉ as follows:

Types T ∗ Type counts c∗ Types T̂ Type counts ĉ

{U1, U3} 1 {U1} 1
{U2, U3} 1 {U3} 1
{U1, U2, U4} 2 {U4} 1

{U2, U4} 1

While one can verify that both the true graph G∗ and the advice graph Ĝ have perfect
matching, ℓ1(c∗, ĉ) = 4 since as T ∗ and T̂ have disjoint types. Using our earlier analysis,
ĉ would be deemed as a poor quality advice and one should default to Baseline.

However, a closer look reveals there exists a mapping σ from T ∗ to T̂ such that one can
credibly “mimic” the proposed matching of Ĝ as online vertices arrive. For example, when
an online vertex V with neighborhood type {U1, U3} arrive, one can “ignore” the edge
U3−V and treat it as if V had the type {U1}. Similarly, {U2, U3} could be treated as {U3},
the first instance of {U1, U2, U4} could be treated as {U2, U4}, and the second instance of
{U1, U2, U4} could be treated as {U4}. Running Mimic under such a remapping of online
types would then produce a perfect matching! Note that the proposed remappings always
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maps an online type to a subset so that any subsequent proposed matching can be credibly
performed.

In an offline setting, given c∗ and ĉ, one can efficiently compute a mapping σ that
maximizes overlap using a max-flow formulation (see Appendix C.1.3) and then redefine
the quality of ĉ in terms of ℓ1(σ(c∗), ĉ). As this is impossible in an online setting, we
propose a following simple mapping heuristic: when type L arrives, map it to the largest
subset type A ⊆ L with the highest remaining possible match count. Note that it may
be the case that all subset types of L no longer have a matching available to mimic from
M̂ . In the example above, we first mapped {U1, U2, U4} to {U2, U4} and then to {U4} as
ĉ only had one count for {U2, U4}.

9.6.2 Coarsening of advice

While Theorem 9.5 has good asymptotic guarantees as n → ∞, the actual number of
verticesn is finite in practice. In particular, whenn is “not large enough”, TestAndMatch
will never utilize the advice and always default to Baseline for all problem instances where
n≪ sr̂,ε,δ.

In practice, while the given advice types may be diverse, there could be many “over-
lapping subtypes” and a natural idea is to “coarsen” the advice by grouping similar types
together in an effort to reduce the resultant support size of the advice (and hence sr̂,ε,δ).
Fig. 9.5 illustrates an extreme example where we could decrease the support size from n

to 2 while still maintaining a perfect matching.
While one could treat this coarsening subproblem as an optimization pre-processing

task. For completeness, we show in Appendix C.1.4 how one may potentially model the
coarsening optimization as an integer linear program (ILP) but remark that it does not
scale well in practice. That said, there are many natural scenarios where a coarsening is
readily available to us. For instance, in the online advertising, market studies typically
classify users into “types” (with the number of types significantly less than n) where each
type of user typically have a “core set” of suitable ads though the actual realized type of
each arrival may be perturbed due to individual differences.

Another way to reduce the required samples for testing is to “bucket” the counts which
are below a certain threshold to reduce the number of distinct types within the advice.
The newly created bucket type will then be a union of the types that are being grouped
together.

9.6.3 Advice does not have perfect matching

As the given advice ĉ is arbitrary, it could be the case that any maximum matching of
size n̂ in the graph Ĝ implied by ĉ is not perfect, i.e. n̂ < n. A natural idea would be to
“patch” ĉ into some other type count ĉ′ which has a maximum matching size of n̂′ = n in



CHAPTER 9. ONLINE BIPARTITE MATCHING WITH IMPERFECT ADVICE 160

Ĝ
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Figure 9.5: Consider Ĝ made by taking the union of two complete bipartite graphs (Ĝ ′)
and adding the red dashed edges. By connecting Vi to U(i+n/2) mod n, |T̂ | = r = n.
Meanwhile, if we coarsen ĉ into ĉ′ by ignoring the red dashed edges, Ĝ ′ still has a
maximum matching of size n̂′ = n while |T̂ ′| = r′ = 2, thus requiring significantly less
samples to test since sr̂′,ε,δ ≪ sr̂,ε,δ. Furthermore, if G∗ = Ĝ ′, then ℓ1(c∗, ĉ) = 2n and we
will reject the advice ĉ if we do not coarsen it first.

the tweaked graph Ĝ ′. This can be done by augmenting ĉ with additional edges between
the unmatched vertices in the advice graph to obtain ĉ′.

The following lemma tells us that there is an explicit way of augmenting ĉ to form a
new advice ĉ′ such that using ĉ′ in TestAndMatch does not hurt the provable theoretical
guarantees as compared to directly using ĉ.

Lemma 9.11. Let ĉ be an arbitrary type count with labels T̂ implying a graph Ĝ with
maximum matching size n̂. There is an explicit way to augment ĉ to obtain ĉ′ with labels T̂ ′

such that the implied graph Ĝ ′ has maximum matching size n̂′ = n. Furthermore, running
TestAndMatch with a slight modification of Mimic on (ĉ′, T̂ ′) produces a matching of
size m where

m

n∗ ≥
m

n
≥

 n̂
n
− ℓ1(P∗,Q)

2
when ℓ̂1 ≤ 2 (1− β)− ε

β · (1− o(1)) otherwise

Proof. Suppose we are given an arbitrary pattern count ĉ and corresponding labels L̂ such
that the corresponding graph Ĝ has maximum matching M̂ of size n̂ < n. Let us fix any
arbitrary maximum matching M̂ . Denote AU ⊆ U as the set of k = n− n̂ offline vertices
and AV ⊆ V as the set of k online vertices that are unmatched in M̂ . We construct
a new graph Ĝ ′ by adding a complete bipartite graph of size k on AU ∪ AV to Ĝ. By
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construction, the resulting graph Ĝ ′ has a maximum matching of size n̂′ = n due to the
modified adjacency patterns of the online vertices AV .

We now explain how to modify the pattern counts and labels accordingly. Define the
new set of labels L̂′ as L̂ with a new pattern called “New”. Then, we subtract away the
counts of AV from ĉ and add a count of k to the label “New” to obtain a new pattern
count ĉ′. By construction, we see that |L̂′| = |L̂|+ 1 and

ℓ1(ĉ, ĉ
′) = |ĉ(“New”)− ĉ′(“New”)|+

∑
ℓ∈L̂

|ĉ(ℓ)− ĉ′(ℓ)| = k + k = 2k

Note that c∗(“New”) = 0. By triangle inequality, we also see that

ℓ1(c
∗, ĉ′) ≤ ℓ1(c

∗, ĉ) + ℓ1(ĉ, ĉ
′) ≤ ℓ1(c

∗, ĉ) + 2k

Slight modification of Mimic. Mimic will now be informed of the sets AU and AV

along with the proposed matching M̂ for the online vertices V \AV . Then, whenever an
online vertex V arrives whose pattern does not match any in L̂, we first try to match V to
an unmatched neighbor in AU if possible before leaving it unmatched. Observe that this
modified procedure can only increase the number of resultant matches since we do not
disrupt any possible matchings under (ĉ, L̂) while only possibly increasing the matching
size via the complete bipartite graph between AU and AV .

To complete the analysis, we again consider whether Mimic was executed throughout
the online arrivals or we switched to Baseline, as in the analysis of Theorem 9.5. Note that
now ℓ̂1 is an estimate of ℓ1(c∗, ĉ′) instead of ℓ1(c∗, ĉ) and the threshold is 2

(
n̂′

n
− β

)
−ε =

2 (1− β)− ε instead of 2
(
n̂
n
− β

)
− ε since n̂′ = n. Also, recall that k = n− n̂.

Case 1: ℓ̂1 < 2(1− β)− ε
Then, TestAndMatch executed Mimic throughout for all online arrivals, yielding a

matching of size m ≥ n− ℓ1(c∗,ĉ′)
2

. Therefore,

m

n∗ ≥
m

n
≥ 1− ℓ1(c

∗, ĉ′)

2n
≥ 1− ℓ1(c

∗, ĉ) + 2k

2n

= 1− ℓ1(P∗,Q)
2

− n− n̂
n

=
n̂

n
− ℓ1(P∗,Q)

2

Case 2: ℓ̂1 ≥ 2(1− β)− ε
Repeat the exact same analysis as in Theorem 9.5 but with r̂ replaced by r̂′ = |T̂ ′| =

|T̂ |+ 1 = r̂ + 1 yields a matching size of at least β · n− sr̂+1,ε,δ ·
√
log(r̂ + 1), where

sr̂,ε,δ ∈ O
(
(r̂ + 1) · log 1/δ
ε2 · log(r̂ + 1)

)
and sr̂+1,ε,δ ·

√
log(r̂ + 1) ∈ o(1).
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9.6.4 True distribution has small support size

If the support size of the true types is o(n), a natural thing to do is to learn c∗ up to some
ε accuracy while forgoing some o(n) initial matches, and then obtain≈ 1− ε competitive
ratio on the remaining arrivals. Though this is wholly possible in the random arrival
model, it crucially depends on c∗ having at most o(n) types. Although we do not know
the support size of c∗ a priori, we can again employ techniques from property testing. For
any desired support size k and constant ε, [VV17, WY19] tell us that O( k

log k
) samples are

sufficient for us to estimate the support size of a discrete distribution up to additive error
of εk. Therefore, for any k ∈ o(n) and constant ε, given any algorithm ALG under the
random arrival model achieving competitive ratio α, we can first spend o(1) arrivals to
test whether c∗ is supported on (1 + ε) · k types:

• If “Yes”, then we can spend another O(k/ε2) ⊆ o(1) arrivals to estimate c∗ up to ε
accuracy, i.e. we can form ĉ with ℓ1(c∗, ĉ) ≤ ε, then exploit ĉ via Mimic.

• If “No”, use ALG and achieve a competitive ratio of α− o(1).

The choice of k is flexible in practice, depending on how much one is willing to lose in
the o(1) in the “No” case.



Chapter 10

Learning multivariate Gaussians with
imperfect advice

“Events may appear to us to be random, but this could be attributed to human
ignorance about the details of the processes involved.”

- Brian Everitt [Eve99]

“While in theory randomness is an intrinsic property, in practice, randomness
is incomplete information.”

- Nassim Nicholas Taleb [Tal07]

10.1 Introduction

The problem of approximating an underlying distribution from its observed samples is a
fundamental scientific problem. The distribution learning problem has been studied for
more than a century in statistics, and it is the underlying engine for much of applied machine
learning. The emphasis in modern applications is on high-dimensional distributions, with
the goal being to understand when one can escape the curse of dimensionality. The survey
[Dia16] gives an excellent overview of classical and modern techniques for distribution
learning, especially when there is some underlying structure to be exploited.

In this chapter, we investigate how to go beyond worst case sample complexities for
learning distributions by leveraging imperfect advice about the underlying distribution.
More specifically, we study the classical problem of learning high-dimensional Gaussian
distributions. It is known that it takes Θ̃(d/ε2) samples to learn a Gaussian mean µ̂ ∈ Rd

such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε when Σ = Id and Θ̃(d2/ε2) samples for general
covariance matrices, e.g. see Lemma 2.25. The algorithm for both cases is the most
obvious one: compute the empirical mean and empirical covariance. Meanwhile, note
that if one is given as advice the correct mean µ̃ = µ, then using distribution testing,
one can certify that ∥µ̃ − µ∥2 ≤ ε using only Θ̃(

√
d/ε2) samples [DKS17, Appendix

163
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C], quadratically better than without advice. Observing the gap in sample complexities
between testing and learning, we design algorithms under TestAndAct framework for the
problem of multivariate Gaussian learning with imperfect advice, yielding provably lower
sample complexities when given high quality advice.

Multivariate Gaussian Learning with Advice: Given samples from a Gaus-
sian N(µ,Σ), as well as advice µ̃ and Σ̃, how many samples are required to
recover µ̂ and Σ̂ such that dTV(N(µ,Σ), N(µ̂, Σ̂) ≤ ε with probability at
least 1− δ? The sample complexity should a function of the dimension, ε, δ,
as well as a measure of how close µ̃ and Σ̃ are to µ and Σ respectively.

10.2 Our main results

We give the first known results in distribution learning with imperfect advice. Our
techniques are piecewise elementary and easy to follow. Following the TestAndAct
framework for designing learning-augmented algorithms, we present two polynomial time
algorithms TestAndOptimizeMean and TestAndOptimizeCovariance for producing
the estimates µ̂ and Σ̂ based on LASSO and SDP formulations. These algorithms provably
improve upon the sample complexities of Θ̃(d/ε2) and Θ̃(d2/ε2) for identity and general
covariances respectively when given high quality advice of a mean µ̃ ∈ Rd or covariance
matrix Σ̃ ∈ Rd×d.

Theorem 10.1. For any given ε, δ ∈ (0, 1), η ∈ [0, 1
4
], and µ̃ ∈ Rd, the TestAndOpti-

mizeMean algorithm uses n ∈ Õ
(

d
ε2
· (d−η +min{1, f(µ, µ̃, d, η, ε)})

)
, where

f(µ, µ̃, d, η, ε) =
∥µ− µ̃∥21
d1−4ηε2

,

i.i.d. samples from N(µ, Id) for some unknown mean µ and identity covariance Id, and
can produce µ̂ in poly(n, d) time such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with success
probability at least 1− δ.

Theorem 10.2. For any given ε, δ ∈ (0, 1), η ∈ [0, 1] and Σ̃ ∈ Rd×d, TestAndOptimize-
Covariance uses n ∈ Õ

(
d2

ε2
·
(
d−η +min

{
1, f(Σ, Σ̃, d, η, ε)

}))
, where

f(Σ, Σ̃, d, η, ε) =
∥vec(Σ̃−1/2ΣΣ̃−1/2 − Id)∥21

d2−ηε2
,

i.i.d. samples from N(µ,Σ) for some unknown mean µ and unknown covariance Σ, and
can produce µ̂ and Σ̂ in poly(n, d, log(1/ε)) time such that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε

with success probability at least 1− δ.
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In particular, the TestAndOptimizeMean algorithm uses only Õ(d1−β

ε2
) samples when

∥µ− µ̃∥1 < εd
1−3β

2 = ε
√
d ·d− 3β

2 and the TestAndOptimizeCovariance algorithm uses
only Õ(d2−β

ε2
) samples when ∥vec(Σ̃−1/2ΣΣ̃−1/2− Id)∥1 < εd1−β = εd · d−β . Moreover,

both our algorithms have runtime which is polynomial in d.
The choice of representing the quality of the advice in terms of the ℓ1-norm is well-

motivated. It is known, e.g. see [FR13, Theorem 2.5], that if a vector x satisfies ∥x∥1 ≤ τ ,
then for any positive integer s, σs(x) ≤ τ/(2

√
s), where σs(x) is the ℓ2-error of the best

s-sparse approximation tox. Thus, if ∥µ̃−µ∥1 ≤ 2εd(1−η)/2, then σd1−η(µ̃−µ) ≤ ε. The
latter may be very reasonable, as one may have good predictions for most of the coordinates
of the mean with the error in the advice concentrated on a sublinear d1−η coordinates. The
same consideration also applies to the entrywise-ℓ1 norm for error in the covariance matrix
advice. Algorithmically, we employ sublinear property testing algorithms to evaluate the
quality of the given advice before deciding how to produce a final estimate, similar in
spirit to the TestAndMatch approach in Chapter 9. The idea of incorporating property
testing as a way to verify whether certain distributional assumptions are satisfied that
enable efficient subsequent learning has also been explored in recent works on testable
learning [RV23, KSV24, Vas24].

We supplement our algorithmic upper bounds with information-theoretic lower bounds.
Here, we say that an algorithm (ε, 1 − δ)-PAC learns a distribution P if it can produce
another distribution P̂ such that dTV(P , P̂) ≤ εwith success probability at least 1−δ. Our
lower bounds tell us that Ω̃(d/ε2) and Ω̃(d2/ε2) samples are unavoidable for PAC-learning
N(µ, Id) and N(µ,Σ) respectively when given low quality advice.

Theorem 10.3. Suppose we are given µ̃ ∈ Rd as advice with only the guarantee that ∥µ−
µ̃∥1 ≤ ∆. Then, any algorithm that (ε, 2

3
)-PAC learnsN(µ, Id) requiresΩ

(
min{d,∆2/ε2}
ε2 log(1/ε)

)
samples in the worst case.

Theorem 10.4. Suppose we are given a symmetric and positive-definite Σ̃ ∈ Rd×d as
advice with only the guarantee that ∥vec

(
Σ̃− 1

2ΣΣ̃− 1
2 − Id

)
∥1 ≤ ∆. Then, any algorithm

that (ε, 2
3
)-PAC learns N(0,Σ) requires Ω

(
min{d2,∆2/ε2}

ε2 log(1/ε)

)
samples in the worst case.

Both of our lower bounds are tight in the following sense. TestAndOptimizeMean
gives a polynomially-smaller sample complexity compared to Õ(d/ε2) when the advice
quality (measured in terms of the ℓ1-norm) is polynomially smaller compared to ε

√
d.

Theorem 10.3 shows that this is the best we can do; there is a hard instance where the
advice quality is ≤ ε

√
d and we need Ω̃(d/ε2) samples. A similar situation happens

between TestAndOptimizeCovariance and Theorem 10.4, when the guarantee on the
advice quality is at most εd.

The lower bounds in Theorem 10.3 and Theorem 10.4 apply when the parameter ∆
is known to the algorithm. Our algorithms are stronger since they do not need to know
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∆ beforehand. In case ∆ is known, the sample complexity of the distribution learning
component of our algorithms match the above lower bounds up to log factors.

10.3 Technical overview

To obtain our upper bounds, we first show that the existing test statistics for non-tolerant
testing can actually be used for tolerant testing with the same asymptotic sample complexity
bounds and then use these new tolerant testers to test the advice quality. The tolerance
is with respect to the ℓ2-norm for mean testing and with respect to the Frobenius norm
for covariance testing. These results are folklore, but we did not manage to find formal
proofs for them. As these may be of independent interest, we present their proofs in
Appendix C.2.1 for completeness.

Lemma 10.5 (Tolerant mean tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥
(

16ε22
ε22−ε21

)2
,

there is a tolerant tester that uses O
( √

d
ε22−ε21

log
(
1
δ

))
i.i.d. samples from N(µ, Id) and

satisfies the following two conditions:

1. If ∥µ∥2 ≤ ε1, then the tester outputs Accept with probability at least 1− δ.

2. If ∥µ∥2 ≥ ε2, then the tester outputs Reject with probability at least 1− δ.

The tester is allowed to output Accept or Reject arbitrarily when ε1 < ∥µ∥2 < ε2.

Lemma 10.6 (Tolerant covariance tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥ ε22,

there is a tolerant tester that uses O
(
d ·max

{
1
ε21
,
(

ε22
ε22−ε21

)2
,
(

ε2
ε22−ε21

)2}
log
(
1
δ

))
i.i.d.

samples from N(0,Σ) and satisfies the following two conditions:

1. If ∥Σ− Id∥F ≤ ε1, then the tester outputs Accept with probability at least 1− δ.

2. If ∥Σ− Id∥F ≥ ε2, then the tester outputs Reject with probability at least 1− δ.

The tester is allowed to output Accept or Reject arbitrarily when ε1 < ∥Σ− Id∥2 < ε2.

In the remaining, we will first explain how to obtain our result for TestAndOptimize-
Mean before explaining how a similar approach works for TestAndOptimizeCovariance.
For a detailed proof of our lower bounds, we refer readers to [BCGJG24, Section 5].

10.3.1 Approach for TestAndOptimizeMean

Without loss of generality, we may assume henceforth that µ̃ = 0 since one can always
pre-process samples by subtracting µ̃ and then add µ̃ back to the estimated µ̂. Our overall
approach is quite natural: (i) use the tolerant testing algorithm in Lemma 10.5 to get an
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upper bound on the “advice quality”, and (ii) enforce the constraint on the “advice quality”
when learning µ̂.

The most immediate notion of advice quality one may posit is ∥µ− 0∥2 = ∥µ∥2. Let
us see what issues arise. Using an exponential search process, we can invoke Lemma 10.5
directly to find some r > 0, such that r/2 ≤ ∥µ − µ̃∥2 = ∥µ∥2 ≤ r. To argue about
the sample complexity for learning µ̂, and ignoring computational efficiency, one can
invoke the Scheffé tournament approach for density estimation; see Section 2.3.4. Let N
be an ε-cover in ℓ2 of the the ℓ2-ball of radius r around 0; see Section 2.3.5. Clearly, µ
is ε-close in ℓ2 to one of the points in N . It is known (e.g. see [DL01, Chapter 4] and
Theorem 2.20) that the sample complexity of the Scheffé tournament algorithm scales as
log |N |. However, point 1 of Theorem 2.22 tells us that log |N | = Ω(d). Indeed, one can
get a formal lower bound showing that the sample complexity cannot be made sublinear
in d for non-trivial values of r. To get around this barrier, we will instead take the notion
of advice quality to be ∥µ∥1 instead of ∥µ∥2. Point 2 of Theorem 2.22 tells us that that
d

cr2

ε2 ℓ2 balls of radius ε suffice to cover an ℓ1-ball of radius r, for some absolute constant
c > 0. Using this modified approach, the Scheffé tournament only requires O( r2

ε4
log d)

samples which could be o(d/ε2) for a wide range of values of r.
There are still two issues to address: (i) how to obtain an ℓ1 estimate r of µ, i.e.

r/2 ≤ ∥µ∥1 ≤ r, and (ii) how to get a computationally efficient learning algorithm.

(i) We can apply the standard inequality ∥µ∥2 ≤ ∥µ∥1 ≤
√
d∥µ∥2 bound to transform

our ℓ2 estimate from Lemma 10.5 into an ℓ1 one. However, since the number of
samples has a quadratic relation with r, we need a better approximation than

√
d to

achieve sample complexity that is sublinear in d. To achieve this, we partition the
µ vector into blocks of size at most k ≤ d and approximate the ℓ1 norm of each
smaller dimension vector separately and then add them up to obtain an ℓ1 estimate
of the overall µ. Doing so improves the resulting multiplicative error to ≈

√
d/k

instead of
√
d.

(ii) The Scheffé tournament approach requires time at least linear in the size of the
ε-cover. In order to do better, we observe that we can formulate our task as an
optimization problem with an ℓ1-constraint. Specifically, given samples y1, . . . ,yn,
we solve the following program:

µ̂ = argmin
∥β∥1≤r

1

n

n∑
i=1

∥yi − β∥22

The error ∥µ−µ̂∥2 can be analyzed by similar techniques as those used for analyzing
ℓ1-regularization in the context of LASSO or compressive sensing; e.g. see [Tib96,
Tib97, HTW15].
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10.3.2 Approach for TestAndOptimizeCovariance

As before, we may assume without loss of generality that Σ̃ = Id by pre-processing the
samples appropriately. Furthermore, we can invest Ω(d/ε2) samples up-front to ensure
that the empirical mean µ̂will be an ε-good estimate ofµ. Then, it will suffice to obtain an
estimate Σ̂ of Σ such that ∥Σ−1Σ̂− Id∥F ≤ O(ε) suffices. At a high level, the approach
for TestAndOptimizeCovariance is the same as TestAndOptimizeMean after three key
adjustments to adapt the approach from vectors to matrices.

The first adjustment is that we perform a suitable preconditioning process using an
additional O(d) samples so that we can subsequently argue that ∥Σ−1∥2 ≤ 1. This
will then allow us to argue that ∥Σ−1Σ̂ − Id∥F ≤ ∥Σ−1∥2∥Σ̂ − Σ∥F ∈ O(ε). Our
preconditioning technique is inspired by [KLSU19]; while they use O(d) samples to
construct a preconditioner to control the maximum eigenvalue, we use a similar approach
to control the minimum eigenvalue.

The second adjustment pertains to the partitioning idea used for multiplicatively ap-
proximating ∥vec(Σ − Id)∥1. Observe that the covariance matrix of a marginal of a
multivariate Gaussian is precisely the principal submatrix of the original covariance Σ

on the corresponding projected coordinates. For example, if one focuses on coordinates

{i, j} ⊆ [d] of each sample, then the corresponding covariance matrix is

[
Σi,i Σi,j

Σj,i Σj,j

]
,

for i < j. To this end, we generalize the partitioning scheme described for TestAndOp-
timizeMean to higher ordered objects.

Definition 10.7 (Partitioning scheme). Fix q ≥ 1, d ≥ 1, and a q-ordered d-dimensional
tensor T ∈ Rd⊗q . Let B ⊆ [d] be a subset of indices and define TB as the principal
subtensor of T indexed by B. A collection of subsets B1, . . . ,Bw ⊆ [d] is called an
(q, d, k, a, b)-partitioning of the tensor T if the following three properties hold:

• |B1| ≤ k, . . . , |Bw| ≤ k

• For every cell of T appears in at least a of the w principal subtensors TB1 , . . . , TBw .

• For every cell of T appears in at most b of the w principal subtensors TB1 , . . . , TBw .

For example, when q = 2, T ∈ Rd×d is just a d × d matrix. Observe one can
always obtain a partitioning with k ≤ dq by letting the index sets B1, . . . ,Bw encode
every possible index, but this results in a large w =

(
d
q

)
which can be undesirable for

downstream analysis. The partitioning used in TestAndOptimizeMean is a special case
of Definition 10.7 with q = a = b = 1, k = ⌈d/w⌉. For TestAndOptimizeCovariance,
we are interested in the case where q = 2 and a = 1. Ideally, we want to minimize k
and b as well. Fig. 10.1 illustrates an example of a (q = 2, d = 5, k = 3, a = 1, b = 3)-
partitioning.
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1 2 3 4 5
1
2
3
4
5

Block {1, 2, 3}

1 2 3 4 5
1
2
3
4
5

Block {1, 4, 5}

1 2 3 4 5
1
2
3
4
5

Block {2, 4, 5}

1 2 3 4 5
1
2
3
4
5

Block {3, 4, 5}

Figure 10.1: Consider partitioning a d × d matrix (i.e. d = 5, q = 2) with w = 4 blocks
{(1, 2, 3), (1, 4, 5), (2, 4, 5), (3, 4, 5)}, each of size k = 3. Every cell in the original 5× 5
matrix appears in at least a = 1 and at most b = 3 times across all the induced submatrices.

The last change is to the optimization program for learning Σ̂. Given samples
y1, . . . ,yn from N(µ,Σ), we define:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

∥A−1∥2≤1

n∑
i=1

∥A− yiy
⊤
i ∥2F

Observe that Σ is a feasible solution to the above program. The optimization problem
can be solved efficiently since it can be written as an SDP with convex constraints; see
Appendix C.2.3. We finally bound ∥Σ − Σ̂∥F using an analysis that mirrors that for
TestAndOptimizeMean but is in terms of matrix algebra.

10.4 TestAndOptimizeMean for the identity covariance
setting

We begin by defining a parameterized sample count m(d, ε, δ). Then, we will state
our ApproxL1 algorithm and show how to use it according to the strategy outlined in
Section 10.3.1.

Definition 10.8. Fix any d ≥ 1, ε > 0, and δ ∈ (0, 1). We define m(d, ε, δ) = nd,ε · rδ,
where

nd,ε =

⌈
16
√
d

3ε2

⌉
and rδ = 1 +

⌈
log

(
12

δ

)⌉
Given samples from a d-dimensional isotropic Gaussian N(µ, Id) with unknown

mean µ and identity covariance, the ApproxL1 algorithm partitions the d coordinates into
w = ⌈d/k⌉ buckets each of length at most k ∈ [d] and separately perform an exponential
search to find the 2-approximation of the ℓ2 norm of each bucket by repeatedly invoking
the tolerant tester from Lemma 10.5. In the terminology of Definition 10.7, this is a
partitioning scheme with q = 1, a = 1, and b = 1. Crucially, projecting the samples in Rd

of N(µ, Id) into the subcoordinates of B ⊆ [d] yields samples in R|B| from N(µB, I|B|)
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so we can obtain valid estimates using each of these marginals. After obtaining the ℓ2
estimate of each bucket, we use Lemma 2.3 to obtain bounds on the ℓ1 and then combine
them by summing up these estimates: if we have an ε-multiplicative approximation of each
bucket’s ℓ1, then their sum will be an O(ε)-multiplicative approximation of the entire µ

vector whenever the partition overlap parameters a and b of Definition 10.7 are constants.

Algorithm 21 The ApproxL1 algorithm.
Input: Error rate ε > 0, failure rate δ ∈ (0, 1), block size k ∈ [d], lower bound α > 0,
upper bound ζ > 2α, and i.i.d. samples S from N(µ, Id)
Output: Fail, OK, or λ ∈ R

1: Define w = ⌈d/k⌉ and δ′ = δ
w·⌈log2 ζ/α⌉

2: Partition the index set [d] into w blocks:

B1 = {1, . . . , k},B2 = {k + 1, . . . , 2k}, . . . ,Bw = {k(w − 1) + 1, . . . , d}

3: for j ∈ {1, . . . , w} do
4: Define Sj = {xBj

∈ R|Bj | : x ∈ S} as the samples projected to Bj

▷ See Definition 2.4
5: Initialize oj = Fail
6: for i = 1, 2, . . . , ⌈log2 ζ/α⌉ do
7: Define li = 2i−1 · α
8: Let Outcome be the output of the tolerant tester of Lemma 10.5 using sample

set Sj with parameters ε1 = li, ε2 = 2li, and δ = δ′

9: if Outcome is Accept then
10: Set oj = li and break ▷ Escape inner loop for block j
11: if there exists a Fail amongst {o1, . . . , ow} then
12: return Fail
13: else if 4

∑w
j=1 o

2
j ≤ α2 then

14: return OK ▷ Note: oj is an estimate for ∥µBj
∥2

15: elsereturn λ = 2
∑w

j=1

√
|Bj| · oj ▷ λ is an estimate for ∥µ∥1

One can show that the ApproxL1 algorithm has the following guarantees.

Lemma 10.9. Let ε, δ, k, α, and ζ be the input parameters to the ApproxL1 algorithm
(Algorithm 21). Given m(k, α, δ′) i.i.d. samples from N(µ, Id), the ApproxL1 algorithm
succeeds with probability at least 1− δ and has the following properties:

• If ApproxL1 outputs Fail, then ∥µ∥2 > ζ/2.

• If ApproxL1 outputs OK, then ∥µ∥2 ≤ α.

• If ApproxL1 outputs λ ∈ R, then ∥µ∥1 ≤ λ ≤ 2
√
k · (⌈d/k⌉ · α + 2∥µ∥1).

Proof. We begin by stating some properties of o1, . . . , ow. Fix an arbitrary index j ∈
{1, . . . , w} and suppose oj is not a Fail, i.e. the tolerant tester of Lemma 10.5 outputs
Accept for some i∗ ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. Note that ApproxL1 sets oj = ℓi∗ and
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the tester outputs Reject for all smaller indices i ∈ {1, . . . , i∗ − 1}. Since the tester
outputs Accept for i∗, we have that ∥µBj

∥2 ≤ 2ℓi∗ = 2oj . Meanwhile, if i∗ > 1, then
∥µBj

∥2 > ℓi∗−1 = ℓi∗/2 = oj/2 since the tester outputs Reject for i∗ − 1. Thus, we see
that

• When oj is not Fail, we have ∥µBj
∥2 ≤ 2oj .

• When ∥µBj
∥2 ≤ 2α, we have i∗ = 1 and oj = ℓ1 = α.

• When ∥µBj
∥2 > 2α = 2ℓ1, we have i∗ > 1 and so oj < 2∥µBj

∥2.

Success probability. Fix an arbitrary index i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉} with ℓi = 2i−1α,
where ℓi ≤ ℓ1 = α for any i. We invoke the tolerant tester with ε2 = 2ℓi = 2ε1, so the ith

invocation uses at most nk,ε ·rδ i.i.d. samples to succeed with probability at least 1−δ; see
Definition 10.8 and Algorithm 30. So, with m(k, α, δ′) samples, any call to the tolerant
tester succeeds with probability at least 1 − δ′, where δ′ = δ

w·⌈log2 ζ/α⌉
. By construction,

there will be at most w · ⌈log2 ζ/α⌉ calls to the tolerant tester. Therefore, by union bound,
all calls to the tolerant tester jointly succeed with probability at least 1− δ.

Property 1. When ApproxL1 outputs Fail, there exists a Fail amongst {o1, . . . , ow}.
For any fixed index j ∈ {1, . . . , w}, this can only happen when all calls to the tol-
erant tester outputs Reject. This means that ∥xBj

∥2 > ε1 = ℓi = 2i−1 · α for all
i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. In particular, this means that ∥xBj

∥2 > ζ/2.

Property 2. When ApproxL1 outputs OK, we have 4
∑w

j=1 o
2
j ≤ α2. Then, since

∥µBj
∥2 ≤ 2oj for each index j ∈ {1, . . . , w}, we see that

∥µ∥22 =
w∑

j=1

∥µBj
∥22 ≤

w∑
j=1

(2oj)
2 = 4

w∑
j=1

o2j ≤ α2

That is, ∥µ∥2 ≤ α as desired.

Property 3. When ApproxL1 outputsλ = 2
∑w

j=1

√
|Bj|·oj ∈ R, we have 4

∑w
j=1 o

2
j >

ε2. We can lower bound λ as follows:

λ = 2
w∑

j=1

√
|Bj| · oj

≥ 2
w∑

j=1

√
|Bj| ·

∥µBj
∥2

2
(since ∥µBj

∥2 ≤ 2oj)

≥
w∑

j=1

∥µBj
∥1 (since ∥µBj

∥1 ≤
√
|Bj| · ∥µBj

∥2)
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= ∥µ∥1 (since
∑w

j=1 ∥µBj
∥1 = ∥µBj

∥1)

That is, λ ≥ ∥µ∥1. Meanwhile, we can also upper bound λ as follows:

λ = 2
w∑

j=1

√
|Bj| · oj

≤ 2
√
k

w∑
j=1

oj (since |Bj| ≤ k)

= 2
√
k ·

 w∑
j=1

∥µBj
∥2≤2α

oj +
w∑

j=1
∥µBj

∥2>2α

oj


(partitioning the blocks based on ∥µBj

∥2 versus 2α)

= 2
√
k ·

 w∑
j=1

∥µBj
∥2≤2α

α +
w∑

j=1
∥µBj

∥2>2α

oj

 (since ∥µBj
∥2 ≤ 2α implies oj = α)

≤ 2
√
k ·

 w∑
j=1

∥µBj
∥2≤2α

α +
w∑

j=1
∥µBj

∥2>2α

2∥µBj
∥2


(since ∥µBj

∥2 > 2α implies oj ≤ 2∥µBj
∥2)

≤ 2
√
k ·

 w∑
j=1

∥µBj
∥2≤2α

α + 2
w∑

j=1
∥µBj

∥2>2α

∥µBj
∥1

 (since ∥µBj
∥2 ≤ ∥µBj

∥1)

≤ 2
√
k ·

⌈d/k⌉ · α + 2
w∑

j=1
∥µBj

∥2>2α

∥µBj
∥1


(since |{j ∈ [w] : µBj

∥2 ≤ 2α}| ≤ w)

≤ 2
√
k · (⌈d/k⌉ · α + 2∥µ∥1)

(since
∑w

j=1
∥µBj

∥2>2α

∥µBj
∥1 ≤

∑w
j=1 ∥µBj

∥1 = ∥µBj
∥1)

That is, λ ≤ 2
√
k · (⌈d/k⌉ · α + 2∥µ∥1). The property follows by putting together both

bounds.

Now, suppose ApproxL1 tells us that ∥µ∥1 ≤ r. We can then perform a constrained
version of LASSO to search for a candidate µ̂ ∈ Rd using O

(
r2

ε4
log d

δ

)
samples from

N(µ, Id).

Lemma 10.10. Fix d ≥ 1, r ≥ 0, and ε, δ > 0. Given O
(

r2

ε4
log d

δ

)
samples from
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N(µ, Id) for some unknown µ ∈ Rd with ∥µ∥1 ≤ r, one can produce an estimate µ̂ ∈ Rd

in poly(n, d) time such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with success probability at
least 1− δ.

Proof. Suppose we get n samples y1, . . . ,yn ∼ N(µ, Id). For i ∈ [n], we can re-express
each yi as yi = µ+ gi for some gi ∼ N(0, Id). Let us define µ̂ ∈ Rd as follows:

µ̂ = argmin
∥β∥1≤r

1

n

n∑
i=1

∥yi − β∥22 (10.1)

By optimality of µ̂ in Eq. (10.1), we have

1

n

n∑
i=1

∥yi − µ̂∥22 ≤
1

n

n∑
i=1

∥yi − µ∥22 (10.2)

By expanding and rearranging Eq. (10.2), one can show (see Appendix C.2.2)

∥µ̂− µ∥22 ≤
2

n
⟨

n∑
i=1

gi, µ̂− µ⟩ (10.3)

Therefore, with probability at least 1− δ,

∥µ̂− µ∥22 ≤
2

n
⟨

n∑
i=1

gi, µ̂− µ⟩ (From Eq. (10.3))

≤ 2

n
·

∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

· ∥µ̂− µ∥1 (Hölder’s inequality)

≤ 2

n
·

∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∞

· (∥µ̂∥1 + ∥µ∥1) (Triangle inequality)

≤ 4r ·

√
2 log

(
2d
δ

)
n

(From Lemma 2.27, ∥µ̂∥1 ≤ r, and ∥µ∥1 ≤ r)

When n =
2r2 log 2d

δ

ε4
∈ O

(
r2

ε4
log d

δ

)
, we have ∥µ̂− µ∥22 ≤ 4r ·

√
2 log( 2d

δ )
n

= 4ε2. So, by
Theorem 2.18 and Lemma 2.29, we see that

dTV(N(µ, Id), N(µ̂, Id)) ≤
√

1

2
dKL(N(µ, Id), N(µ̂, Id))

≤
√

1

4
∥µ− µ̂∥22 ≤

√
4ε2

4
= ε

Finally, it is well-known that LASSO runs in poly(n, d) time.
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Algorithm 22 The TestAndOptimizeMean algorithm.
Input: Error rate ε > 0, failure rate δ ∈ (0, 1), parameter η ∈ [0, 1

4
], and sample

access to N(µ, Id)
Output: µ̂ ∈ Rd

1: Define k = ⌈d4η⌉, α = ε · d−(1−3η)/2, ζ = 4ε ·
√
d, and δ′ = δ

⌈d/k⌉·⌈log2 ζ/α⌉
▷ Note: ζ > 2α

2: Draw m(k, α, δ′) i.i.d. samples from N(µ, Id) and store it into a set S
▷ See Definition 10.8

3: Let Outcome be the output of the ApproxL1 algorithm given k, α, ζ , and S as inputs
4: if Outcome is λ ∈ R and λ < ε

√
d then

5: Draw n ∈ Õ(λ2/ε4) i.i.d. samples y1, . . . ,yn ∈ Rd from N(µ, Id)
6: return µ̂ = argmin∥β∥1≤λ

1
n

∑n
i=1 ∥yi − β∥22 ▷ See Eq. (10.1)

7: else
8: Draw n ∈ Õ(d/ε2) i.i.d. samples y1, . . . ,yn ∈ Rd from N(µ, Id)
9: return µ̂ = 1

n

∑n
i=1 yi ▷ Empirical mean

Theorem 10.1. For any given ε, δ ∈ (0, 1), η ∈ [0, 1
4
], and µ̃ ∈ Rd, the TestAndOpti-

mizeMean algorithm uses n ∈ Õ
(

d
ε2
· (d−η +min{1, f(µ, µ̃, d, η, ε)})

)
, where

f(µ, µ̃, d, η, ε) =
∥µ− µ̃∥21
d1−4ηε2

,

i.i.d. samples from N(µ, Id) for some unknown mean µ and identity covariance Id, and
can produce µ̂ in poly(n, d) time such that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with success
probability at least 1− δ.

Proof. Without loss of generality, we may assume that µ̃ = 0. This is because we can
pre-process all samples by subtracting µ̃ to yield i.i.d. samples fromN(µ′, Id)whereµ′ =

µ−µ̃. Suppose we solved this problem to produce µ̂′ where dTV(N(µ′, Id), N(µ̂′, Id)) ≤
10ε, we can then output µ̂ = µ̂′ + µ̃ and see from data processing inequality that
dTV(N(µ, Id), N(µ̂, Id)) = dTV(N(µ′, Id), N(µ̂′, Id)) ≤ 10ε; see the coupling charac-
terization of TV in [DMR18].

Correctness of µ̂ output. Consider the TestAndOptimizeMean algorithm given in
Algorithm 22. There are three possible outputs for µ̂:

1. µ̂ = 0, which can only happen when Outcome is OK

2. µ̂ = argmin∥β∥1≤λ
1
n

∑n
i=1 ∥yi − β∥22, which can only happen when Outcome is

λ ∈ R

3. µ̂ = 1
n

∑n
i=1 yi

Conditioned on ApproxL1 succeeding, with probability at least 1− δ, we will show that
dTV(N(µ, Id), N(µ̂, Id)) ≤ ε and failure probability at most δ in each of these cases,
which implies the theorem statement.
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1: When Outcome isOK, Lemma 10.9 tells us that ∥µ∥2 ≤ α ≤ ε, with failure probability
at most δ. So, by Theorem 2.18 and Lemma 2.29, we see that

dTV(N(µ, Id), N(µ̂, Id)) ≤
√

1

2
· dKL(N(µ, Id), N(µ̂, Id))

=

√
1

4
· ∥µ− 0∥22 ≤

√
ε2

4
≤ ε

2: Using r = λ as the upper bound, Lemma 10.10 tells us that dTV(N(µ, Id), N(µ̂, Id)) ≤
ε with failure probability at most δ when Õ(λ2/ε4) i.i.d. samples are used.
3: With Õ(d/ε2) samples, Lemma 2.25 tells us that dTV(N(µ, Id), N(µ̂, Id)) ≤ ε with
failure probability at most δ.

Sample complexity used. By Definition 10.8, ApproxL1 uses |S| = m(k, α, δ′) ∈
Õ(
√
k/α2) samples to produce Outcome. Then, ApproxL1 further uses Õ(λ2/ε4) samples

or Õ(d/ε2) samples depending on whether λ < ε
√
d. So, TestAndOptimizeMean has a

total sample complexity of

Õ

(√
k

α2
+min

{
λ2

ε4
,
d

ε2

})
(10.4)

Meanwhile, Lemma 10.9 states that ∥µ∥1 ≤ λ ≤ 2
√
k · (⌈d/k⌉ · α + 2∥µ∥1) whenever

Outcome is λ ∈ R. Since (a+ b)2 ≤ 2a2 +2b2 for any two real numbers a, b ∈ R, we see
that

λ2

ε4
∈ O

(
k

ε4
·
(
d2α2

k2
+ ∥µ∥21

))
⊆ O

(
d

ε2
·
(
dα2

ε2k
+
k · ∥µ∥21
dε2

))
(10.5)

Putting together Eq. (10.4) and Eq. (10.5), we see that the total sample complexity is

Õ

(√
k

α2
+
d

ε2
·min

{
1,
dα2

ε2k
+
k · ∥µ∥21
dε2

})

Recalling that µ in the analysis above actually refers to the pre-processed µ− µ̃, and that
TestAndOptimizeMean sets k = ⌈d4η⌉ and α = εd−(1−3η)/2, with 0 ≤ η ≤ 1

4
, the above

expression simplifies to

Õ
(
d

ε2
·
(
d−η +min{1, f(µ, µ̃, d, η, ε)}

))

where f(µ, µ̃, d, η, ε) = ∥µ−µ̃∥21
d1−4ηε2

.
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Remark on setting upper bound ζ . As ζ only affects the sample complexity logarith-
mically, one may be tempted to use a larger value than ζ = 4ε

√
d. However, observe that

running ApproxL1 with a larger upper bound than ζ = 4ε
√
d would not be helpful since

∥µ∥2 > ζ/4 whenever ApproxL1 currently returns Fail and we have ∥µ∥1 ≤ λ whenever
ApproxL1 returns λ ∈ R. So, ε

√
d = ζ/4 < ∥µ∥2 ≤ ∥µ∥1 ≤ λ and TestAndOptimize-

Mean would have resorted to using the empirical mean anyway.

10.5 TestAndOptimizeCovariance for the general co-
variance setting

We will later define analogs ofm(d, α, δ) and ApproxL1 from Section 10.4 to the unknown
covariance setting: m′(d, α, δ) and VectorizedApproxL1 respectively. Then, after stat-
ing the guarantees of VectorizedApproxL1, we show how to use them according to the
strategy outlined in Section 10.3.2.

For the rest of this section, we assume that we get i.i.d. samples from N(0,Σ) and
also that Σ is full rank. These are without loss of generality for the following reasons:

• Instead of a single sample from N(µ,Σ), we will draw two samples x1,x2 ∼
N(µ,Σ) and consider x′ = x1+x2√

2
. One can check that x′ is distributed according

to N(0,Σ) and we only use a multiplicative factor of 2 additional samples, which
is subsumed in the big-O.

• By Lemma 2.26, the empirical covariance constructed from d i.i.d. samples of
N(0,Σ) will have the same rank as Σ itself, with probability at least 1− δ. So, we
can simply project and solve the problem on the full rank subspace of the empirical
covariance matrix.

10.5.1 The adjustments

To begin, we elaborate on the adjustments mentioned in Section 10.3.2 to adapt the
approach from the identity covariance setting to the unknown covariance setting. The
formal proofs of the following two adjustment lemmas are deferred to Appendix C.2.3.

The first adjustment relates to performing a suitable preconditioning process using an
additional d samples so that we can subsequently argue that λmin(Σ) ≥ 1. The idea is as
follows: we will compute a preconditioning matrixA using d i.i.d. samples such thatAΣA

has eigenvalues at least 1, i.e. λmin(AΣA) ≥ 1. That is, ∥(AΣA)−1∥2 = 1
λmin(AΣA)

≤ 1.
Then, we solve the problem treating AΣA as our new Σ. This adjustment succeeds
with probability at least 1 − δ for any given δ ∈ (0, 1) and is possible because, with
probability 1, the empirical covariance Σ̂ formed by using d i.i.d. samples would have the
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same eigenspace as Σ, and so we would have a bound on the ratios between the minimum
eigenvalues between Σ̂ and Σ; see Lemma 2.26.

Lemma 10.11. For any δ ∈ (0, 1), there is an explicit preconditioning process that uses d
i.i.d. samples from N(0,Σ) and succeeds with probability at least 1− δ in constructing a
matrix A ∈ Rd×d such that λmin(AΣA) ≥ 1. Furthermore, for any full rank PSD matrix
Σ̃ ∈ Rd×d, we have ∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ = ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥.

The matrix A in Lemma 10.11 is essentially constructed by combining the eigenspace
corresponding to “large eigenvalues” with a suitably upscaled eigenspace corresponding
to “small eigenvalues” in the empirical covariance matrix obtained by d i.i.d. samples and
relying on Lemma 2.26 for correctness arguments.

The second adjustment relates to showing that the partitioning idea also works for
obtaining sample efficient ℓ1 estimates of vec(Σ− Id). While an existence result suffices,
we show that a simple probabilistic construction will in fact succeed with high probability.

Lemma 10.12. Fix dimension d ≥ 2 and group size k ≤ d. Consider the q = 2 setting
where T ∈ Rd×d is a matrix. Define w = 10d(d−1) log d

k(k−1)
. Pick sets B1, . . . ,Bw each of

size k uniformly at random (with replacement) from all the possible
(
d
k

)
sets. With high

probability in d, this is a (q = 2, d, k, a = 1, b = 30(d−1) log d
(k−1)

)-partitioning scheme.

We can obtain a (q = 2, d, k, a = 1, b = O(d log d
k

))-partitioning scheme by repeating
the construction of Lemma 10.12 until it satisfies required conditions. Since it succeeds
with high probability in d, we should not need many tries. The key idea behind utilizing
partitioning schemes is that the marginal over a subset of indices B ⊆ [d] of a d-
dimensional Gaussian with covariance matrixΣ has covariance matrix that is the principal
submatrix ΣB of Σ. So, if we can obtain a multiplicative α-approximation of a collection
of principal submatrices ΣB1 , . . .ΣBw such that all cells of Σ are present, then we can
obtain a multiplicative α-approximation of Σ just like in Section 10.4. Meanwhile, the b
parameter allows us to upper bound the overestimation factor due to repeated occurrences
of any cell of Σ.

10.5.2 Following the approach from the identity covariance setting

We begin by defining a parameterized sample countm′(d, ε, δ), similar to Definition 10.8.

Definition 10.13. Fix any d ≥ 1, ε > 0, and δ ∈ (0, 1). We define m′(d, ε, δ) = n′
d,ε · rδ,

where

n′
d,ε =

⌈
3200d ·max

{
1

ε2
,
1

ε
, 1

}⌉
and rδ = 1 +

⌈
log

(
12

δ

)⌉
The VectorizedApproxL1 algorithm corresponds to ApproxL1 in Section 10.4: it

performs an exponential search to find the 2-approximation of the ∥Σ−Id∥2F by repeatedly
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invoking the tolerant tester from Lemma 10.6 and then utilize a suitable partitioning scheme
to bound ∥vec(Σ− Id)∥1; see Lemma 10.12 and the discussions below it.

Algorithm 23 The VectorizedApproxL1 algorithm.
Input: Error rate ε > 0, failure rate δ ∈ (0, 1), block size k ∈ [d], lower bound α > 0,
upper bound ζ > 2α, and i.i.d. samples S from N(0,Σ)
Output: Fail, OK, or λ ∈ R

1: Define w = 10d(d−1) log d
k(k−1)

, δ′ = δ
w·⌈log2 ζ/α⌉

, and let B1, . . . ,Bw ⊆ [d]2 be a (q =

2, d, k, a = 1, b = O(d log d
k

))-partitioning scheme as per Lemma 10.12
2: for j ∈ {1, . . . , w} do
3: Define SBj

= {xBj
∈ R|Bj | : x ∈ S} as the projected samples

▷ See Definition 2.4
4: Initialize oj = Fail
5: for i = 1, 2, . . . , ⌈log2 ζ/α⌉ do
6: Define li = 2i−1 · α
7: Let Outcome be the output of the tolerant tester of Lemma 10.6 using sample

set SBj
with ε1 = li, ε2 = 2li, and δ = δ′

8: if Outcome is Accept then
9: Set oj = li and break ▷ Escape inner loop for block j

10: if there exists a Fail amongst {o1, . . . , ow} then
11: return Fail
12: else if 4b

∑w
j=1 o

2
j ≤ α2 then

13: return OK
14: else
15: return λ = 2

∑w
j=1

√
|Bj| · oj ▷ λ is an estimate for ∥vec(Σ−Bd)∥1

One can show that the VectorizedApproxL1 algorithm has the following guarantees.

Lemma 10.14. Let ε, δ, k, α, and ζ be the input parameters to the VectorizedApproxL1
algorithm (Algorithm 23). Given m(k, α, δ′) i.i.d. samples from N(µ, Id), the Vector-
izedApproxL1 algorithm succeeds with probability at least 1 − δ and has the following
properties:

• If VectorizedApproxL1 outputs Fail, then ∥Σ− Id∥2F > ζ/2.

• If VectorizedApproxL1 outputs OK, then ∥Σ− Id∥2F ≤ α2.

• If VectorizedApproxL1 outputs λ ∈ R, then

∥vec(Σ− Id)∥1 ≤ λ ≤ 2
√
k ·
(
10d(d− 1) log d

k(k − 1)
· α + 2∥vec(Σ− Id)∥1

)

Proof. We begin by stating some properties of o1, . . . , ow. Fix an arbitrary index j ∈
{1, . . . , w} and suppose oj is not a Fail, i.e. the tolerant tester of Lemma 10.6 outputs
Accept for some i∗ ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. Note that VectorizedApproxL1 sets
oj = ℓi∗ and the tester outputs Reject for all smaller indices i ∈ {1, . . . , i∗ − 1}. Since
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the tester outputs Accept for i∗, we have that ∥ΣBj
− Id∥F ≤ 2ℓi∗ = 2oj . Meanwhile,

if i∗ > 1, then ∥ΣBj
− Id∥F > ℓi∗−1 = ℓi∗/2 = oj/2 since the tester outputs Reject for

i∗ − 1. Thus, we see that

• When oj is not Fail, we have ∥ΣBj
− Id∥F ≤ 2oj .

• When ∥ΣBj
− Id∥F ≤ 2α, we have i∗ = 1 and oj = ℓ1 = α.

• When ∥ΣBj
− Id∥F > 2α = 2ℓ1, we have i∗ > 1 and so oj < 2∥ΣBj

− Id∥F .

Success probability. Fix an arbitrary index i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉} with ℓi = 2i−1α,
where ℓi ≤ ℓ1 = α for any i. We invoke the tolerant tester with ε2 = 2ℓi = 2ε1, so the ith

invocation uses at most n′
k,ε ·rδ i.i.d. samples to succeed with probability at least 1−δ; see

Definition 10.13 and Algorithm 31. So, with m(k, α, δ′) samples, any call to the tolerant
tester succeeds with probability at least 1 − δ′, where δ′ = δ

w·⌈log2 ζ/α⌉
. By construction,

there will be at most w · ⌈log2 ζ/α⌉ calls to the tolerant tester. Therefore, by union bound,
all calls to the tolerant tester jointly succeed with probability at least 1− δ.

Property 1. When VectorizedApproxL1 outputs Fail, there exists a Fail amongst
{o1, . . . , ow}. For any fixed index j ∈ {1, . . . , w}, this can only happen when all calls to
the tolerant tester outputs Reject. This means that ∥ΣBj

− Id∥F > ε1 = ℓi = 2i−1 · α for
all i ∈ {1, 2, . . . , ⌈log2 ζ/α⌉}. In particular, this means that ∥ΣBj

− Id∥F > ζ/2.

Property 2. When VectorizedApproxL1 outputsOK, we have 4b
∑w

j=1 o
2
j ≤ α2. Then,

since ∥ΣBj
− Id∥F ≤ 2oj for each index j ∈ {1, . . . , w} and since each cell in Σ appears

at most b times across all submatrices ΣB1 , . . . ,ΣBw , we see that

∥Σ− Id∥2F ≤ b ·
w∑

j=1

∥ΣBj
− Id∥2F ≤ b ·

w∑
j=1

(2oj)
2 ≤ α2

That is, ∥Σ− Id∥2F ≤ α2 as desired.

Property 3. When VectorizedApproxL1 outputs λ = 2
∑w

j=1

√
|Bj| · oj ∈ R, we

have 4b
∑w

j=1 o
2
j > α2. We can lower bound λ as follows:

λ = 2
w∑

j=1

√
|Bj| · oj

≥ 2
w∑

j=1

√
|Bj| ·

∥ΣBj
− Id∥F
2

(since ∥ΣBj
− Id∥F ≤ 2oj)

=
w∑

j=1

√
|Bj| · ∥vec(ΣBj

− Id)∥22 (since ∥ΣBj
− Id∥2F = ∥vec(ΣBj

− Id)∥22)
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≥
w∑

j=1

∥vec(ΣBj
− Id)∥1 (since ∥vec(ΣBj

− Id)∥21 ≤ |Bj| · ∥vec(ΣBj
− Id)∥22)

≥ ∥vec(Σ− Id)∥1
(Since each cell in Σ appears at least a = 1 times across all submatrices ΣB1 , . . . ,ΣBw)

That is, λ ≥ ∥vec(Σ− Id)∥1. Meanwhile, we can also upper bound λ as follows:

λ = 2
w∑

j=1

√
|Bj| · oj

≤ 2
√
k ·

w∑
j=1

oj (since |Bj| ≤ k)

= 2
√
k ·

 w∑
j=1

∥ΣBj
−Id∥F≤2α

oj +
w∑

j=1
∥ΣBj

−Id∥F>2α

oj


(partitioning based on ∥ΣBj

− Id∥F versus 2α)

= 2
√
k ·

 w∑
j=1

∥ΣBj
−Id∥F≤2α

α +
w∑

j=1
∥ΣBj

−Id∥F>2α

oj


(since ∥ΣBj

− Id∥F ≤ 2α implies oj = α)

≤ 2
√
k ·


w∑

j=1
∥ΣBj

−Id∥F≤2α

α + 2
w∑

j=1
∥ΣBj

−Id∥2F≤2α

∥ΣBj
− Id∥F


(since ∥ΣBj

− Id∥F > 2α implies oj ≤ 2∥ΣBj
− Id∥F )

= 2
√
k ·

 w∑
j=1

∥ΣBj
−Id∥F≤2α

α + 2
w∑

j=1
∥ΣBj

−Id∥F≤2α

∥vec(ΣBj
− Id)∥2


(since ∥ΣBj

− Id∥2F = ∥vec(ΣBj
− Id)∥22)

≤ 2
√
k ·

 w∑
j=1

∥ΣBj
−Id∥F≤2α

α + 2
w∑

j=1
∥ΣBj

−Id∥F≤2α

∥vec(ΣBj
− Id)∥1


(since ∥vec(ΣBj

− Id)∥2 ≤ ∥vec(ΣBj
− Id)∥1)

≤ 2
√
k ·

wα + 2
w∑

j=1
∥ΣBj

−Id∥2F≤2α

∥vec(ΣBj
− Id)∥1


(since |{j ∈ [w] : ∥ΣBj

− Id∥F ≤ 2α}| ≤ w)
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≤ 2
√
k · (wα + 2∥vec(Σ− Id)∥1)

(since
w∑

j=1
∥ΣBj

−Id∥F≤2α

∥vec(ΣBj
− Id)∥1 ≤

∑w
j=1 ∥vec(ΣBj

− Id)∥1 = ∥vec(Σ− Id)∥1)

That is, λ ≤ 2
√
k · (wα + 2∥vec(Σ− Id)∥1), where w = 10d(d−1) log d

k(k−1)
. The property

follows by putting together both bounds.

Now, suppose VectorizedApproxL1 tells us that ∥vec(Σ− Id)∥1 ≤ r. We can then
construct a SDP to search for a candidate Σ̂ ∈ Rd×d using i.i.d. samples from N(0,Σ).

Lemma 10.15. Fix d ≥ 1, r ≥ 0, and ε, δ > 0. Given O
(

r2

ε4
log 1

δ
+

d+
√

d log(1/δ)

ε2

)
i.i.d. samples from N(0,Σ) for some unknown Σ ∈ Rd×d with ∥vec(Σ − Id)∥1 ≤ r,
one can produce estimates µ̂ ∈ Rd and Σ̂ ∈ Rd×d in poly(n, d, log(1/ε)) time such that
dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with success probability at least 1− δ.

Proof. Suppose we get n samples y1, . . . ,yn ∼ N(0,Σ). For i ∈ [n], we can re-express
each yi as yi = Σ1/2gi, for some gi ∼ N(0, Id). Let us define T = 1

n

∑n
i=1 gig

⊤
i and

S = 1
n

∑n
i=1 yiy

⊤
i = Σ1/2

(
1
n

∑n
i=1 gig

⊤
i

)
Σ1/2 = Σ1/2TΣ1/2.

Let us define Σ̂ ∈ Rd×d as follows:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

λmin(A)≥1

n∑
i=1

∥A− yiy
⊤
i ∥2F (10.6)

Observe that Σ is a feasible solution to Eq. (10.6). We show in Appendix C.2.3 that
Eq. (10.6) is a semidefinite program (SDP) that is polynomial time solvable.

Since Σ and Σ̂ are symmetric p.s.d. matrices, observe that

n∑
i=1

∥Σ̂− yiy
⊤
i ∥2F =

n∑
i=1

∥Σ̂−Σ1/2gig
⊤
i Σ

1/2∥2F (Since yi = Σ1/2gi)

=
n∑

i=1

Tr

((
Σ̂−Σ1/2gig

⊤
i Σ

1/2
)⊤ (

Σ̂−Σ1/2gig
⊤
i Σ

1/2
))

(Since ∥A∥2F = Tr(A⊤A) for any matrix A)

=
n∑

i=1

Tr
(
Σ̂2 − 2gig

⊤
i Σ

1/2Σ̂Σ1/2 + gig
⊤
i Σgig

⊤
i Σ
)

(Expanding and applying cyclic property of trace)

Similarly, by replacing Σ̂ with Σ, we see that

n∑
i=1

∥Σ− yiy
⊤
i ∥2F =

n∑
i=1

Tr
(
Σ2 − 2gig

⊤
i Σ

2 + gig
⊤
i Σgig

⊤
i Σ
)
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By standard SDP results (e.g. see [VB96, Fre04, GM12]), Eq. (10.6) can be solved
optimally up to additive ε in the objective function. We show explicitly in Appendix C.2.3
that our problem can be transformed into a SDP and be solved in poly(n, d, log(1/ε))

time. Since we solve up to additive ε in the objective function, we have

n∑
i=1

∥Σ̂− yiy
⊤
i ∥2F ≤ ε+

n∑
i=1

∥Σ− yiy
⊤
i ∥2F (10.7)

which implies that

n∑
i=1

Tr
(
Σ̂2 − 2gig

⊤
i Σ

1/2Σ̂Σ1/2 + gig
⊤
i Σgig

⊤
i Σ
)

≤ ε+
n∑

i=1

Tr
(
Σ2 − 2gig

⊤
i Σ

2 + gig
⊤
i Σgig

⊤
i Σ
)

Cancelling the common gig
⊤
i Σgig

⊤
i Σ term and rearranging, we get

Tr
(
Σ̂2 −Σ2

)
≤ ε

n
+

2

n

n∑
i=1

Tr
(
gig

⊤
i

(
Σ1/2Σ̂Σ1/2 −Σ2

))
(10.8)

Therefore,

∥Σ̂−Σ∥2F = Tr

((
Σ̂−Σ

)⊤ (
Σ̂−Σ

))
= Tr

(
Σ̂2 − 2Σ̂Σ+Σ2

)
≤ ε

n
+

2

n

n∑
i=1

Tr
(
gig

⊤
i

(
Σ1/2Σ̂Σ1/2 −Σ2

)
− Σ̂Σ+Σ2

)
(Add 2Σ2 − 2Σ̂Σ to both sides of Eq. (10.8))

=
ε

n
+

2

n

n∑
i=1

Tr
((

gig
⊤
i − Id

)
·
(
Σ1/2Σ̂Σ1/2 −Σ2

))
(Since Tr(Σ̂Σ) = Tr(Σ1/2Σ̂Σ1/2))

=
ε

n
+ 2 · Tr

((
Σ1/2Σ̂−Σ1/2Σ

)
·Σ1/2 ·

((
1

n

n∑
i=1

gig
⊤
i

)
− Id

))
(Rearranging with cyclic property of trace)

=
ε

n
+ 2 · Tr

((
Σ1/2Σ̂−Σ1/2Σ

)
·Σ1/2 · (T − Id)

)
(Since T = 1

n

∑n
i=1 gig

⊤
i )

≤ ε

n
+ 2 ·

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
· ∥T − Id∥2

(By Lemma 2.7 with A = Σ1/2Σ̂−Σ1/2Σ, B = Σ1/2, and C = T − Id)
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Lemma 2.28 tells us that Pr (∥T − Id∥2 > ε) ≤ 2 exp(−t2d) when the number of
samples n = c0

ε2
log 2

δ
, for some absolute constant c0. So, to complete the proof, it suffices

to upper bound
∥∥∥vec(ΣΣ̂−Σ2

)∥∥∥
1
. Consider the following:

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
=
∥∥∥vec((Id −Σ)(Σ− Σ̂)−Σ+ Σ̂

)∥∥∥
1

≤ ∥vec(Id −Σ)∥1 ·
∥∥∥vec(Σ− Σ̂)

∥∥∥
1
+
∥∥∥vec(Σ̂−Σ)

∥∥∥
1

(By Lemma 2.8)

= (∥vec(Id −Σ)∥1 + 1) ·
∥∥∥vec(Σ̂− Id + Id −Σ)

∥∥∥
1

(Rearranging and adding 0)

≤ (∥vec (Id −Σ)∥1 + 1) ·
(
∥vec(Σ̂− Id)∥1 + ∥vec(Id −Σ)∥1

)
(By Lemma 2.8)

≤ (r + 1) · 2r
(Since ∥vec(Id −Σ)∥1 ≤ r and

∥∥∥vec(Σ̂− Id)
∥∥∥
1
≤ r)

When 2
ε
≤ n and n ∈ O

(
r2

ε4
log 1

δ

)
, the following holds with probability at least 1− δ:

∥Σ̂−Σ∥2F ≤
ε

n
+ 2 ·

∥∥∥vec(ΣΣ̂−Σ2
)∥∥∥

1
· ∥T − Id∥2

≤ ε

n
+ 4r(r + 1) · ∥T − Id∥2 ≤

ε

n
+
ε2

2
≤ ε2

Now, Lemma 2.25 tells us that the empirical mean µ̂ formed usingO
(

d+
√

d log(1/δ)

ε2

)
samples satisfies (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε2, with failure probability at most δ. So,

dKL(N(µ̂, Σ̂), N(µ,Σ))

=
1

2
·
(
Tr(Σ−1Σ̂)− d+ (µ− µ̂)⊤Σ−1(µ− µ̂) + ln

(
detΣ

det Σ̂

))
≤ 1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ−1/2Σ̂Σ−1/2 − Id∥2F

)
(By Lemma 2.29)

=
1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ̂Σ−1 − Id∥2F

)
(By Lemma 2.9)

≤ 1

2
·
(
ε2 + ∥Σ̂Σ−1 − Id∥2F

)
(Since (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + ∥Σ−1∥22 · ∥Σ̂−Σ∥2F

)
(Submultiplicativity of Frobenius norm)

≤ 1

2
·
(
ε2 + ∥Σ̂−Σ∥2F

)
(Since ∥Σ−1∥2 = 1

λmin(Σ)
≤ 1)

≤ 1

2
·
(
ε2 + ε2

)
(From above, with probability at least 1− δ)
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= ε2

By union bound, the above events jointly hold with probability at least 1 − 2δ. Thus, by
symmetry of TV distance and Theorem 2.18, we see that

dTV(N(µ, Id), N(µ̂, Id)) = dTV(N(µ̂, Id), N(µ, Id))

≤
√

1

2
dKL(N(µ̂, Id), N(µ, Id)) ≤

√
ε2 = ε

The claim holds by repeating the same argument after scaling δ by an appropriate constant.

Algorithm 24 The TestAndOptimizeCovariance algorithm.
Input: Error rate ε > 0, failure rate δ ∈ (0, 1), parameter η ∈ [0, 1], and sample
access to N(0,Σ)

Output: Σ̂ ∈ Rd×d

1: Define k = ⌈dη⌉, α = εd−(2−η)/2, ζ = 4εd, and δ′ = δ
w·⌈log2 ζ/α⌉

▷ Note: ζ > 2α

2: Draw m′(k, α, δ′) i.i.d. samples from N(0,Σ) and store it into a set S
▷ See Definition 10.13

3: Let Outcome be the output of the VectorizedApproxL1 algorithm given ε, δ, k, α,
ζ , and S as inputs

4: if Outcome is λ ∈ R and λ < εd then
5: Draw n ∈ Õ(λ2/ε4) i.i.d. samples y1, . . . ,yn ∈ Rd from N(0, Id)

6: return Σ̂ = argminA ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤λ

λmin(A)≥1

∑n
i=1 ∥A− yiy

⊤
i ∥2F ▷ See Eq. (10.6)

7: else
8: Draw 2n ∈ Õ(d2/ε2) i.i.d. samples y1, . . . ,y2n ∈ Rd from N(0, Id)

9: return Σ̂ = 1
2n

∑2n
i=1(y2i − y2i−1)(y2i − y2i−1)

⊤ ▷ Empirical covariance

Theorem 10.2. For any given ε, δ ∈ (0, 1), η ∈ [0, 1] and Σ̃ ∈ Rd×d, TestAndOptimize-
Covariance uses n ∈ Õ

(
d2

ε2
·
(
d−η +min

{
1, f(Σ, Σ̃, d, η, ε)

}))
, where

f(Σ, Σ̃, d, η, ε) =
∥vec(Σ̃−1/2ΣΣ̃−1/2 − Id)∥21

d2−ηε2
,

i.i.d. samples from N(µ,Σ) for some unknown mean µ and unknown covariance Σ, and
can produce µ̂ and Σ̂ in poly(n, d, log(1/ε)) time such that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε

with success probability at least 1− δ.

Proof. Without loss of generality, we may assume that Σ̃ = Id. This is because we can
pre-process all samples by pre-multiplying Σ̃−1/2 each of them to yield i.i.d. samples from
N(µ, Σ̃−1/2ΣΣ̃−1/2) and then post-process the estimated Σ̂ by outputting Σ̃1/2Σ̂Σ̃1/2

instead.
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Correctness of Σ̂ output. Consider the TestAndOptimizeCovariance algorithm given

in Algorithm 24. Using the empirical mean µ̂ = 1
n

∑n
i=1 yi formed byO

(
d+
√

d log(1/δ)

ε2

)
⊆ Õ(d/ε2) samples, Lemma 2.25 tells us that (µ̂−µ)⊤Σ−1(µ̂−µ) ≤ εwith probability
at least 1− δ. There are three possible outputs for Σ̂:

1. Σ̂ = Id, which can only happen when Outcome is OK

2. Σ̂ = argminA ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

λmin(A)≥1

∑n
i=1 ∥A − yiy

⊤
i ∥2F , which can only happen when

Outcome is λ ∈ R

3. Σ̂ = 1
2n

∑2n
i=1(y2i − y2i−1)(y2i − y2i−1)

⊤

Conditioned on VectorizedApproxL1 succeeding, with probability at least 1−δ, we will
now show that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε and failure probability at most 2δ in each of
these cases, which implies the theorem statement as we can repeat the argument by scaling
ε and δ by appropriate constants.
1: When Outcome is OK, Lemma 10.14 tells us that ∥Σ − Id∥2F ≤ α2, with failure
probability at most δ. Meanwhile, Lemma 2.25 tells us that (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε2,
with failure probability at most δ. By union bound, both of these jointly hold with
probability at least 1− 2δ. Now, by setting µ̂ = Id, we see that

dKL(N(µ̂, Σ̂), N(µ,Σ))

=
1

2
·
(
Tr(Σ−1Σ̂)− d+ (µ− µ̂)⊤Σ−1(µ− µ̂) + ln

(
detΣ

det Σ̂

))
≤ 1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ−1/2Σ̂Σ−1/2 − Id∥2F

)
(By Lemma 2.29)

=
1

2
·
(
(µ− µ̂)⊤Σ−1(µ− µ̂) + ∥Σ− Id∥2F

)
(Since Σ̂ = Id)

≤ 1

2
·
(
ε2 + ∥Σ− Id∥2F

)
(Since (µ̂− µ)⊤Σ−1(µ̂− µ) ≤ ε, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + α2

)
(Since ∥Σ− Id∥2F ≤ α2, with probability at least 1− δ)

≤ 1

2
·
(
ε2 + ε2

)
(since α = εk

d
≤ ε as k ≤ d)

= ε2

Thus, by symmetry of TV distance and Theorem 2.18, we see that

dTV(N(µ,Σ), N(µ̂, Σ̂)) = dTV(N(µ̂, Σ̂), N(µ,Σ))

≤
√

1

2
dKL(N(µ̂, Σ̂), N(µ,Σ)) ≤

√
ε2 = ε



CHAPTER 10. LEARNING GAUSSIANS WITH IMPERFECT ADVICE 186

2: Using r = λ as the upper bound, Lemma 10.15 tells us that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤
ε with failure probability at most δ when Õ(λ2

ε4
+ d

ε2
) i.i.d. samples are used.

3: With Õ(d2/ε2) samples, Lemma 2.25 tells us that dTV(N(µ,Σ), N(µ̂, Σ̂)) ≤ ε with
failure probability at most δ.

Sample complexity used. By Definition 10.13, VectorizedApproxL1 uses |S| =
m′(k, α, δ′) ∈ Õ(k/α2) samples to produce Outcome. Then, VectorizedApproxL1
further uses Õ(λ2

ε4
+ d

ε2
) samples or Õ(d2/ε2) samples depending on whether λ < εd. So,

TestAndOptimizeCovariance has a total sample complexity of

Õ
(
k

α2
+min

{
λ2

ε4
+
d

ε2
,
d2

ε2

})
⊆ Õ

(
k

α2
+
d

ε2
+min

{
λ2

ε4
,
d2

ε2

})
(10.9)

Meanwhile, Lemma 10.14 states that

∥vec(Σ− Id)∥1 ≤ λ ≤ 2
√
k ·
(
10d(d− 1) log d

k(k − 1)
· α + 2∥vec(Σ− Id)∥1

)
whenever Outcome is λ ∈ R. Since (a + b)2 ≤ 2a2 + 2b2 for any two real numbers
a, b ∈ R, we see that

λ2

ε4
∈ O

(
k

ε4
·
(
d4α2

k4
+ ∥vec(Σ− Id)∥21

))
⊆ O

(
d2

ε2
·
(
d2α2

ε2k3
+
k · ∥vec(Σ− Id)∥21

d2ε2

))
(10.10)

Putting together Eq. (10.9) and Eq. (10.10), we see that the total sample complexity is

Õ
(
k

α2
+
d

ε2
+
d2

ε2
·min

{
1,
d2α2

ε2k3
+
k · ∥vec(Σ− Id)∥21

d2ε2

})
Recalling that Σ in the analysis above actually refers to the pre-processed Σ̃−1/2ΣΣ̃−1/2,
and that TestAndOptimizeCovariance sets k = ⌈dη⌉, α = εd−(2−η)/2, with 0 ≤ η ≤ 1,
the above expression simplifies to

Õ
(
d2

ε2
·
(
d−η +min

{
1, f(Σ, Σ̃, d, η, ε)

}))

where f(Σ, Σ̃, d, η, ε) = ∥vec(Σ̃−1/2ΣΣ̃−1/2−Id)∥21
d2−ηε2

.

Remark on setting upper bound ζ . As ζ only affects the sample complexity loga-
rithmically, one may be tempted to use a larger value than ζ = 4εd. However, observe
that running VectorizedApproxL1 with a larger upper bound than ζ = 4ε

√
d would

not be helpful since ∥Σ − Id∥2F > ζ/2 whenever VectorizedApproxL1 currently re-
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turns Fail and we have ∥vec(Σ − Id)∥1 ≤ λ whenever VectorizedApproxL1 returns
λ ∈ R. So, εd = ζ/4 < ∥Σ − Id∥2F = ∥vec(Σ − Id)∥2 ≤ ∥vec(Σ − Id)∥1 ≤ λ and
TestAndOptimizeMean would have resorted to using the empirical mean anyway.



Chapter 11

Causal graph discovery with adaptive
interventions and imperfect advice

“Felix qui potuit rerum cognoscere causas.”
(“Happy is he who has been able to learn the causes of things.”)

- Virgil in Georgics

11.1 Introduction

In Chapter 6, we studied the problem of recovering the true underlying causal graph using
adaptive interventions, providing a characterization of verification sets and search algo-
rithms that use at most a logarithmic factor more interventions that worst case necessary.
Typically though, in most applications of causal structure learning, there are domain ex-
perts and practitioners who can provide additional “advice” about the causal relations.
Indeed, there has been a long line of work studying how to incorporate expert advice into
the causal graph discovery process; e.g. see [Mee95, SSG+98, dCJ11, FNB+11, LB18,
ASC20, FH20, POE21]. In this chapter, we study in a principled way how using purported
expert advice can lead to improved algorithms for interventional design.

Before discussing our specific contributions, let us ground the above discussion with
a concrete problem of practical importance. In modern virtualized infrastructure, it is
increasingly common for applications to be modularized into a large number of inter-
dependent microservices. These microservices communicate with each other in ways
that depend on the application code and on the triggering userflow. Crucially, the com-
munication graph between microservices is often unknown to the platform provider as
the application code may be private and belong to different entities. However, know-
ing the graph is useful for various critical platform-level tasks, such as fault localization
[ZPX+19], active probing [TJG+19], testing [JBT+19], and taint analysis [CLO07]. Re-
cently, [WRJ+23] and [ICM+22] suggested viewing the microservices communication

188
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graph as a sparse causal DAG. In particular, [WRJ+23] show that arbitrary interventions
can be implemented as fault injections in a staging environment, so that a causal structure
learning algorithm can be deployed to generate a sequence of interventions sufficient to
learn the underlying communication graph. In such a setting, it is natural to assume that
the platform provider already has an approximate guess about the graph, e.g. the graph
discovered in a previous run of the algorithm or the graph suggested by public metadata
tagging microservice code. The research program we put forth is to design causal structure
learning algorithms that can take advantage of such potentially imperfect advice. Note
however that the system in [WRJ+23] is not causally sufficient due to confounding user be-
havior and [ICM+22] does not actively perform interventions. So, the algorithm proposed
in this work cannot be used directly for the microservices graph learning problem.

11.2 Our main results

Following the TestAndAct framework for designing learning-augmented algorithms, we
consider the setting where the advice is a DAG G̃ ∈ [G∗] purported to be the orientations
of all the edges of the input essential graph E(G∗).

While verification numbers of DAGs in the same Markov equivalence class may differ
in general, we show that minimum and maximum atomic verification numbers of DAGs
from the same Markov equivalence class cannot differ by a multiplicative factor of two.

Theorem 11.1. We have maxG∈[G∗] ν1(G) ≤ 2 ·minG∈[G∗] ν1(G). Furthermore, there exist
two DAGs G1 and G2 such that [G1] = [G2] and ν1(G1) = 2 · ν1(G2).

Using Theorem 11.1, we can test whether G̃ ?
= G∗ while incurring at most twice the

number of necessary interventions. In some sense, Theorem 11.1 enables us to “blindly
trust” the information provided by imperfect advice to some extent. Meanwhile, we can
define a distance measure ψ (see Definition 11.4) which is always bounded by n, the
number of variables, and equals 0 when G̃ = G∗. Using ψ, we propose an adaptive
algorithm TestAndSubsetSearch that can exploit a given advice DAG G̃ ∈ [G∗].

Theorem 11.2. Fix an essential graph E(G∗) of an unknown underlying DAG G∗. Given
an advice graph G̃ ∈ [G∗], TestAndSubsetSearch runs in polynomial time and computes
an atomic intervention set I ⊆ 2V in a deterministic and adaptive manner such that
EI(G∗) = G∗ and |I| ∈ O(max{1, logψ(G∗, G̃)} · ν1(G∗)).

Observe that when the advice is perfect (i.e. G̃ = G∗), we useO(ν1(G∗)) interventions,
i.e. a constant multiplicative factor of the minimum number of interventions necessary.
Meanwhile, even with low quality advice, we still use O(log n · ν(G∗)) interventions,
asymptotically matching the best known guarantees for adaptive search without advice
in Chapter 6. To the best of our knowledge, Theorem 11.2 is the first known result that
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principally employs imperfect expert advice with provable guarantees in the context of
causal graph discovery via interventions.

In Appendix C.3.1, we explain why TestAndSubsetSearch is simply the classic
learning-augmented binary search given in Chapter 1 when the given essential graph
E(G∗) is an undirected path. So, another way to view our result is as a generalization that
works on essential graphs of arbitrary moral DAGs.

For k > 1, Theorem 11.2 also extends to the k-bounded intervention setting where the
algorithm uses O(max{1, logψ(G∗, G̃)} · log k · νk(G∗)) interventions. This is achieved
using techniques from Section 6.3.5. We omit this extension in this chapter and refer
interested readers to [CGB23].

11.3 Technical overview

In this chapter, we use the notation of C(G) ⊆ E(G) to denote the set of covered edges
of a DAG G. That is, any atomic intervention set of G is a minimum vertex cover of
C(G). Meanwhile, for any verifying set Ṽ ⊆ 2V , we also define Ṽ = {V ∈ V : ∃I ∈
V such that V ∈ I} ⊆ V to refer to the set of nodes involved in the verifying set Ṽ .

11.3.1 Defining a suitable quality metric

To define the quality of the advice DAG G̃ ∈ [G∗], we first define the notion of min-hop-
coverage which measures how “far” a given verifying set of G̃ is from the set of covered
edges of G∗. Recalling the definition of relevant nodes (Definition 6.23), we then define a
quality measure ψ(G∗, G̃) for DAG G̃ ∈ [G∗] as an advice for DAG G∗.

Definition 11.3 (Min-hop-coverage). Fix a DAG G∗ with MEC [G∗]. For any DAG
G̃ ∈ [G∗] and any verifying set Ṽ ⊆ 2V of G̃, we define the min-hop-coverage r =

h(G∗, Ṽ) ∈ {0, 1, 2, . . . , n} as the minimum number of hops such that both endpoints of
covered edges C(G∗) of G∗ belong in the r-hop neighborhood N r

skel(E(G∗))(Ṽ ).

Definition 11.4 (Quality measure). Fix a DAG G∗ with MEC [G∗]. For any DAG G̃ ∈ [G∗],
we define ψ(G∗, G̃) as follows:

ψ(G∗, G̃) = max
minimum sized atomic

verifying set Ṽ ⊆ 2V of G̃

∣∣∣ρ(Ṽ , Nh(G∗,Ṽ)
skel(E(G∗))(Ṽ )

)∣∣∣
In words, within the maximization term, the quality metric measures the number of

nodes within Nh(G∗,Ṽ)
skel(E(G∗))(Ṽ ) that are adjacent to some unoriented arc within the node-

induced subgraph EṼ(G∗)[N
h(G∗,Ṽ)
skel(E(G∗))(Ṽ )], i.e. intervene on Ṽ then measure how many

nodes within the subgraph is do not belong to singleton chain components.
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By definition, ψ(G∗,G∗) = 0 and maxG∈[G∗] ψ(G∗,G) ≤ n. In words, ψ(G∗, G̃) only
counts the relevant nodes within the min-hop-coverage neighborhood after intervening on
the worst possible verifying set of G̃. We define ψ in terms of the worst set because any
search algorithm cannot evaluate h(G∗, Ṽ), since G∗ is unknown, and can only consider
an arbitrary minimum sized atomic verifying set of G̃. The following example illustrates
the concepts introduced above while showing that ψ is not symmetric in general.

Example 11.5. Consider the moral DAGs G∗ and G̃ ∈ [G∗] on n + 5 nodes in Fig. 11.1,
where dashed arcs represent the covered edges in each DAG. The covered edges of
G∗ are A → B, E → D, and D → C. A minimum sized verifying set of G̃
is Ṽ = {{A}, {E}, {Z2}} with Ṽ = {A,E, Z2}, given by the boxed nodes. As
N1

skel(E(G∗))(Ṽ ) = {A,B,C,D,E, Z1, Z2, Z3} includes both endpoints of all covered
edges of G∗, we see that h(G∗, Ṽ) = 1. Intervening on Ṽ in G∗ orients the arcs
B → A ← C, C ← E → D, and Z3 → Z2 → Z1 respectively which then trig-
gers Meek R1 to orient C → B via E → C − B and to orient Z4 → Z3 via
E → C → . . .→ Z4−Z3 (after a few invocations of Meek R1), so {A,B,E, Z1, Z2, Z3}
will not be relevant nodes in EṼ(G∗)[N1

skel(E(G∗))(Ṽ )]. Meanwhile, the edgeC−D remains
unoriented in EṼ(G∗)[N1

skel(E(G∗))(Ṽ )], so ρ(Ṽ , N1(Ṽ )) = |{C,D}| = 2. One can check
that ψ(G∗, G̃) = 2 while n could be arbitrarily large. On the other hand, observe that
ψ is not symmetric: in the hypothetical situation where we use G∗ as an advice for G̃,
the min-hop-coverage has to extend along the chain Z1 − . . . − Zn to reach {Z1, Z2}, so
h(G∗, V ∗) ≈ n and ψ(G̃,G∗) ≈ n since the entire chain remains unoriented with respect
to any minimum sized atomic verifying set of G∗.

A C

B

D

E

Zn
. . . Z2 Z1

G∗

A C

B

D

E

Zn
. . . Z2 Z1

G̃

Figure 11.1: Two moral DAGs G∗ and G̃ ∈ [G∗] on n + 5 nodes, where dashed arcs
represent the covered edges in each DAG. The covered edges of G∗ are A→ B, E → D,
and D → C. A minimum sized verifying set of G̃ is Ṽ = {{A}, {E}, {Z2}} with
Ṽ = {A,E, Z2}, given by the boxed nodes.

Our main algorithmic result is that it is possible to design an algorithm that leverages
an advice DAG G̃ ∈ [G∗] and performs interventions to fully recover an unknown under-
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lying DAG G∗, whose performance depends on the advice quality ψ(G∗, G̃). Our search
algorithm only knows E(G∗) and G̃ ∈ [G∗] but knows neither ψ(G∗, G̃) nor ν1(G∗).

Remark 11.6 (Readability). In the rest of this chapter, we only consider neighborhoods of
skel(E(G∗)) and we always refer to the quality measure ψ(G∗, G̃) with G∗ and G̃ in the first
and second parameters respectively. Going forward, we will drop the subscript skel(E(G∗))
when referring to r-hop neighbors N r

skel(E(G∗))(·), and write ψ to mean ψ(G∗, G̃).

11.3.2 Ratio of verification numbers

Our strategy for proving Theorem 11.1 is to consider two arbitrary DAGs Gs (source)
and Gt (target) in the same equivalence class and transform a verifying set for Gs into a
verifying set for Gt using Lemma 2.49 due to [Chi95]; we present the explicit algorithm
in Algorithm 25. The correctness of Algorithm 25 is given in [Chi95] where the key idea
is to show that X → Y in Line 9 is a covered edge; see [Chi95, Lemma 2].

Algorithm 25 Transform between DAGs within the same MEC via covered edge reversals
1: Input: Two DAGs Gs = (V ,Es) and Gt = (V ,Et) from the same MEC
2: Output: A sequence seq of covered edge reversals that transforms Gs to Gt
3: seq← ∅
4: while Gs ̸= Gt do
5: Fix an arbitrary valid ordering π for Gs
6: Let A← A(Gs) \A(Gt) be the set of differing arcs
7: Let Y = argmin

Z ∈ V : ∃ U ∈ V
such that U→Z ∈ A

{π(Z)}

8: Let X = argmax
Z ∈ V : Z→Y ∈ A

{π(Z)}

9: Add X → Y to seq ▷ [Chi95, Lemma 2]: X → Y ∈ C(Gs)
10: Update Gs by replacing X → Y with Y → X

11: return seq

Instead of proving Theorem 11.1 by analyzing the exact sequence seq of covered edges
produced by Algorithm 25 when transforming between the Gmin = argminG∈[G∗] ν1(G)
and Gmax = argmaxG∈[G∗] ν1(G), we will prove something more general.

Observe that taking both endpoints of any maximal matching of covered edges is a valid
verifying set that is at most twice the size of the minimum verifying set. This is because
maximal matching is a 2-approximation to the minimum vertex cover. Motivated by this
observation, our proof for Theorem 11.1 uses the following transformation argument (see
Lemma 11.7 below): for two DAGs G and G ′ that differ only on the arc direction of a single
covered edge X − Y , we show that given a special type of maximal matching called CRG
maximal matching (which we formally define later in Definition 11.10) on the covered
edges of G, we can obtain another CRG maximal matching of the same size on the covered
edges of G ′, after reversing X − Y and transforming G to G ′. So, starting from Gs, we
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compute a CRG maximal matching, then we apply the transformation argument above
on the sequence of covered edges given by Algorithm 25 until we get a CRG maximal
matching of Gt of the same size. Thus, we can conclude that the minimum vertex cover
sizes of Gs and Gt differ by a factor of at most two. This argument holds for any pair of
DAGs (Gs,Gt) from the same MEC which implies Theorem 11.1.

Lemma 11.7 (Informal). For any two moral DAGs G1 and G2 from the same MEC differing
only on the direction of a covered edgeX−Y , i.e.X → Y ∈ E(G1) andY → X ∈ E(G2),
there exists an explicit modification to transform a CRG maximal matching of G1 to a CRG
maximal matching of G2 such that both maximal matchings have the same size.

11.3.3 TestAndSubsetSearch

Our adaptive search algorithm TestAndSubsetSearch uses SubsetSearch (see Algo-
rithm 14 from Chapter 6) as a subroutine. We begin by observing that running Subset-
Search on any subset A ⊆ V fully orients E(G∗) into G∗ whenever the covered edges of
G∗ lies in the node-induced subgraph G∗[A].

Lemma 11.8. Fix a DAG G∗ = (V ,E). Let V ′ ⊆ V be any subset of nodes and
IV ′ ⊆ V be the intervention set intervened upon by SubsetSearch when run on subset
V ′. If C(G∗) ⊆ E(G∗[V ′]), then EIV ′ (G∗) = G∗.

Motivated by Lemma 11.8, we design TestAndSubsetSearch to repeatedly invoke
SubsetSearch on node-induced subgraphs N r(Ṽ ), starting from an arbitrary minimum
sized atomic verifying set Ṽ ⊆ 2V of G̃ and for increasing values of r. While the high-level
subroutine invocation idea seems simple, one needs to invoke SubsetSearch at suitably
chosen intervals in order to achieve our theoretical guarantees of Theorem 11.2. Below,
we explain how to do so in three successive attempts while explaining the algorithmic
decisions behind each modification introduced. As a reminder, we do not know G∗ and
thus do not know h(G∗, Ṽ) for any minimum sized atomic verifying set Ṽ of G̃ ∈ [G∗].

For i ∈ N, let us denoteni as the number of relevant nodes and r(i) ∈ N as the value of r
in the i-th invocation of SubsetSearch, where we insist that r(0) = 0 and r(j) > r(j−1)

for any j ∈ N. Note that ni ≤ |ρ(Ṽ , N r(i)(Ṽ ))| since the number of relevant nodes in
the i-th invocation is at most the number of relevant nodes in the neighborhood, but it
may have decreased due to interventions from earlier invocations. When r = 0, we are
simply intervening on the verifying set Ṽ , which only incursO(ν1(G∗)) interventions due
to Theorem 11.1. Meanwhile, we can appeal to Lemma 11.8 to conclude that E(G∗) is
completely oriented into G∗ in the t-th invocation if r(t) ≥ h(G∗, Ṽ).
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Naive attempt: Invoke for r = 0, 1, 2, 3, . . .

The most straightforward attempt would be to invoke SubsetSearch repeatedly each time
we increase r by 1 until the graph is fully oriented – in the worst case, t = h(G∗, Ṽ).
However, this may cause us to incur way too many interventions. Using Theorem 6.24,
one can only argue that the overall number interventions incurred is O(

∑t
i=0 log ni ·

ν1(G∗)). However,
∑

i log ni could be significantly larger than log(
∑

i ni) in general,
e.g. log 2 + . . . + log 2 = (n/2) · log 2 ≫ log n. In fact, if G∗ was a path on n nodes
v1 → v2 → . . . → vn and G̃ ∈ [G∗] misleads us with v1 ← v2 ← . . . ← vn, then this
approach incurs Ω(n) interventions in total.

Tweak 1: Only invoke periodically

Since Theorem 6.24 provides us a logarithmic factor in the analysis, we could instead
consider only invoking SubsetSearch after the number of nodes in the subgraph in-
creases by a polynomial factor. For example, if we invoked SubsetSearch with ni

previously, then we will wait until the number of relevant nodes surpasses n2
i be-

fore invoking SubsetSearch again, where we define n0 ≥ 2 for simplicity. Since
log ni ≥ 2 log ni−1, we can see via an inductive argument that the number of interventions
used in the final invocation will dominate the total number of interventions used so far:
nt ≥ 2 log nt−1 ≥ log nt−1 + 2 log nt−2 ≥ . . . ≥

∑t−1
i=0 log ni. Since ni ≤ n for any i, we

can already prove that O(log n · ν1(G∗)) interventions suffice, matching the advice-free
bound of Theorem 6.13. However, this approach does not take into account the quality of
G̃ and is insufficient to relate nt with the advice measure ψ.

Tweak 2: Also invoke one round before

Suppose the final invocation of SubsetSearch is on r(t)-hop neighborhood while incur-
ringO(log nt · ν1(G∗)) interventions. This means that C(G∗) lies withinN r(t)(Ṽ ) but not
within N r(t−1)(Ṽ ). That is, N r(t−1)(Ṽ ) ⊊ Nh(G∗,Ṽ)(Ṽ ) ⊆ N r(t)(Ṽ ). While this tells us
that nt−1 ≤ |ρ(Ṽ , N r(t−1)(Ṽ ))| < |ρ(Ṽ , Nh(G∗,Ṽ)(Ṽ ))| ≤ ψ, what we want is to conclude
that nt ∈ O(ψ). Unfortunately, even when ψ can be attained with a neighbood radius of
r(t − 1) + 1, it could be the case that ψ ≪ |N r(t)(Ṽ )| as the number of relevant nodes
could blow up within a single hop, but before the next invocation occurs (see Fig. 11.2).
To control this potential blow up, we use the following technical fix: whenever we want
to invoke SubsetSearch on neighbood radius of r(i), first invoke SubsetSearch on
neighbood radius of r(i) − 1 and terminate earlier if the graph is already fully oriented
into G∗. Doing so enables a case analysis to show that at mostO (max{1, logψ} · ν1(G∗))
interventions are always performed.
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V4

V5
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Vn

G∗

V1 V2 V3

V4

V5
...
Vn

G̃

Ṽ = {V1}

Figure 11.2: Consider the ground truth DAG G∗ with unique minimum verifying set
{V2} and an advice DAG G̃ ∈ [G∗] with chosen minimum verifying set Ṽ = {V1}. So,
h(G∗, Ṽ) = 1 and ideally we want to argue that our algorithm uses a constant number
of interventions. Without tweak 2 and starting with n0 = 2, an algorithm that increases
hop radius until the number of relevant nodes is squared will not invoke SubsetSearch
until r = 3 because ρ(Ṽ , N1({V1})) = 1 < n2

0 and ρ(Ṽ , N2({V1})) = 2 < n2
0. However,

ρ(Ṽ , N3({V1})) = n − 1 and we can only conclude that the algorithm uses O(log n)
interventions by invoking SubsetSearch on a subgraph on n− 1 nodes.

11.4 Ratio of verification numbers

In this section, we set out to prove Theorem 11.1 by repeated applications of the transfor-
mation argument of Lemma 11.11; the formal version of Lemma 11.7. To do so, we seek to
first understand how the status of covered edges evolve when we perform a single edge re-
versal in Lemma 11.9 and properly defining CRG maximal matchings in Definition 11.10.
The proofs of Lemma 11.9 and Lemma 11.11 are given in Appendix C.3.2.

Lemma 11.9 (Covered edge status changes due to covered edge reversal). Let G∗ be a
moral DAG with MEC [G∗] and consider any DAG G ∈ [G∗]. Suppose G = (V ,E) has a
covered edge X → Y ∈ C(G) and we reverse X → Y to Y → X to obtain a new DAG
G ′ ∈ [G∗]. Then, all of the following statements hold:

1. Y → X ∈ C(G ′). Note that this is the covered edge that was reversed.

2. If an edge E does not involve X or Y , then E ∈ C(G) if and only if E ∈ C(G ′).

3. If X ∈ ChG(A) for some A ∈ V \ {X, Y }, then A → X ∈ C(G) if and only if
A→ Y ∈ C(G ′).

4. If B ∈ ChG(Y ) and X → B ∈ E(G) for some B ∈ V \ {X, Y }, then Y → B ∈
C(G) if and only if X → B ∈ C(G ′).

We now define what is a conditional-root-greedy (CRG) maximal matching. As the
set of covered edges C(G) of any DAG G induces a forest (see Lemma 6.15), we define the
CRG maximal matching using a particular greedy process on the tree structure of C(G).
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Definition 11.10 (Conditional-root-greedy (CRG) maximal matching). Given a DAG G =

(V ,E) with a valid ordering πG and a subset of edges S ⊆ E, we define the conditional-
root-greedy (CRG) maximal matching MG,πG ,S as the unique maximal matching on C(G)
computed via Algorithm 26: greedily choose arcs X → Y where the X has no incoming
arcs by minimizing πG(Y ), conditioned on favoring arcs outside of S.

Algorithm 26 Conditional-root-greedy (CRG) maximal matching
1: Input: A DAG G = (V ,E), a valid ordering πG of G, a subset of edges S ⊆ E
2: Output: A CRG maximal matching MG,πG ,S

3: Initialize MG,πG ,S ← ∅ and C ← C(G)
4: while C ̸= ∅ do
5: Let X = argmin

Z ∈ V : Z→V ∈ C
{πG(Z)} ▷ X is a root with no incoming arcs

6: Let Y = argmin
Z ∈ V : X→Z ∈ C

{πG(Z) + n2 · 1X→Z∈S}

7: Add the arc X → Y to MG,πG ,S

8: Remove all arcs with X or Y as endpoints from C

9: return MG,πG ,S

The CRG maximal matching is unique with respect to a fixed valid ordering π of G
and subset S. We will later consider CRG maximal matchings with S = A(Gs)∩A(Gt),
where the arc set S remains unchanged throughout the entire transformation process.

Lemma 11.11 (Formal version of Lemma 11.7). Consider two moral DAGsG1 andG2 from
the same MEC such that they differ only in one covered edge direction: X → Y ∈ E(G1)
and Y → X ∈ E(G2). Let S ⊆ E be a subset such that X → Y, Y → X ̸∈ S. If X has
a direct parent A ∈ V in G1, we further require A → X ∈ S. When πG1 is an ordering
for G1 such that Y = argminZ∈V :X→Z∈C(G1){πG1(Z) +n2 ·1X→Z∈S} with CRG maximal
matchingMG1,πG1 ,S

, one can transform πG1 to πG2 andMG1,πG1 ,S
to another CRG maximal

matching MG2,πG2 ,S
for C(G2) such that |MG1,πG1 ,S

| = |MG2,πG2 ,S
|.

To be precise, given πG1 , we will define πG2 in Lemma 11.11 as follows:

πG2(V ) =



πG1(X) if V = Y

πG1(U) if V = X

πG1(Y ) if V = U

πG1(V ) else

(11.1)

For illustrated examples of conditional-root-greedy (CRG) maximal matchings and
how we update the permutation ordering, see Fig. 11.3 and Fig. 11.4. The former gives
an example where X has directed parent A while X has no directed parents in the latter.

As discussed in Section 11.3, the proof of Theorem 11.1 follows by picking Gs =

argmaxG∈[G∗] ν1(G) and Gt = argminG∈[G∗] ν1(G), applying Algorithm 25 to find a trans-
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Figure 11.3: DAGs G1 and G2 agree on all arc directions except for X → Y in G1
and Y → X in G2. Dashed arcs represent the covered edges in each DAG. The
numbers below each vertex indicate the πG1 and πG2 orderings respectively. In G1,
U = argminZ∈ChG1 (X){πG1(Z)}. Observe that Eq. (11.1) modifies the ordering only
for {X, Y, U} (in blue) while keeping the ordering of all other nodes fixed. Suppose
S = A(G1) ∩A(G2) = {A→ B,A→ X,A→ Y,A→ U,X → B,X → U, Y → B}.
With respect to πG1 and S, The conditional-root-greedy maximal matchings (see Algo-
rithm 26) are MG1,πG1 ,S

= {A→ X, Y → B} and MG2,πG2 ,S
= {A→ Y,X → B}.

X Y

BU

1 3

2 4 G3

X Y

BU
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3 4 G4

Figure 11.4: DAGs G3 and G4 agree on all arc directions except for X → Y in G3 and
Y → X in G4. Dashed arcs represent the covered edges in each DAG. The numbers below
each vertex indicate the πG3 and πG4 orderings respectively. Observe that C(G3) = {X →
U,X → Y, Y → B}. If we define S = A(G3) ∩ A(G4) = {X → B,X → U, Y →
B}, we see that the conditional-root-greedy maximal matchings (see Algorithm 26) are
MG3,πG3 ,S

= {X → Y } and MG4,πG4 ,S
= {Y → X}. Note that Algorithm 26 does

not choose X → U ∈ C(G1) despite π(U) < π(Y ) because X → U ∈ S, so π(Y ) <
π(U) + n2.

formation sequence of covered edge reversals between them, and repeatedly applying
Lemma 11.11 with the conditioning set S = A(Gs) ∩A(Gt) to conclude that Gs and Gt
have the same sized CRG maximal matchings, and thus implying that minG∈[G∗] ν1(G) =
ν1(Gs) ≤ 2 · ν1(Gt) = 2 · argmaxG∈[G∗] ν1(G). Note that we keep the conditioning set S
unchanged throughout the entire transformation process from Gs to Gt.

Theorem 11.1. We have maxG∈[G∗] ν1(G) ≤ 2 ·minG∈[G∗] ν1(G). Furthermore, there exist
two DAGs G1 and G2 such that [G1] = [G2] and ν1(G1) = 2 · ν1(G2).

Proof. Consider any two DAGs Gs,Gt ∈ [G∗]. To transform Gs = (V ,Es) to Gt =

(V ,Et), Algorithm 25 flips covered edges one by one such that |Es \Et| decreases in a
monotonic manner. We will repeatedly apply Lemma 11.11 with S = A(Gs) ∩A(Gt) on
the sequence of covered edge reversals produced by Algorithm 25.

Let PaGs be an arbitrary ordering for Gs and we compute an initial conditional-root-
greedy maximal matching for C(Gs) with respect to some ordering PaGs and conditioning
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set S. To see why Lemma 11.11 applies at each step for reversing a covered edge from
X → Y to Y → X , we need to ensure the following:

1. If X has a parent vertex A (i.e. X ∈ ChG1(A)), then A→ X ∈ S.

If A → X ̸∈ S, then then A → X is a covered edge that should be flipped
to transform from Gs to Gt. However, this means that Algorithm 25 would pick
A→ X to reverse instead of picking X → Y to reverse. Contradiction.

2. X → Y, Y → X ̸∈ S.

This is satisfied by the definition of S = Es∩Et since reversingX → Y to Y → X

implies that neither of them are in S.

3. Y = argminZ : X→Z∈C(G1){PaG1(Z) + n2 · 1X→Z∈S}.

Since X → Y ̸∈ S, this holds when Y = argminZ : X→Z∈C(G1){PaG1(Z)}. This is
satisfied by line 7 of Algorithm 25.

4. MG1,PaG1 ,S
is a conditional-root-greedy maximal matching for C(G1) with respect

to some ordering PaG1 and conditioning set S.

This is satisfied since we always maintain a conditional-root-greedy maximal match-
ing and S is unchanged throughout.

By applying Lemma 11.7 with S = A(Gs) ∩ A(Gt) repeatedly on the sequence of
covered edge reversals produced by Algorithm 25, we see that there exists a conditional-
root-greedy maximal matching MGs,πGs

for C(Gs) and a conditional-root-greedy maximal
matching MGt,πGt

for C(Gt) such that |MGs,πGs
| = |MGt,πGt

|.
The claim follows since maximal matching is a 2-approximation to minimum vertex

cover, and the verification number ν(G) of any DAG G is the size of the minimum vertex
cover of its covered edges C(G).

To see that the ratio of 2 is tight, refer to Fig. 11.5 for two explicit DAGs.

11.5 TestAndSubsetSearch

Lemma 11.8. Fix a DAG G∗ = (V ,E). Let V ′ ⊆ V be any subset of nodes and
IV ′ ⊆ V be the intervention set intervened upon by SubsetSearch when run on subset
V ′. If C(G∗) ⊆ E(G∗[V ′]), then EIV ′ (G∗) = G∗.

Proof. By Theorem 6.24, SubsetSearch fully orients edges within the node-induced
subgraph induced by V ′, i.e. SubsetSearch will perform atomic interventions IV ′ ⊆ 2V

resulting in EIV ′ (G∗)[V ′] = G∗[V ′]. As C(G∗) ⊆ E(G∗[V ′]), all covered edges C(G∗)
will be oriented. Then, since Theorem 6.7 tells us that any intervention set that fully
orients C(G∗) is a verifying set for G∗, we see that EIV ′ (G∗) = G∗.
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Figure 11.5: The ratio of 2 in Theorem 11.1 is tight: G1 and G2 belong in the same MEC
with ν(G1) = 2 and ν(G2) = 1. The dashed arcs represent the covered edges and the
boxed nodes represent a minimum vertex cover of the covered edges.

TestAndSubsetSearch is presented in Algorithm 27. The first tweak mentioned in
Section 11.3.3 is captured in the inequality ρ(Ii, N r(Ṽ )) ≥ n2

i while the second tweak
correspond to the terms Ci and C ′i. As a side note, observe that n0 = 2 ensures that n2

0 > n0

and that the intervention sets will be disjoint since a vertex will no longer be relevant after
intervention so SubsetSearch will never intervene on intervened nodes.

Algorithm 27 TestAndSubsetSearch: Adaptive search algorithm with advice.

Input: Essential graph E(G∗) and advice DAG G̃ ∈ [G∗]
Output: An atomic intervention set I such that EI(G∗) = G∗

1: Let Ṽ be any minimum sized atomic verifying set of G̃
2: Intervene on I0 = Ṽ ▷ Test quality of G̃
3: Initialize r ← 0, i← 0, and n0 ← 2
4: while EIi(G∗) still has undirected edges do
5: if ρ(Ii, N r(Ṽ )) ≥ n2

i then
6: Increment i← i+ 1 and record r(i)← r

7: Update ni ← ρ(Ii, N r(Ṽ ))
8: Let Ci be the intervention set intervened upon by SubsetSearch when run on

subset N r−1(Ṽ ) ▷ Essential graph is now EIi−1∪Ci(G∗)
9: if EIi−1∪Ci(G∗) still has undirected edges then

10: Let C ′i be the intervention set intervened upon by SubsetSearch when run
on subset N r(Ṽ ) ▷ Essential graph is now EIi−1∪Ci∪C′

i
(G∗)

11: Update Ii ← Ii−1 ∪ Ci ∪ C ′i
12: else
13: Update Ii ← Ii−1 ∪ Ci
14: Increment r ← r + 1

15: return Ii

We will now prove our main result (Theorem 11.2) which shows that the number of
interventions needed is a function of the quality of the given advice DAG.

Theorem 11.2. Fix an essential graph E(G∗) of an unknown underlying DAG G∗. Given
an advice graph G̃ ∈ [G∗], TestAndSubsetSearch runs in polynomial time and computes
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an atomic intervention set I ⊆ 2V in a deterministic and adaptive manner such that
EI(G∗) = G∗ and |I| ∈ O(max{1, logψ(G∗, G̃)} · ν1(G∗)).

Proof. If Algorithm 27 terminates when i = 0, then I = I0 = Ṽ and Theorem 11.1 tells
us that |I| ∈ O(ν1(G∗)). In the remaining of this proof, let us suppose Algorithm 27
terminates with i = t, for some final round t > 0.

As TestAndSubsetSearch uses an arbitrary verifying set of G̃ in step 3, we will argue
that O(max{1, log |Nh(G∗,Ṽ)(Ṽ )|} · ν1(G∗)) interventions are used in the while-loop, for
any arbitrary chosen verifying set Ṽ ⊆ 2V of G̃. The theorem then follows by taking a
maximization over all possible verifying sets.

In Line 6, r(i) records the hop value such that ρ(Ii, N r(i)(Ṽ )) ≥ n2
i , for any 0 ≤ i < t.

By construction of the algorithm, we know the following:

1. For any 0 < i ≤ t,

ρ(Ii, N r(i)(Ṽ )) = ni ≥ n2
i−1 > ρ(Ii, N r(i)−1(Ṽ )) (11.2)

because r(i)− 1 did not trigger TestAndSubsetSearch to record r(i) on Line 6.

2. For any 1 ≤ i ≤ t, we have

|Ci| ∈ O(log ρ(Ii, N r(i)−1(Ṽ )) · ν1(G∗)) ⊆ O(log(ni−1) · ν1(G∗))
|C ′i| ∈ O(log ρ(Ii, N r(i)(Ṽ )) · ν1(G∗)) ⊆ O(log(ni) · ν1(G∗))

(11.3)

by applying Theorem 6.24 and then Eq. (11.2) on |Ci| and |C ′i| separately. Note that
the bound for |C ′i| is an over-estimation (but this is okay for our analytical purposes)
since some nodes previously counted for ρ(Ii, N r(i)(Ṽ )) may no longer be relevant
in EIi∪Ci

(G∗) after intervening on Ci.

3. Since ni−1 ≤
√
ni for any 0 < i ≤ t, we know that nj ≤ n

1

2t−j

t for any 0 ≤ j ≤ t.
So, for any 0 ≤ t′ ≤ t, we have

t′∑
i=0

log(ni) ≤
t′∑
i=0

log

(
n

1

2t
′−i

t′

)
=

t′∑
i=0

log(nt′)

2t′−i
≤ 2 · log(nt′) (11.4)

4. By definitions of r, t, and h(G∗, Ṽ), and Lemma 11.8, we have

r(t− 1) < h(G∗, Ṽ) ≤ r(t)

N r(t−1)(Ṽ ) ⊊ Nh(G∗,Ṽ)(Ṽ ) ⊆ N r(t)(Ṽ )

|N r(t−1)(Ṽ )| < |Nh(G∗,Ṽ)(Ṽ )| ≤ |N r(t)(Ṽ )|

(11.5)



CHAPTER 11. CAUSAL GRAPH DISCOVERY WITH IMPERFECT ADVICE 201

5. Combining the above, we get

t−1∑
i=1

(|Ci|+ |C ′i|) ∈ O

((
t−1∑
i=1

log(ni−1) + log(ni)

)
· ν1(G∗)

)
By Eq. (11.3)

⊆ O

(
t−1∑
i=1

log(ni) · ν1(G∗)

)
By Eq. (11.2)

⊆ O (log(nt−1) · ν1(G∗)) By Eq. (11.4)

That is,
t−1∑
i=1

(|Ci|+ |C ′i|) ⊆ O (log nt−1 · ν1(G∗)) (11.6)

To relate |It|with |Nh(G∗,Ṽ)(Ṽ )|, we consider two scenarios depending on whether the
essential graph was fully oriented after intervening on Ct or C ′t. In either case, remember
that |Ṽ| ∈ O(ν1(G∗)) via Theorem 11.1.

Scenario 1: Fully oriented after intervening on Ct, i.e. EIt−1∪Ct(G∗) = G∗

(In this case, h(G∗, Ṽ) ≤ r(t)− 1, but this information is not useful for the analysis.)
Since nt−1 ≤ |N r(t−1)(Ṽ )| by definition, Eq. (11.5) tells us that

nt−1 < |Nh(G∗,Ṽ)(Ṽ )| (11.7)

Meanwhile,

It = Ct ∪ It−1 = Ct ∪ (Ct−1 ∪ C ′t−1) ∪ It−2 = . . . = Ct ∪
t−1⋃
i=1

(Ci ∪ C ′i) ∪ Ṽ

Recalling that 2 = n0 ≤ nt−1, with n0 ≤ nt−1 in case t = 1, we see that

|It| ≤ |Ct|+
t−1∑
i=1

(|Ci|+ |C ′i|) + |Ṽ|

∈ O (log(nt−1) · ν1(G∗)) +
t−1∑
i=1

(|Ci|+ |C ′i|) + |Ṽ| By Eq. (11.3)

∈ O (log(nt−1) · ν1(G∗)) +O (log(nt−1) · ν1(G∗)) + |Ṽ| By Eq. (11.6)

∈ O (log(nt−1) · ν1(G∗)) +O (log(nt−1) · ν1(G∗)) +O(ν1(G∗)) By Theorem 11.1

⊆ O
(
log |Nh(G∗,Ṽ)(Ṽ )| · ν1(G∗)

)
By Eq. (11.7)

Scenario 2: Fully oriented after intervening on C ′t, i.e. EIt−1∪Ct∪C′
t
(G∗) = G∗

In this case, h(G∗, Ṽ) = r(t) and Nh(G∗,Ṽ)(Ṽ ) = N r(t)(Ṽ ). So,

nt ≤ |N r(t)(Ṽ )| = |Nh(G∗,Ṽ)(Ṽ )| (11.8)



CHAPTER 11. CAUSAL GRAPH DISCOVERY WITH IMPERFECT ADVICE 202

Meanwhile,

It = Ct ∪ C ′t ∪ It−1 = . . . = Ct ∪ C ′t ∪
t−1⋃
i=1

(Ci ∪ C ′i) ∪ Ṽ

Recalling that 2 = n0 ≤ nt−1 < nt, with n0 ≤ nt−1 in case t = 1, we see that

|It| = |Ct|+ |C ′
t|+

t−1∑
i=1

(|Ci|+ |C ′i|) + |Ṽ|

∈ O ((log(nt−1) + log(nt)) · ν1(G∗)) +
t−1∑
i=1

(|Ci|+ |C ′i|) + |Ṽ| By Eq. (11.3)

∈ O (log(nt) · ν1(G∗)) +
t−1∑
i=1

(|Ci|+ |C ′i|) + |Ṽ| Since nt−1 ≤ nt

∈ O (log(nt) · ν1(G∗)) +O (log(nt−1) · ν1(G∗)) + |Ṽ| By Eq. (11.6)

∈ O (log(nt) · ν1(G∗)) + |Ṽ| Since nt−1 ≤ nt

∈ O (log(nt) · ν1(G∗)) +O(ν1(G∗)) By Theorem 11.1

⊆ O
(
log |Nh(G∗,Ṽ)(Ṽ )| · ν1(G∗)

)
By Eq. (11.8)

In either scenarios, we see that |It| ∈ O
(
log |Nh(G∗,Ṽ)(Ṽ )| · ν1(G∗)

)
as desired. The

theorem then follows by taking a maximization over all Ṽ ∈ V(G̃).
Running time. By construction, TestAndSubsetSearch is deterministic. It runs in

polynomial time because: (1) Hop information and relevant nodes can be computed in
polynomial time via breadth first search and maintaining suitable neighborhood informa-
tion; (2) It is known that performing Meek rules to obtain essential graphs takes polynomial
time [WBL21]; (3) TestAndSubsetSearch makes at most two calls to SubsetSearch
whenever the number of relevant nodes is squared (for a total of at most O(log n) times)
and each SubsetSearch call runs in polynomial time (Theorem 6.24).



Chapter 12

Conclusion for Part III

The results presented in Chapter 9, Chapter 10, and Chapter 11 are from the works of
[CGLB24], [BGGJ+24], and [CGB23] respectively.

In Chapter 9, we studied the online bipartite matching problem with respect to a very
natural design goal of 1-consistency and β-robustness; see Goal 9.1. We showed that
this goal is impossible under the adversarial arrival model and designed a meta algorithm
TestAndMatch for the random arrival model that is 1-consistent and β ·(1−o(1))-robust
while using histograms over arrival types as advice. The guarantees TestAndMatch
degrades gracefully as the quality of the advice worsens, and improves whenever the
state-of-the-art β improves. The obvious follow-up question is whether our approach
extends to other variants of online matching, or even other online problems with random
arrivals. For instance, consider the relatively new adversarial-order model with a sample
(AOS and AOSp) for relaxing the adversarial arrival model [KNR20, KNR22, CCF+24]:
a worst-case adversarial input is chosen, a random subset of the online input is revealed
upfront to the algorithm, and then performance is measured on the subsequent worst-case
adversarial arrivals. In this setup, the random sample of the input allows the algorithm
to learn something about the actual instance, but it is not allowed to pick anything from
this prefix. Our TestAndMatch algorithm would translate to the AOS model when the
prefix is sufficiently large for the testing phase, and we can actually obtain β (instead of
β · (1− o(1))) when the advice is of low quality because we will not incur any loss on the
competitive ratio as the prefix is not part of the performance measurement.

In Chapter 10, we revisited the problem of distribution learning within the framework
of learning-augmented algorithms, specifically in the context of learning a multivariate
Gaussian distribution in a sample efficient manner. Formal details of our lower bound
is presented in [BCG+22, Section 5]. An immediate and natural follow up question
is whether we can extend the TestAndAct approach to discrete distributions, beyond
multivariate Gaussians.

In Chapter 11, we gave the first result that utilizes imperfect advice in the context of
causal discovery via TestAndSubsetSearch. We do so in a way that the performance
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(i.e. the number of interventions in our case) does not degrade significantly even when the
advice is inaccurate, which is consistent with the objectives of learning-augmented algo-
rithms. Specifically, we show a smooth bound that matches the number of interventions
needed for verification of the causal relationships in a graph when the advice is completely
accurate and also depends logarithmically on the distance of the advice to the ground
truth. This ensures robustness to “bad” advice, the number of interventions needed is
asymptotically the same as in the case where no advice is available.

Apart from the chapter-specific comments above, there is an argument to be made
about moving beyond the metrics of consistency and robustness when evaluating learning-
augmented algorithms. To be more concrete, observe that TestAndMatch’s performance
guarantee is based on the L1 distance over type histograms. This is very sensitive to
certain types of noise, e.g. adding or removing edges at random (Erdos-Renyi). However,
Section 9.6 suggests there are practical extensions that hold even whenL1 is large, implying
it is a non-ideal metric despite satisfying consistency and robustness. Is there another
criterion that could fill this gap? Could we formalize how practical/reasonable/brittle an
advice is? It would also be interesting to explore the human interaction/interface portion
of how to elicit useful advice from human domain experts. For instance, the notion of
“confidence level” and “correctness” of an advice are orthogonal issues – an expert can
be confidently wrong. In Chapter 11, we focused on the case where the expert is fully
confident but may be providing imperfect advice. It is an interesting problem to investigate
how to principally handle both issues simultaneously; for example, what if the advice is not
a DAG G̃ ∈ [G∗] in the essential graph but a distribution over all DAGs in [G∗]? Bayesian
ideas may apply here.

12.1 Some additional related work

12.1.1 Learning-augmented algorithms for matching

[ACI22] studied the adversarial arrival models with offline vertex degrees as advice.
While their algorithm is optimal under the Chung-Lu-Vu random graph model [CLV03],
the class of offline degree advice is unable to attain 1-consistency. [FNS21] propose a
two-stage vertex-weighted variant, where advice is a proposed matching for the online
vertices arriving in the first stage. [JM22] showed in this setting a tight robustness-
consistency tradeoff and derive a continuum of algorithms tracking this Pareto frontier.
[AGKK23] studied settings with random vertex arrival and weighted edges. Their advice is
a prediction on edge weights adjacent toV under an optimal offline matching. Furthermore,
their algorithm and analysis uses a hyper-pamareter quatifying confidence in the advice,
leading to different consistency and robustness tradeoffs. Another relevant work is the
LOMAR method proposed by [LYR23]. Using a pre-trained reinforcement learning (RL)
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model along with a switching mechanism based on regret to guarantee robustness with
respect to any provided expert algorithm, they claim “for some tuning parameter ρ ∈ [0, 1],
LOMAR is ρ-competitive against our choice of expert online algorithm”. We differ from
LOMAR in two key ways:

1. Our method does not require any pre-training phase and directly operate on the
sequence of online vertices themselves. This means that whatever mistakes made
during our “testing” phase contributes to our competitive ratio; a key technical
contribution is the use of distribution testing to ensure that the number of such
mistakes incurred is sublinear.

2. The robustness guarantee of [LYR23] is substantially weaker than what we provide.
Suppose the expert used by LOMAR is β-competitive, just like how we use the
state-of-the-art algorithm as the baseline. Although [LYR23] does not analyze
the consistency guarantee of their method, one can see that LOMAR is (1 − ρ)-
consistent and ρ · β-robust (ignoring the B ≥ 0 hyperparameter). LOMAR can
only be 1-consistent when ρ = 0, i.e. it blindly follows the RL-based method;
but then it will have no robustness guarantees. In other words, LOMAR cannot
simultaneously achieve 1-consistency and ρ · β-robustness without knowing the RL
quality. In contrast, our method is simultaneously 1-consistent and ≈ β-robust
without knowing the quality of our given advice; we evaluate its quality as vertices
arrive.

Table 12.1 compares the consistency-robustness tradeoffs.

[JM22] LOMAR Ours

Robustness R ρ · β ≈ β
Consistency 1− (1−

√
1−R)2 1− ρ 1

Table 12.1: Consistency-robustness guarantees of methods that can achieve 1-consistency.
Here, R ∈ [0, 3/4] and ρ ∈ [0, 1]. Note that [JM22] is for the 2-staged setting.

More broadly, [LMRX21a, LMRX21b] learn and exploit parameters of the online
matching problem and provide PAC-style guarantees. [DIL+22] studied the use of multiple
advice and seek to compete with the best on a per-instance basis. Finally, others suggest
using advice to speedup offline matching via “warm-start” heuristics [DIL+21, CSVZ22,
SO22].

12.1.2 Expert advice in causal graph discovery

There are three main types of information that a domain expert may provide (e.g. see the
references given in Chapter 11):
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(I) Required parental arcs: X → Y

(II) Forbidden parental arcs: X ̸→ Y

(III) Partial order or tiered knowledge: A partition of the n variables into 1 ≤ t ≤ n sets
S1, . . . , St such that variables in Si cannot come after Sj , for all i < j.

In the context of orienting unoriented X − Y edges in an essential graph, it suffices to
consider only information of type (I): X ̸→ Y implies Y → X , and a partial order can be
converted to a collection of required parental arcs. For every edge X − Y with X ∈ Si

and Y ∈ Sj , enforce the required parental arc X → Y if and only if i < j.
Maximally oriented partially directed acyclic graphs (MPDAGs), a refinement of

essential graphs under additional causal information, are often used to model such expert
advice and there has been a recent growing interest in understanding them better [PKM17,
Per20, GP21]. MPDAGs are obtained by orienting additional arc directions in the essential
graph due to background knowledge, and then applying Meek rules. See Fig. 12.1 for an
example.

A B

C D

E

F

(I)

A B

C D

E

F

(II)

A B

C D

E

F

(III)

A B

C D

E

F

(IV)

Figure 12.1: (I) Ground truth DAG G∗; (II) Observational essential graph E(G∗) where
C → E ← D is a v-structure and Meek rules orient arcs D → F and E → F ; (III)
G∅ = G[E \R(G, ∅)] where oriented arcs in E(G∗) are removed from G∗; (IV) MPDAG
G̃ ∈ [G∗] incorporating the following partial order advice (S1 = {B},S2 = {A,D},S3 =
{C,E, F}), which can be converted to required arcs B → A and B → D. Observe that
A→ C is oriented by Meek R1 via B → A−C, the arc A−D is still unoriented, the arc
B → A disagrees with G∗, and there are two possible DAGs consistent with the resulting
MPDAG.

12.2 Other unpresented works in Part III

In [CL24], we studied the secretary problem through the lens of learning-augmented
algorithms and showed an impossibility result that is similar in style to Goal 9.1 in
[CGLB24]. To be precise, we gave a simple construction showing that no learning-
augmented algorithm for the secretary problem that is 1-consistent can have robustness
guarantee better than 1/3 + o(1), even when the candidates’ true values are constants that
do not scale with the number of candidates.



Appendix A

Addendum for Part I

A.1 Addendum for Chapter 3

A.1.1 Derivation for KL decomposition

In this section, we provide the full derivations of Eq. (3.3) and Eq. (3.4).
We first establish Eq. (3.3). Observe that

dKL(P , P̂)

=

∫
x

P(x) log

(
P(x)
P̂(x)

)
dx

=

∫
x

P(x) log

(
Πn

i=1P(xi | pa(Xi))

Πn
i=1P̂(xi | pa(Xi))

)
dx

(Bayesian network decomposition of joint probabilities)

=
n∑

i=1

∫
x

P(x) log

(
P(xi | pa(Xi))

P̂(xi | pa(Xi))

)
dx

=
n∑

i=1

∫
pa(Xi)

∫
xi

P(xi, pa(Xi)) log

(
P(xi | pa(Xi))

P̂(xi | pa(Xi))

)
dxi dpa(Xi) (Marginalization)

=
n∑

i=1

dCP(α
∗
i , α̂i)

For Eq. (3.4), consider an arbitrary variable Y with p parents and associated parameters
a∗ and σ∗. If p = 0, thena∗ = 0 (the all-zero vector) and we can simply set the coefficients
â = 0. Meanwhile, if p ≥ 1, we may assume w.l.o.g. that X1, . . . , Xp are the parents
of Y by relabeling. Let matrix M ∈ Rp×p denote the covariance matrix defined by the
parents of Y , where the (i, j)-th entry of M is E[XiXj]. Under this notation, we see the
vector (X1, . . . , Xp) ∼ N(0,M ) is distributed as a multivariate Gaussian. Let us further
define ∆ = â− a∗ as the entry-wise difference vector.
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We can write the conditional distribution density of Y as

Pr (y | x,a∗, σ∗) =
1

σ∗
√
2π

exp

− 1

2(σ∗)2
·

(
y −

p∑
i=1

a∗ixi

)2


We now analyze dCP(α
∗, α̂∗) with respect to the our estimates α̂ = (â, σ̂) and the hid-

den true parameters α∗ = (a∗, σ∗), where â = (ây,1, . . . , ây,p) and a∗ = (a∗
y,1, . . . ,a

∗
y,p).

With respect to variable Y with parents X = (X1, . . . , Xp), we see that

dCP(α
∗, α̂)

=

∫
x

∫
y

P(x, y) log

 1
σ∗

√
2π

exp
(
− 1

2(σ∗)2
· (y −

∑p
i=1 ay,ixi)

2
)

1
σ̂
√
2π

exp
(
− 1

2σ̂2 · (y −
∑p

i=1 ây,ixi)
2
)
 dy dx

= log

(
σ̂

σ∗

)
− 1

2(σ∗)2
· Ex,y

(
y −

p∑
i=1

ay,ixi

)2

+
1

2σ̂2
· Ex,y

(
y −

p∑
i=1

ây,ixi

)2

= log

(
σ̂

σ∗

)
− 1

2(σ∗)2
· Ex,y

(
y − (a∗)⊤x

)2
+

1

2σ̂2
· Ex,y

(
y − â⊤x

)2
Since ∆ = â − a∗ is the entry-wise difference vector, we can see that for any

instantiation of y and x,

(
y − â⊤x

)2
=
(
y − (∆+ a∗)⊤x

)2 (By definition of ∆)

=
(
(y − (a∗)⊤x)−∆⊤x

)2
= (y − (a∗)⊤x)2 − 2(y − (a∗)⊤x)(∆⊤x) +

(
∆⊤x

)2
= (y − (a∗)⊤x)2 − 2

(
y∆⊤x− (a∗)⊤x∆⊤x

)
+
(
∆⊤x

)2
= (y − (a∗)⊤x)2 − 2

(
yx⊤∆− (a∗)⊤xx⊤∆

)
+∆⊤xx⊤∆

(Since ∆⊤x is just a number)

Recall that the matrix M ∈ Rp×p denotes the covariance matrix defined by the parents
of Y , where the (i, j)-th entry ofM isE[XiXj]. Then, we can further simplify dCP(α

∗, α̂)

as follows:

dCP(α
∗, α̂)

= log

(
σ̂

σ∗

)
− 1

2(σ∗)2
· Ex,y

(
y − (a∗)⊤x

)2
+

1

2σ̂2
· Ex,y

(
y − â⊤x

)2 (From above)

= log

(
σ̂

σ∗

)
− 1

2(σ∗)2
· Ex,y

(
y − (a∗)⊤x

)2
+

1

2σ̂2
· Ex,y

[
(y − (a∗)⊤x)2 − 2

(
yx⊤∆− (a∗)⊤xx⊤∆

)
+∆⊤xx⊤∆

]
(From above)
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= log

(
σ̂

σ∗

)
− 1

2(σ∗)2
· Ex,y η

2 +
1

2σ̂2
· Ex,y

[
η2 − 2

(
ηx⊤∆

)
+∆⊤xx⊤∆

]
(Since y = η + (a∗)⊤x)

= log

(
σ̂

σ∗

)
− 1

2
+

1

2σ̂2
· Ex,y

[
(σ∗)2 − 2

(
ηx⊤∆

)
+∆⊤xx⊤∆

]
(Since η ∼ N(0, (σ∗)2))

= log

(
σ̂

σ∗

)
− 1

2
+

1

2σ̂2
· Ex,y

[
(σ∗)2 − 0 +∆⊤xx⊤∆

]
(Since Ex,y

(
ηx⊤∆

)
= (Ex,y η) · (Ex,y x

⊤∆) = 0)

= log

(
σ̂

σ∗

)
− 1

2
+

1

2σ̂2
·
(
(σ∗)2 − 0 +∆⊤M∆

)
(Since Ex,y ∆

⊤xx⊤∆ = ∆⊤(Ex,y xx
⊤)∆ = ∆⊤M∆)

= log

(
σ̂

σ∗

)
− 1

2
+

(σ∗)2

2σ̂2
+

∆⊤M∆

2σ̂2

= log

(
σ̂

σ∗

)
+

(σ∗)2 − σ̂2

2σ̂2
+

∆⊤M∆

2σ̂2

A.1.2 Deferred proofs

Lemma 3.3. Let G ∈ Rk×d be a matrix with i.i.d. N(0, 1) entries. Then, for any constant
0 < c1 < 1/2 and k ≥ d/c21,

Pr

(
∥(G⊤G)−1∥ ≤ 1

(1− 2c1)
2 k

)
≥ 1− exp

(
−kc

2
1

2

)
Proof. Observe that G⊤G is symmetric, thus (G⊤G)−1 is also symmetric and the eigen-
values of G⊤G equal the singular values of G⊤G. Also, note that event that G⊤G is
singular has measure 0. To see this, consider fixing all but one arbitrary entry of G. The
event of this independent N(0, 1) entry making det(G⊤G) = 0 has measure 0.

By definition of operation norm, ∥(G⊤G)−1∥ equals the square root of maximum
eigenvalue of

((G⊤G)−1)⊤((G⊤G)−1) = ((G⊤G)−1)2,

where the equality is because (G⊤G)−1 is symmetric. Since G⊤G is invertible, we
have ∥(G⊤G)−1∥ = 1/∥G⊤G∥, which is equal to the inverse of minimum eigenvalue
λmin(G

⊤G) of G⊤G, which is in turn equal to the square of minimum singular value
σmin(G) of G. Therefore, the following holds with probability at least 1− exp (−kc21/2):

∥
(
G⊤G

)−1 ∥ = 1

∥G⊤G∥
=

1

λmin(G⊤G)
=

1

σ2
min(G)

≤ 1(√
k(1− c1)−

√
d
)2 ≤ 1

(1− 2c1)
2 k
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where the second last inequality is due to Lemma 2.6 and the last inequality holds when
k ≥ d/c21.

Lemma 3.4. Let G ∈ Rk×p be a matrix with i.i.d.N(0, 1) entries and η ∈ Rk be a vector
with i.i.d. N(0, σ2) entries, where G and η are independent. Then, for any constant
c2 > 0,

Pr
(
∥G⊤η∥ < 2σc2

√
kp
)
≥ 1− 2p exp (−2k)− p exp

(
−c

2
2

2

)
Proof. Let us denote gr ∈ Rk as the rth row of G⊤. Then, we see that ∥G⊤η∥22 =∑p

r=1⟨gr,η⟩2. For any row r, we see that ⟨gr,η⟩ = ∥η∥2 · ⟨gr,η/∥η∥2⟩. We will bound
values of ∥η∥2 and |⟨gr,η/∥η∥2⟩| separately.

It is well-known (e.g. see [JNG+19, Lemma 2]) that the norm of a Gaussian vector
concentrates around its mean. So, Pr

(
∥η∥2 ≤ 2σ

√
k
)
≤ 2 exp (−2k). Since gr ∼

N(0, Ik) and η are independent, we see that ⟨gr,η/∥η∥2⟩ ∼ N(0, 1). By standard
Gaussian bounds, we have that Pr (|⟨gr,η/∥η∥2⟩| ≥ c2) ≤ exp (−c22/2).

By applying a union bound over these two events, we see that ∥⟨gr,η⟩∥ < 2σc2
√
k for

any row with probability 2 exp (−2k) + exp (−c22/2). The claim follows from applying a
union bound over all p rows.

Lemma 3.5 (Non-asymptotic convergence of Cauchy median). Consider a collection of
m i.i.d. Cauchy(0, 1) random variables X1, . . . , Xm. Given a threshold 0 < τ < 1, we
have

Pr (median{X1, . . . , Xm} ̸∈ [−τ, τ ]) ≤ 2 exp

(
−mτ

2

8

)
Proof. Let s>τ =

∑m
i=1 1Xi>τ be the number of values that are larger than τ , where

E[1Xi>τ ] = Pr(X ≥ τ). Similarly, let s<−τ be the number of values that are smaller than
−τ . If s>τ < m/2 and s<−τ < m/2, then we see that median{X1, . . . , Xm} ∈ [−τ, τ ].

For a random variable X ∼ Cauchy(0, 1), we know that Pr(X ≤ x) = 1/2 +

arctan(x)/π. For 0 < τ < 1, we see that Pr(X ≥ τ) = 1/2−arctan(τ)/π ≤ 1/2− τ/4.
By additive Chernoff bounds, we see that

Pr
(
s>τ ≥

m

2

)
≤ exp

(
−2m2τ 2

16m

)
= exp

(
−mτ

2

8

)
Similarly, we have Pr (s<−τ ≥ m/2) ≤ exp (−mτ 2/8). The claim follows from a union
bound over the events s>τ ≥ m/2 and s<−τ ≥ m/2.

Lemma 3.6. Consider the matrix equation AB = E where A ∈ Rn×n, B ∈ Rn×1,
and E ∈ Rn×1 such that entries of A and E are independent Gaussians, elements in
each column of A have the same variance, and all entries in E have the same variance.
That is, A·,j ∼ N(0, σ2

i ) and Ei ∼ N(0, σ2
n+1). Then, for all i ∈ [n], we have that

Bi ∼ σn+1

σi
· Cauchy(0, 1).



APPENDIX A. ADDENDUM FOR PART I 211

Proof. As the event that A is singular has measure zero, we can write B = A−1E. By
Cramer’s rule,

A−1 =
1

det(A)
· adj(A) =

1

det(A)
·C⊤

where det(A) is the determinant of A, adj(A) is the adjugate/adjoint matrix of A, and C

is the cofactor matrix of A. Recall that the det(A) can defined with respect to elements
in C. So, for any column i ∈ [n],

det(A) = A1,i ·C1,i +A2,i ·C2,i + . . .+An,i ·Cn,i

So, det(A) ∼ N (0, σ2
i (C1,i + . . .+Cn,i)). Thus, for any i ∈ [n],

Bi =

(
1

det(A)
C⊤E

)
i

∼
N
(
0, σ2

n+1 (C1,i + . . .+Cn,i)
)

N (0, σ2
i (C1,i + . . .+Cn,i))

=
σn+1

σi
· Cauchy(0, 1)

A.2 Addendum for Chapter 4

A.2.1 Adapting the known tester result of [BGP+23]

Corollary 4.4 is adapted from Theorem 1.3 of [BGP+23].

Theorem A.1 (Conditional MI Tester, [BGP+23, Theorem 1.3]). Fix any ε > 0. Let
(X, Y, Z) be three random variables over ΣX ,ΣY ,ΣZ respectively. Given the empirical
distribution (X̂, Ŷ , Ẑ) over a sizeN sample of (X, Y, Z), there exists a universal constant
0 < c < 1 so that for any N at least

Θ

(
|ΣX | · |ΣY | · |ΣZ |

ε
· log |ΣX | · |ΣY | · |ΣZ |

δ
· log

|ΣX | · |ΣY | · |ΣZ | · log
(
1
δ

)
ε

)
,

the following results hold with probability 1− δ:

1. If I(X;Y | Z) = 0, then I(X̂; Ŷ | Ẑ) < ε.

2. If I(X;Y | Z) ≥ ε, then I(X̂; Ŷ | Ẑ) > c · I(X;Y | Z).

In our notation, we use Î(X;Y | Z) to mean the mutual information of the empirical
distribution I(X̂; Ŷ | Ẑ).

Corollary 4.4 (CMI tester). Fix any ε > 0. Let (X, Y, Z) be three random variables
over ΣX ,ΣY ,ΣZ respectively. Given the empirical distribution (X̂, Ŷ , Ẑ) over a size N
sample of (X, Y, Z), there exists a universal constant 0 < c0 < 1 so that for any N at
least

Θ

(
|ΣX | · |ΣY | · |ΣZ |

ε
· log |ΣX | · |ΣY | · |ΣZ |

δ
· log

|ΣX | · |ΣY | · |ΣZ | · log
(
1
δ

)
ε

)
,
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the following statements hold with probability 1− δ:
(1) If I(X;Y | Z) = 0, then Î(X;Y | Z) < c0 · ε.
(2) If Î(X;Y | Z) ≤ c0 · ε, then I(X;Y | Z) < ε.
Unconditional statements for I(X;Y ) and Î(X;Y ) hold similarly by setting |ΣZ | = 1.

Proof. In the original proof of (1) in [BGP+23, Theorem 1.3], it is possible to change ε
to c0 · ε by paying a factor 1/c0 more in sample complexity, yielding our first statement.

Now, suppose Î(X;Y | Z) ≤ c0·ε. Assume, for a contradiction, that I(X;Y | Z) ≥ ε.
Then, statement 2 of Theorem A.1 tells us that Î(X;Y | Z) > C · I(X;Y | Z) ≥ c0 · ε.
This contradicts the assumption that Î(X;Y | Z) ≤ c0 · ε. Therefore, we must have
I(X;Y | Z) < ε.

A.2.2 Algorithm analysis

The following identity (Lemma A.2) of mutual information and two properties about
(conditional) mutual information on a polytree (Lemma A.3) which will be helpful in our
proofs later.

Lemma A.2 (A useful identity). For any variable V ∈ V and sets A,B ⊆ V \ {V }, we
have

I(V ;A ∪B) = I(V ;A) + I(V ;B) + I(A;B | V )− I(A;B).

Proof. By the chain rule for mutual information, we can express I(V,A;B) in the fol-
lowing two ways:

1. I(V,A;B) = I(V ;B) + I(A;B | V )

2. I(V,A;B) = I(A;B) + I(V ;B | A)

So,

I(V ;A ∪B) = I(V ;A) + I(V ;B | A)

= I(V ;A) + I(V,A;B)− I(A;B)

= I(V ;A) + I(V ;B) + I(A;B | V )− I(A;B)

Lemma A.3. Let V be an arbitrary vertex in a Bayesian polytree with parents Pa(V ).
Then, we have

1. For any disjoint subsets A,B ⊆ Pa(V ),

I(V ;A ∪B) = I(V ;A) + I(V ;B) + I(A;B | V )
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2. For any subset A ⊆ Pa(V ),

I(V ;A) ≥
∑
U∈A

I(V ;U)

Proof. For the first equality, apply Lemma A.2 by observing that I(A;B) = 0 since
A,B ⊆ Pa(V ).

For the second inequality, apply the first equality |A| times with the observation that
conditional mutual information is non-negative. Suppose A = {A1, . . . , Ak}. Then,

I(V ;A) = I(V ; {A1}) + I(V ;A \ {A1}) + I({A1};A \ {A1} | V )

≥ I(V ; {A1}) + I(V ;A \ {A1})

. . .

≥
∑
U∈A

I(V ;U)

Lemma 4.7. Any oriented arc in Ĝ \ H is a ground truth orientation. That is, any vertex
parent set in Ĝ \ H is a subset of Pa(V ), i.e. Pain(V ) ⊆ Pa(V ), and N in(V ) at any time
during the algorithm will have N in(V ) ⊆ Pain(V ).

Proof. We consider the three cases in which we orient edges within the while loop:

1. Strong v-structures (in Phase 1)

2. Forced orientation due to local checks (in Phase 2)

3. Forced orientation due to Meek R1(d) (in Phase 2)

Case 1: Strong v-structures Consider an arbitrary strong deg-d v-structure with center
V . That is, there is a set S (all neighbors of V ) with size |S| = d, such that Î(U ;S \{U} |
V ) ≥ c0 · ε for any U ∈ S. So, by Corollary 4.4, we know that I(U ;S \ {U} | V ) > 0

for all U ∈ S.
Consider an arbitrary vertexU0 ∈ S. Suppose, for a contradiction, that the ground truth

orients some edge outwards from V , say V → U0 for some U0 ∈ S. This would imply that
I(U0;S \ {U0} | V ) = 0. This contradicts the fact that we had I(U0;S \ {U0} | V ) > 0

for any U ∈ S. Therefore, for all U ∈ S, orienting U → V is a ground truth orientation.

Case 2: Forced orientation due to local checks Consider an arbitrary vertex V . Sup-
pose it currently has incoming oriented arcsN in(V ) and we are checking for the orientation
for an unoriented neighbor U of V . By induction, the existing incoming arcs to v are
ground truth orientations.
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If the ground truth orients U → V , then I(U ;N in(V )) = 0 and we should have
Î(U ;N in(V )) < c0 · ε ≤ ε via Corollary 4.4. Hence, if we detect Î(N in(V );U) > ε, it
must be the case that the ground truth orientation is U ← V , which is what we also orient.

Meanwhile, if the ground truth orients U ← V , then I(U ;N in(V ) | V ) = 0 and
we should have Î(U ;N in(V ) | V ) ≤ c0 · ε ≤ ε via Corollary 4.4. Hence, if we detect
Î(U ;N in(V ) | V ) > ε, it must be the case that the ground truth orientation is U → V ,
which is what we also orient.

Note that we may possibly detect both Î(U ;N in(V )) ≤ ε and Î(U ;N in(V ) | V ) ≤ ε.
In that case, we leave the edge U − V unoriented.

Case 3: Forced orientation due to Meek R1(d) Meek R1(d) only triggers when there
are d incoming arcs to a particular vertex. Since oriented arcs are inductively ground
truth orientations and there are at most d∗ ≤ d incoming arcs to any vertex, the forced
orientations due to Meek R1(d) will always be correct.

Lemma 4.8. Fix any vertex V , any S ⊆ Pain(V ), and any S′ ⊆ Pain(V ). If S ̸= ∅, then
there exists a vertex U ∈ S ∪ S′ with

I(V ;S ∪ S′) ≤ I(V ;S ∪ S′ \ {U}) + I(V ;U) + ε . (4.2)

Proof. Since S ∪ S′ ⊆ Pa(V ), we see that I(U ;S ∪ S′ \ {U}) = 0. Furthermore, since
S ̸= ∅, Phase 1 guarantees that there exists a vertexU ∈ S∪S′ such that Î(U ;S∪S′\{U} |
V ) ≤ c0 · ε. To see why, we need to look at Line 4 of Algorithm 9 where we check
all subsets T of Pa(V ) (as well as some other sets) to see if every U ∈ T satisfies
Î(U ;T \ {U} | V ) ≥ c0 · ε. From here, we can see that if a subset T of Pa(V ) is
not all oriented into V , then we know that from Line 4 of Algorithm 9 that there exists
some U ∈ T such that Î(U ;T \ {U} | V ) < c0 · ε. Applying this to T = S ∪ S′,
where the set of unoriented neighboring nodes S is non-empty, we have our claim. As
Î(U ;S ∪ S′ \ {U} | V ) ≤ c0 · ε, Corollary 4.4 tells us that I(U ;S ∪ S′ \ {U}) < ε, we
get

I(V ;S ∪ S′)

= I(V ;S ∪ S′ \ {U}) + I(V ;U) + I(U ;S ∪ S′ \ {U} | V )− I(U ;S ∪ S′ \ {U})

= I(V ;S ∪ S′ \ {U}) + I(V ;U) + I(U ;S ∪ S′ \ {U} | V )

≤ I(V ;S ∪ S′ \ {U}) + I(V ;U) + ε

Lemma 4.9. For any vertex V with Pain(V ), we can show that

I(V ; Pa(V )) ≤ ε · |Pa(V )|+ I(V ; Pain(V )) +
∑

U∈Pain(V )

I(V ;U) .
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Proof. Initializing S′ = Pain(V ) and S = Pa(V ) \ Pain(V ) = Paun(V ), we can re-
peatedly apply Lemma 4.8 to remove vertices one by one, until S = ∅. Without loss of
generality, by relabelling the vertices, we may assume that Lemma 4.8 removes U1, then
U2, and so on. Let us denote the set of all removed vertices by U and note that some of
the removed vertices may come from S′ = Pain(V ).

I(V ; Pa(V )) ≤ I(V ; Pa(V ) \ {U1}) + I(V ;U1) + ε (By Lemma 4.8)

≤ I(V ; Pa(V ) \ {U1, U2}) + I(V ;U1) + I(V ;U2) + 2ε (By Lemma 4.8)

≤ . . .

≤ I(V ; Pa(V ) \U) +
∑
U∈U

I(V ;U) + ε · |U | (By Lemma 4.8)

Since I(A;B) = 0 for any A ⊔B ⊆ Pain(V ), we have

I(V ; Pain(V ))

= I(V ; Pain(V ) \U) + I(V ; Pain(V ) ∩U ) + I(Pain(V ) ∩U ; Pain(V ) \U | V )

(By Lemma A.3)

≥ I(V ; Pain(V ) \U) + I(V ; Pain(V ) ∩U)

≥ I(V ; Pain(V ) \U) +
∑

u∈Pain(V )∩U

I(V ;U) (By Lemma A.3)

where the second last inequality is because I(Pain(V ); Pain(V ) ∩U | V ) ≥ 0.

I(V ; Pa(V )) ≤ I(V ; Pain(V ) \U) +
∑
U∈U

I(V ;U) + ε · |U | (From above)

= I(V ; Pain(V ) \U) +
∑

U∈Pain(V )∩U

I(V ;U) +
∑

U∈Paun(V )

I(V ;U) + ε · |U |

(Since Paun(V ) ⊆ U )

≤ I(V ; Pain(V )) +
∑

U∈Paun(V )

I(V ;U) + ε · |U | (From above)

≤ I(V ; Pain(V )) +
∑

U∈Paun(V )

I(V ;U) + ε · |Pa(V )| (Since U ⊆ Pa(V ))

Lemma 4.10. Consider an arbitrary vertex V with Pain(V ) at the start of Phase 3. If
Phase 3 orients U → V for some U − V ∈ H, then

I(V ; Pain(V ) ∪ {U}) ≥ I(V ; Pain(V )) + I(V ;U)− ε
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Proof. SinceU−V ∈ E(H) remained unoriented, Phase 2 guarantees that Î(U ; Pain(V ) |
V ) ≤ ε and Î(U ; Pain(V )) ≤ ε. Since 0 < c0 < 1, we also see that Î(U ; Pain(V ) | V ) ≤
c0 · ε and Î(U ; Pain(V )) ≤ c0 · ε and so Corollary 4.4 tells us that I(U ; Pain(V ) | V ) ≤ ε

and I(U ; Pain(V )) ≤ ε. So,

|I(V ; Pain(V ) ∪ U)− I(V ; Pain(V ))− I(V ;U)|

= |I(U ; Pain(V ) | V )− I(U ; Pain(V ))| (By Lemma A.2)

= max{I(U ; Pain(V ) | V ), I(U ; Pain(V ))}
(At most one of these term can be non-zero)

≤ ε

Lemma 4.11. Let Pa(V ) be the true parents of v. Let P̂a(V ) be the proposed parents of
v output by our algorithm. Then,∑

V ∈V

I(V ; Pa(V ))−
∑
V ∈V

I(V ; P̂a(V )) ≤ n · (d∗ + 1) · ε .

Proof. We will argue that this summation is bounded by individually bounding each term
in the summation. The main argument of the proof is that once we identified all the strong
v-structures (and thus cancel out the scores of every strong v-structures), the rest should
be roughly the score of a tree (up to additive ε error). Then, since we are guaranteed to be
given skel(G∗), the tree scores will match.

Let A ⊆ V be the set of vertices which receive an additional incoming neighbor in
the final phase, which we denote by AV ∈ V , i.e. P̂a(V ) = Pain(V ) ∪ {AV }. Note that
the set of edges {AV → V }V ∈A is exactly the edges of the undirected graphH in the final
phase. See Fig. A.1 for an illustration.

To lower bound
∑

V ∈V I(V ; P̂a(V )), we can show∑
V ∈V

I(V ; P̂a(V ))

=
∑
V ∈A

I(V ; P̂a(V )) +
∑

V ∈V \A

I(V ; P̂a(V ))

≥
∑
V ∈A

(
I(V ; P̂a(V ) \ {AV }) + I(V ;AV )− ε

)
+

∑
V ∈V \A

I(V ; P̂a(V ))

(By Lemma 4.10)

=
∑
V ∈A

I(V ; Pain(V )) +
∑
V ∈A

I(V ;AV ) +
∑

V ∈V \A

I(V ; Pain(V ))− |A| · ε

=
∑
V ∈V

I(V ; Pain(V )) +
∑
V ∈A

I(V ;AV )− |A| · ε

≥
∑
V ∈V

I(V ; Pain(V )) +
∑
V ∈A

I(V ;AV )− nε (Since A ⊆ V and |V | = n)



APPENDIX A. ADDENDUM FOR PART I 217

Meanwhile, to upper bound
∑

V ∈V I(V ; Pa(V )), we can show∑
V ∈V

I(V ; Pa(V ))

=
∑
V ∈V

Paun(V )̸=∅

I(V ; Pa(V )) +
∑
V ∈V

Paun(V )=∅

I(V ; Pa(V ))

≤
∑
V ∈V

Paun(V )̸=∅

ε · |Pa(V )|+ I(V ; Pain(V )) +
∑

U∈Paun(V )

I(V ;U)


+

∑
V ∈V

Paun(V )=∅

I(V ; Pa(V )) (By Lemma 4.9)

=
∑
V ∈V

I(V ; Pain(V )) +
∑
V ∈V

Paun(V )̸=∅

ε · |Pa(V )|+
∑

U∈Paun(V )

I(V ;U)


where the final equality is because Pain(V ) = Pa(V ) when Paun(V ) = ∅. Since
|Pa(V )| ≤ d∗ and |V | = n, we get∑

V ∈V

I(V ; Pa(V )) ≤ nd∗ε+
∑
V ∈V

I(V ; Pain(V )) +
∑
V ∈V

Pain(V )̸=∅

∑
U∈Paun(V )

I(V ;U)

Putting together, we get∑
V ∈V

I(V ; Pa(v))−
∑
V ∈V

I(V ; P̂a(V ))

≤

nd∗ε+ ∑
V ∈V

I(V ; Pain(V )) +
∑
V ∈V

Pain(V )̸=∅

∑
U∈Paun(V )

I(V ;U)

 (From above)

−

(∑
V ∈V

I(V ; Pain(v)) +
∑
V ∈A

I(V ;AV )− nε

)
= n · (d∗ + 1) · ε+

∑
V ∈V

∑
U∈Paun(V )

I(V ;U)−
∑
V ∈A

I(V ;AV )

= n · (d∗ + 1) · ε

where the last equality is because the last two terms are two different ways to enumerate
the edges ofH, e.g. see Fig. A.1.
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(a) Before final phase
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G

H

I

J

(b) Ĝ under an arbitrary
orientation of H

DB

A

C

F

E

G

H

I

J

(c) Ĝ \H

Figure A.1: Illustration of notation used in proof of Lemma 4.11. Suppose (a) is the
partial orientation of Fig. 4.1 after Phase 2, with H as the edge-induced subgraph on the
unoriented edges in red. Before the final phase, we have Pain(D) = {A,B}, Pain(G) =
{F, J}, Pain(I) = {G}, Paun(C) = {D}, Paun(D) = {C,F}, Paun(F ) = {D,E},
Paun(E) = {H,F}, and Paun(H) = {E}. With respect to H’s orientation in (b), we
have A = {C,D, F,E,H}, AC = D, AD = F , AF = E, and AE = H . Observe that
the Pauns and A□s are two different ways to refer to the red edges and (b) only shows one
possible orientation ofH (see Fig. 4.3 for others).

A.2.3 Skeleton assumption

Lemma 4.13. Under Assumption 4.12, running the Chow-Liu algorithm on them-sample
empirical estimates {Î(U ;V )}U,V ∈V recovers a ground truth skeleton with high probability
when m ≥ Ω( logn

ε2P
).

Proof. Fix a graph G∗. Recall that the Chow-Liu algorithm can be thought of as running
maximum spanning tree with the edge weights as the estimated mutual information between
any pair of vertices. With m ≥ Ω(log(n)/ε2P) samples and Assumption 4.12, one can
estimate Î(U ;V ) up to (εP)/3-closeness with high probability in n, i.e. |I(U ;V ) −
Î(U ;V )| ≤ εP/3 for any pair of vertices U, V ∈ V .

Now, consider two arbitrary vertices U and V that are not neighbors in G∗.

Case 1 (U and V belong in the same connected component in G∗): Let PU,V =

Z0 − Z1 − . . . − Zk − Zk+1 be the unique path between U = Z0 and V = Zk+1, where
k ≥ 1. Then,

Î(U ;V )− εP/3 ≤ I(U ;V ) ≤ I(Zi, Zi+1)− εP ≤ Î(Zi, Zi+1)− 2 · εP/3

for any i ∈ {1, . . . , k}. Since Î(U ;V ) ≤ Î(Zi, Zi+1)− εP/3 for each i ∈ {1, . . . , k}, the
Chow-Liu algorithm will not add the edge U − V in the output tree.

Case 2 (U and V belong in the different connected components in G∗): Since U and
V belong in the different connected components in G∗, we have I(U ;V ) = 0. With m
samples, for any two edge A−B in G∗, we have

Î(U ;V ) ≤ I(U ;V ) + εP/3 = εP/3 < 2 · εP/3 ≤ I(A;B)− εP/3 ≤ Î(A;B)
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That is, the Chow-Liu algorithm will always consider edges crossing different components
after all true edges have been considered.

A.2.4 Proof of key lower bound lemma

We will use the following inequality in our proofs.

Lemma A.4. For x > 0, we have log2(1+x) ≥ log2(e) ·
(
x− x2

2

)
= log2(e) ·x ·

(
1− x

2

)
.

Recall the lower bound distributions from Section 4.6, but we replace
√
ε with α for

notational convenience:

P1 :



X ∼ Bern(1/2)

Z =

X w.p. 1/2

Bern(1/2) w.p. 1/2

Y =

Z w.p. α

Bern(1/2) w.p. 1− α

P2 :



X ∼ Bern(1/2)

Y ∼ Bern(1/2)

Z =


X w.p. 1/2

Y w.p. α

Bern(1/2) w.p. 1/2− α

By construction, we have

P1(x, y, z) =
1

2
·
(
1

2
· 1
2
+

1

2
· 1x=z

)
·
(
α · 1y=z + (1− α) · 1

2

)
and

P2(x, y, z) =
1

2
· 1
2
·
(
1

2
· 1x=z + α · 1y=z +

(
1

2
− α

)
· 1
2

)
which corresponds to the probability tables given in Table A.1.

Lemma A.5. d2H(P1,P2) ≤ α2

Proof. From Table A.1, we see that∑
(x,y,z)∈{0,1}3

√
P1(x, y, z) · P2(x, y, z)

=
1

8
·
(√

3 · (1 + α) · (3 + 2α) +
√

(1− α) · (1− 2α)

+
√

3 · (1− α) · (3− 2α) +
√
(1 + α) · (1 + 2α)

)

Considering the Taylor expansion of each of the four terms at α = 0:

∑
(x,y,z)∈{0,1}3

√
P1(x, y, z) · P2(x, y, z) ≥

1

8
·
(
8− α2

3
−O(α4)

)
≥ 1− α2

24
−O(α4)
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x y z P1(x, y, z) P2(x, y, z)

0 0 0 3
16
· (1 + α) 1

16
· (3 + 2α)

0 0 1 1
16
· (1− α) 1

16
· (1− 2α)

0 1 0 3
16
· (1− α) 1

16
· (3− 2α)

0 1 1 1
16
· (1 + α) 1

16
· (1 + 2α)

1 0 0 1
16
· (1 + α) 1

16
· (1 + 2α)

1 0 1 3
16
· (1− α) 1

16
· (3− 2α)

1 1 0 1
16
· (1− α) 1

16
· (1− 2α)

1 1 1 3
16
· (1 + α) 1

16
· (3 + 2α)

x y P1(x, y)

0 0 1
8
· (2 + α)

0 1 1
8
· (2− α)

1 0 1
8
· (2− α)

1 1 1
8
· (2 + α)

x y P2(x, y | z = 0) P2(x, y | z = 1)

0 0 1
8
· (3 + 2α) 1

8
· (1− 2α)

0 1 1
8
· (3− 2α) 1

8
· (1 + 2α)

1 0 1
8
· (1 + 2α) 1

8
· (3− 2α)

1 1 1
8
· (1− 2α) 1

8
· (3 + 2α)

x P2(x | z = 0) P2(x | z = 1)

0 3
4

1
4

1 1
4

3
4

y P2(y | z = 0) P2(y | z = 1)

0 1+α
2

1−α
2

1 1−α
2

1+α
2

Table A.1: Explicit (conditional) probability tables for our lower bound construction.

Hence,

d2H(P1,P2) = 1−
∑

(x,y,z)∈{0,1}3

√
P1(x, y, z) · P2(x, y, z) ≤

α2

24
+O(α4) ∈ O(α2)

Lemma A.6. dKL(P1,P1,G1) = 0 and dKL(P1,P1,G2) ∈ Ω(α2)

Proof. We have dKL(P1,P1,G1) = 0 by definition of P1: Z depends on X and Y depends
on Z. Observe that

dKL(P1,P1,G2)

= I(X;Z) + I(Z;Y )− I(Z;X, Y )

= I(X;Z) + I(Z;Y )−
(
I(Z;X) + I(Z;Y ) + I(X;Y | Z)− I(X;Y )

)
(By applying Lemma A.2 with v = Z, A = {X}, B = {Y })

= I(X;Y )− I(X;Y | Z)

= I(X;Y ) (Since I(X;Y | Z) = 0 in P1)

We will now show that I(X;Y ) ∈ Ω(α2). From Table A.1, one can verify that
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P1(x = 0) = P1(x = 1) = P1(y = 0) = P1(y = 1) = 1/2. So,

I(X;Y ) =
∑

(x,y)∈{0,1}2
P1(x, y) · log

P1(x, y)

P1(x) · P1(y)

=
1

4
·
(
(2 + α) · log

(
1 +

α

2

)
+ (2− α) · log

(
1− α

2

))
(From Table A.1)

≥ 1

4
· log2(e) ·

α

2
·
(
(2 + α) ·

(
1− α

4

)
− (2− α) ·

(
1 +

α

4

))
(By Lemma A.4)

∈ Ω(α2)

Lemma A.7. dKL(P2, P2,G2) = 0 and dKL(P2, P2,G1) ∈ Ω(α2)

Proof. We have dKL(P2, P2,G2) = 0 by definition of P2: Z depends on both X and Y .
Observe that

dKL(P2, P2,G1)

= I(Z;X, Y )− I(X;Z)− I(Z;Y )

= (I(Z;X) + I(Z;Y ) + I(X;Y | Z)− I(X;Y ))− I(X;Z)− I(Z;Y )

(By applying Lemma A.2 with v = Z, A = {X}, B = {Y })

= I(X;Y | Z)− I(X;Y )

= I(X;Y | Z) (Since I(X;Y ) = 0 in P2)

We will now show that I(X;Y | Z) ∈ Ω(α2). By definition,

I(X;Y | Z) =
∑

(x,y,z)∈{0,1}3
P2(x, y | z) · log

(
P2(x, y | z)

P2(x | z) · P2(y | z)

)
= I(X;Y | Z = 0) + I(X;Y | Z = 1)

From Table A.1, one can verify that P2(z = 0) = P2(z = 1) = 1/2 and I(X;Y |
Z = 0) = I(X;Y | Z = 1). So, it suffices to show that I(X;Y | Z = 0) ∈ Ω(α2).

I(X;Y | Z = 0)

=
∑

(x,y)∈{0,1}2
P2(x, y | z = 0) · log

(
P2(x, y | z = 0)

P2(x | z = 0) · P2(y | z = 0)

)

=
3

8
· log

(
3 + 2α

3 + 3α
· 3− 2α

3− 3α

)
+

1

8
· log

(
1 + 2α

1 + α
· 1− 2α

1− α

)
+
α

4
· log

(
3 + 2α

3 + 3α
· 3− 3α

3− 2α
· 1 + 2α

1 + α
· 1− α
1− 2α

)
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Using Taylor series expansion, one can verify that for 0 ≤ α ≤ 1/2,

• 3+2α
3+3α

· 3−2α
3−3α

≥ 1 + 5
9
α2

• 1+2α
1+α
· 1−2α

1−α
≥ 1− 3α2 − 4α4

• 3+2α
3+3α

· 3−3α
3−2α

· 1+2α
1+α
· 1−α
1−2α

≥ 1 + 4
3
α

Thus, using Lemma A.4, we get

I(X;Y | Z = 0)

=
3

8
· log

(
3 + 2α

3 + 3α
· 3− 2α

3− 3α

)
+

1

8
· log

(
1 + 2α

1 + α
· 1− 2α

1− α

)
+
α

4
· log

(
3 + 2α

3 + 3α
· 3− 3α

3− 2α
· 1 + 2α

1 + α
· 1− α
1− 2α

)
≥ 3

8
· log

(
1 +

5

9
α2

)
+

1

8
· log

(
1− 3α2 − 4α4

)
+
α

4
· log

(
1 +

4

3
α

)
≥ log2(e) ·

(
3

8
·

(
5

9
α2 −

(
5

9
α2

)2
)

− 1

8
·
(
3α2 + 4α4 +

(
3α2 + 4α4

)2)
+
α

4
·
(
4

3
α− (

4

3
α)2
))

∈ O(α2)

Lemma 4.14 (Key lower bound lemma). Let G1 beX → Z → Y and G2 beX → Z ← Y ,
such that skel(G1) = skel(G2) is X − Z − Y . With respect to Eq. (4.3), we have the
following:

1. d2
H(P1,P2) ∈ O(ε)

2. dKL(P1,P1,G1) = 0 and dKL(P1,P1,G2) ∈ Ω(ε)

3. dKL(P2,P2,G2) = 0 and dKL(P2,P2,G1) ∈ Ω(ε)

Proof. Combine Lemma A.5, Lemma A.6, and Lemma A.7 with α as
√
ε.



Appendix B

Addendum for Part II

B.1 Addendum for Chapter 6

B.1.1 Further analysis of the standing windmill essential graph

In this section, we show that all DAGs in the standing windmill essential graph requires
at least 3 and at most 4 atomic interventions.

By Theorem 6.12, we know that the optimal number of atomic interventions needed
to verify any graph is the size of the minimum vertex cover of its oriented edges. To
explore the space of DAGs in the essential graph, we will perform covered edge reversals
(as justified by Lemma 2.49).

Consider the DAG G∗ with MEC [G∗] and the standing windmill essential graph E(G∗)
in Fig. B.1. Starting from G∗, if we fix the arc direction H → A, then reversing any arc
(possibly multiple times) from the set {B−C,D−E,F−G} does not change the covered
edge status of any edge (i.e. the covered edges remain exactly the same 4 edges) and thus
the size of the minimum vertex cover remains unchanged. Meanwhile, reversing A −H
in G∗ yields the graph G1. Fixing the arc direction A→ H , we observe that the three sets
of edges {A−B,A−C,B−C}, {A−D,A−E,D−E}, and {A−F,A−G,F −G}
are symmetric. Furthermore, if we flip one of the edges from {A − B,A − D,A − F}
from G1 (or {A − C,A − D,A − F} from G4), then all other two A → · arcs are no
longer covered edges. So, it suffices to study what happens when we only reverse arc
directions in one of these sets: {A − B,A − C,B − C}, {A − D,A − E,D − E},
and {A − F,A − G,F − G}. The graphs G1 to G6 illustrate all possible cases when we
fix A → H and only reverse edges in the set {A − B,A − C,B − C}. We see that
ν1(G∗) = ν1(G1) = ν1(G4) = 4 and ν1(G2) = ν1(G3) = ν1(G5) = ν1(G6) = 3. Thus, we
can conclude that minG∈[G∗] ν1(G) = 3 and maxG∈[G∗] ν1(G) = 4.

223
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Figure B.1: A DAG G∗ with its essential graph E(G∗) and some of the graphs G ∈ [G∗].
In each DAG, dashed arcs are covered edges and the boxed vertices represent a minimum
vertex cover.

B.1.2 Subset verification with atomic interventions

The following results tell us that Meek rules can only “propagate downstream”, and will
be useful for proving subsequent properties about the set of vertices R−1.

Lemma B.1. Let G = (V ,E) be a DAG. If V ∈ R−1(G, A → B), then there exists a
directed path from V to B in G. That is, V ∈ An[B].

Proof. If V ∈ {A,B}, then we trivially have V ∈ An[B]. Otherwise, since V ∈
R−1(G, A → B), there must be at least one new arc in the Meek rule (see Fig. 2.2) that
fired to orient A→ B due to V . Now suppose V ̸∈ {A,B}. Let us perform induction on
the number of triggered Meek rules to orient A→ B.

Base case: Vertex V appears in all of Meek rules R1 to R4 that orients A → B, and
we see that V ∈ An[B] in all cases.

1. Meek R1: V can only be C and we have C → A→ B

2. Meek R2: V can only be C and we have C → B

3. Meek R3: This rule is not applicable as Meek R3 will trigger before any intervention
is done, so it will not the reason why V ∈ R−1(G, A→ B).

4. Meek R4: V can either be C or D. In either case, we have D → C → B.

Inductive case: By induction, vertex V ∈ R−1(X → Y ) for someX → Y at the start
of the Meek rule configuration with V ∈ An[Y ]. Observe that for any oriented arcX → Y

at the start of any Meek rule configuration that orients A→ B, we have Y ∈ An[B], and
so we have V ∈ An[B] as well.
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Lemma 6.43. If moral DAG G = (V ,E) is a single connected component, then the Hasse
diagramHG is a directed tree with a unique root vertex.

Proof. Since G is a single connected component, so is HG . This is because reachability
is preserved in Hasse diagrams. Suppose, for a contradiction, that HG does not have a
unique root. Then, there exists two distinct directed paths P1 = U → . . . → U ′ → X

and P2 = V → . . . → V ′ → X in HG with U ′ ̸= V ′ that end at some common vertex
X ∈ V . Notice that we must have U ′−V ′ in G, otherwise U ′ → X ← V ′ is a v-structure
in G. W.l.o.g., suppose U ′ → V ′. But this means that X ̸∈ Ch(U ′) and so we should not
have an arc U ′ → X in the Hasse diagramHG in the first place. Contradiction.

The proof of Theorem 6.45 relies on Lemma B.2, Lemma B.3, and Lemma B.4, which
we prove first.

Lemma B.2. Consider a moral DAG G = (V ,E). For any two vertices U, V ∈ V such
that U → V ∈ E(G), we have U → W ∈ E(G) for all W ∈ De(U) ∩ An(V ).

Proof. If U → V ∈ E(G), then there exists a path PU→V in HG . If PU→V = U → V is
a direct arc, then the claim is vacuously true since De(U) ∩ An(V ) = ∅. Now, suppose
PU→V = U → W1 → . . . → Wk → V where De(U) ∩ An(V ) = {W1, . . . ,Wk}. This
implies that the arcs U → W1 → . . . → Wk → V are all present in G. Since G has no
v-structures, it must be the case that the arc U → Wk exists (otherwise U → V ← Wk

is a v-structure). Thus, by recursive argument from Wk−1 up to W1, there must be arcs
U → W ∈ E(G) for any W ∈ {W1, . . . ,Wk}.

Lemma B.3. Let G = (V ,E) be a moral DAG and U → V be an unoriented arc in E(G).
Then, we haveW ∈ R−1(G, U → V ) for anyW ∈ De(U)∩An(V ) in the Hasse diagram
HG .

Proof. If V ∈ Ch(U), then the result is vacuously true since De(U) ∩ An(V ) = ∅.
Suppose PU→V = U → W1 → . . . → Wk → V is the unique path from U to V in HG ,
where De(U) ∩An(V ) = {W1, . . . ,Wk}. By Lemma B.2, we know that the arc U → W

exists in G for any W ∈ An(V ) ∩De(U).
Suppose we intervened on an arbitraryWi ∈ {W1, . . .Wk}, whereDe(Wi)∩An(V ) =

{Wi+1, . . . ,Wk}. For any fixed arbitrary valid permutation π, define

last(π,Wi) = argmax
Z ∈ De(Wi) ∩ An(V )

Wi→Z ∈ E

{π(Z)}

as the “last” vertex in De(Wi) ∩ An(V ) that Wi has a direct arc within G.
If last(π,Wi) = V , then intervening on Wi yields U → Wi → V − U . So, Meek

rule R2 will trigger to orient U → V . Otherwise, if last(π,Wi) ̸= V , then intervening
on Wi will cause two sets of Meek rules to fire:
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1. Meek rule R2 will orient the arcs U → Z, for all Z ∈ De(Wi) ∩ An[last(π,Wi)]

since U → Wi → Z − U

2. Meek rule R1 will orient all outgoing arcs from last(π,Wi) towards vertices in
De(Wi)∩An(V ), sinceWi \− Z for all Z ∈ De(last(π,Wi))∩De(Wi)∩An(V ),
by maximality of last(π,Wi)

Repeating the above argument by replacing the role of Wi by last(π,Wi), we see that
the arc Wfinal → V will eventually be oriented by some Wfinal ∈ De(Wi) ∩ An(V ),
and so Meek rule R2 will orient U → V . Intuitively, the direction U → V is forced
in order to avoid a directed cycle since we will have U → Wi → last(π,Wi) →
last(last(π,Wi)) . . .→ last(last(. . . (last(π,Wi)))) = Wfinal → V − U .

Lemma B.4. Let G = (V ,E) be a moral DAG and U → V be an unoriented arc in
E(G). For any vertex W ∈ R−1(G, U → V ), we have Y ∈ R−1(G, U → V ) for all
Y ∈ De(W ) ∩ An(U).

Proof. Without loss of generality, we may assume W ̸∈ {U, V } and Y ∈ Ch(W ) is a
direct child of W due to the following two observations:

1. If W ∈ {U, V }, then De(W ) ∩ An(U) = ∅ and the result is trivially true.

2. Suppose the chain of direct children from W to U is W → Y1 → Y2 → . . . →
Yk → U . To prove the result, it suffices to argue that Y1 ∈ R−1(G, U → V ) and
then apply induction to conclude that Y2 ∈ R−1(G, U → V ), and so on.

Since W ̸∈ {U, V } and Y ∈ Ch(W ), we see that the arc U → V belongs in the set
R(G,W ) ∩ E(TY ), where TY is the subtree rooted at Y in the Hasse diagram HG with
E(TY ) = {A → B : A,B ∈ De[Y ]}. So, it suffices to show that R(G,W ) ∩E(TY ) ⊆
R(G, Y ). By Lemma B.1, intervening on W will only cause Meek rules to orient arcs of
the form A → B where W ∈ An[B]. So, we can partition the newly recovered arcs in
R(G,W ) into three disjoint sets R1(W ), R2(W ), and R3(W ) as follows:

R1(W ) = {A→ B ∈ R(G,W ) : W = A ∨W = B} (W is an endpoint)

R2(W ) = {A→ B ∈ R(G,W ) : A ∈ An(W ), B ∈ De(W )}
(W lies between endpoints)

R3(W ) = {A→ B ∈ R(G,W ) : A,B ∈ De(W )} (W is ancestral to endpoints)

Clearly, R1(W )∩E(TY ) = ∅ sinceW ̸∈ V (TY ) and so R1(W )∩E(TY ) ⊆ R(G, Y )

trivially. Meanwhile, since Y ∈ De(W ) ∩ An(U) implies that Y ∈ De(A) ∩ An(B) for
any arc A→ B ∈ R2(W ) ∩E(TY ), Lemma B.3 tells us that A→ B ∈ R(G, Y ) and so
R2(W ) ∩E(TY ) ⊆ R(G, Y ). It remains to argue that R3(W ) ∩E(TY ) ⊆ R(G, Y ).
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For any A → B ∈ R3(W ), we see that A,B ∈ De[Y ] since A,B ∈ De(W ) and
Y ∈ Ch(W ). Furthermore, since A = Y implies that A → B ∈ R(G, Y ) trivially, we
may further assume thatA,B ∈ De(Y ). LetA→ B be the first arc withinR3(W )∩E(TY )
to be oriented when W is intervened upon. Since A,B ∈ De(W ), it must be the case
that A→ B was oriented due to some Meek rule orientation (see Section 2.6.6). Observe
that any oriented arc A′ → B′ appearing at the start of the Meek rule configuration to
orient A → B has the property that B′ ∈ An[B], so arcs in R3(W ) \ E(TY ) cannot be
the reason why A → B is oriented via Meek rules. Since A → B be the first arc within
R3(W ) ∩ E(TY ) to be oriented, this means that arcs outside of where the oriented arcs
appearing at the start of the orientation belong to eitherR1(W ) orR2(W ), i.e. the arc must
begin with some vertex from An[W ]. We now check the four Meek rule configurations
that could have oriented A → B, where any oriented arc at the start of the Meek rule
configuration begins with some vertex from An[W ]:

R1 The only oriented arc is C → A. Since C ∈ An[W ] and A ∈ De(Y ), Lemma B.3
tells us that C → A ∈ R(G, Y ) and so Meek R1 would trigger and orient A → B

via C → A−B upon intervening on Y , i.e. A→ B ∈ R(G, Y ).

R2 There is an oriented arc A → C which means that A ∈ [W ], but this is not possible
since we also have that A ∈ De(Y ). So, this rule cannot be the reason why
A→ B ∈ R3(W ).

R3 This rule is not applicable because Meek R3 will trigger before any intervention is
done, so it will not be the reason why A→ B ∈ R3(W ).

R4 There is an oriented arc D → C. Since D ∈ An[W ] and A ∈ De(Y ), Lemma B.3
tells us that D → A ∈ R(G, Y ) and so Meek R1 would trigger and orient A → B

via D → A−B upon intervening on Y , i.e. A→ B ∈ R(G, Y ).

In any case, we always see that R3(W ) ∩E(TY ) ⊆ R(G, Y ).

We are now ready to prove Theorem 6.45.

Theorem 6.45. Let G = (V ,E) be a moral DAG and U → V be an unoriented arc in
E(G). Then, R−1(G, U → V ) = De[W ] ∩ An[V ] for some W ∈ An[U ].

Proof. We have U, V ∈ R−1(G, U → V ) trivially. By Lemma B.1, we also have De(V )∩
R−1(G, U → V ) = ∅ and R−1(G, U → V ) ⊆ An[V ]. For an arbitrary consistent
topological ordering π, let

W = argmin
Z ∈ R−1(G,U→V ) ∩ An[U ]

{π(Z)}
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be the “furthest” ancestor vertex ofU that orientsU → V . By minimality ofW , we see that
An(W )∩R−1(G, U → V ) = ∅. Meanwhile, Lemma B.4 tells us that De(W )∩An(U) ⊆
R−1(G, U → V ). Putting together, we get R−1(G, U → V ) = De[W ] ∩ An[V ].

Lemma 6.46. If G be a moral DAG, then the covered edges of G are a subset of the Hasse
edges inHG .

Proof. To prove this, we argue that any edge A→ B ̸∈ E(HG) cannot be a covered edge.
Since all direct children arcs belong to E(HG) and A → B ̸∈ E(HG), it must be the
case that B ̸∈ Ch(A). So, there exists some Z ∈ De(A) ∩ An(B) such that Z → B but
Z ̸→ A. Thus, A→ B cannot be a covered edge.

Lemma 6.48. Let G = (V ,E) be a connected moral DAG,H be the Hasse tree of G, and
T ⊆ E be a subset of target edges. Then, there exists a set of intervals J ⊆ 2V ×V on H
such that any solution to minimum interval stabbing problem on (H,J) is a solution to
the minimum sized atomic subset verification set (G,T ).

Proof. By Theorem 6.45, we know that each target edge E ∈ T has a corresponding
interval [AE, BE]H will be oriented if and only if some vertex in [AE, BE]H is selected
into the intervention set. Define J = {[AE, BE]H : E ∈ T } as the collection of intervals
corresponding to each edge E ∈ T of the target edges. Then, any solution to the interval
stabbing problem on (H,J) ensures that every interval is stabbed, which translates to
every edge in T being oriented via Theorem 6.45. Finally, to conclude, observe that the
minimality of the interval stabbing solution corresponds to the minimality of the atomic
verification set size.

Lemma 6.49. There exists a polynomial time algorithm for solving the interval stabbing
problem on a rooted tree.

Proof. See Theorem B.8.

Lemma 6.50. LetH be a rooted tree and J ⊆ 2V ×V be a set of intervals onH, for some
set V . Then, there exists a connected moral DAG G = (V ,E) and a subset T ⊆ E of
edges such that any solution to the minimum sized atomic subset verification set (G,T ) is
a solution to minimum interval stabbing problem on (H,J).

Proof. Fix a consistent topological ordering π and consider the following construction:

1. Treat each interval [U, V ]H in J as an edge (U, V ) where π(U) < π(V )

2. Define the set of arcs as E = A ∪B, where

A = {U → V ∈ E(H) : π(U) < π(V )}

B =
⋃

(U,V )∈J

{Z → W : Z ∈ An[V ],W ∈ De[U ] ∩ An[V ]}
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3. Let G = (V ,E) be the resulting DAG and let T = {U → V : (U, V ) ∈ J}.

Note that J ⊆ B and G is a moral DAG and so its Hasse diagramHG = H.
To argue that the solution to the subset verification problem instance (G,T ) is a solution

to the interval stabbing on a tree instance (H,J), it suffices to show that R−1(G, U →
V ) = De[U ] ∩ An[V ] for each arc U → V ∈ T .

Consider an arbitrary A → B ∈ T . By Theorem 6.45, we know that R−1(G, A →
B) = De[W ]∩An[B] for someW ∈ An[A]. It remains to argue thatA→ B ̸∈ R(G,W )

for W ∈ An(A). Suppose, for contradiction, that A → B ∈ R(G,W ) for some W ∈
An(A). Since W ∈ An(A), it must be the case that A → B was oriented due to some
Meek rule orientation (see Section 2.6.6). We first argue that the configurations for Meek
R1, R3, and R4 cannot be the reason why A→ B ∈ R(G,W ).

R1 This configuration will not occur by construction of B in G (since A → B ∈ J ,
C ∈ An[B], and B ∈ An[B] implies C → B ∈ B ⊆ E), so this rule cannot be the
reason why A→ B ∈ R(G,W ).

R3 This configuration will not occur since G is a moral DAG, so this rule cannot be the
reason why A→ B ∈ R(G,W ).

R4 This configuration will not occur by construction of B in G (since A → B ∈ J ,
D ∈ An[B], and B ∈ An[B] implies D → B ∈ B ⊆ E), so this rule cannot be the
reason why A→ B ∈ R(G,W ).

Now, consider the Meek R2 configuration whereA→ C → B−Awas used to trigger the
orientation of A→ B. Observe that C ∈ De(A) ∩ An(B). If De(A) ∩ An(B) = ∅, this
configuration cannot occur. Suppose De(A) ∩ An(B) ̸= ∅ and let Z be the earliest such
vertex, i.e. Z ∈ An[Z ′] for any Z ′ ∈ De(A) ∩ An(B). Since W ∈ An(A), we know that
A → Z must be oriented by some Meek rule. By choice of Z, Meek rule R2 cannot be
the reason why A→ Z ∈ R(G,W ). Meanwhile, A→ B ∈ J and Z ∈ De(A) ∩ An(B)

imply that the other rule configurations do not apply by construction of B in G. Therefore,
A → Z will not be oriented, which contradicts the assumption that Meek R2 could be
used to orient A→ B ∈ R(G,W ).

B.1.3 Efficient dynamic programming implementation of recurrence

Recall the definitions and recurrence equations established in Section 6.8.1, we now
explain how to solve Definition 6.47 in polynomial time via dynamic programming.

Definition 6.47 (Interval stabbing problem on a rooted tree). Given a rooted tree Ĝ =

(V ,E) with root R ∈ V and a set J ⊆ 2V ×V of intervals of the form [U, V ], find a set
I ⊆ V of minimum size such that I stabs [U, V ] for all [U, V ] ∈ J .
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Further, recall that we say that a vertex Z ∈ V stabs an interval [U, V ] if and only if
Z ∈ De[U ] ∩ An[V ], and that a subset S ⊆ V stabs [A,B] if S has a vertex that stabs it.

Naively computing the recurrence relation of Eq. (6.3) will incur an exponential blow-
up in state space. Instead, we will define an ordering≺ on J so that our state space is over
the indices of a sorted array instead of a subset of intervals (see Eq. (B.1)), so that we can
implement the recurrence as a polynomial time dynamic programming (DP) problem.

Our ≺ ordering relies on the Euler tour data structure for rooted trees [TV84, HK99],
which computes a sequence τ of vertices visited in a depth-first search (DFS) from the
root. Using this sequence τ , we can obtain the first (f ) and last (ℓ) times that a vertex
is visited. More formally, we can define the mappings τ : {1, . . . , 2n − 1} → V ,
f : V → {1, . . . , 2n − 1}, and ℓ : V → {1, . . . , 2n − 1}. These mappings can be
computed in linear time (via DFS) and f(V ) ≤ ℓ(V ) with equality only if V is a leaf of
the tree. See Fig. B.2 for an illustration of τ , f , and ℓ.

A

CB D

E F G H

I J

Figure B.2: Consider the rooted tree G on n = 10 vertices with intervals J = {[A,B],
[A,E], [A,H], [A, I], [C,G], [D, J ]}. Recalling Eq. (6.3), we see that opt(J , A) = 3,
where {A,C,D} and {B,G,H} are possible optimal sized interval covers. One possi-
ble Euler tour sequence τ is (A,B,E,B, F,B,A,C,G,C,A,D,H, I,H, J,H,D,A) of
length |τ | = 2n − 1 = 19. Table B.1 shows the first (f ) and last (ℓ) indices within τ .
Observe that the leaves E,F,G, I, J have the same first and last indices, and vertices
D,H, I, J ∈ V (TD) have indices between f(D) = 12 and ℓ(D) = 18.

Using the Euler tour data structure, we can efficiently remove a subset of “unnecessary
intervals” from J , whose removal will not affect the optimality of the recurrence while
granting us some additional structural properties which we will exploit. We call these
“unnecessary intervals” superset intervals.
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A B C D E F G H I J

f 1 2 8 12 3 5 9 13 14 16
ℓ 19 6 10 18 3 5 9 17 14 16

Table B.1: First (f ) and last (ℓ) indices for Fig. B.2

Definition B.5 (Superset interval). We say that an interval [C,D] ∈ J is a superset interval
if there exists another interval [A,B] ∈ J such that C ∈ An[A] and B ∈ An[D].

In Fig. B.2, [A,E] is a superset interval of [A,B]. Note that A ∈ An[B] in the
definition of superset interval since [A,B] is an interval. Observe that the removal of
superset intervals will not affect the optimality of the solution because stabbing [A,B]

will stab [C,D]. For an interval [A,B], we call A the starting vertex and B the ending
vertex of the interval [A,B] respectively. Using the Euler tour data structure, superset
intervals can be removed in O(|J | log |J |) time by first sorting the intervals according to
the ending vertex, then only keep the intervals with the latest starting vertex amongst any
pair of intervals that share the same ending vertex. After removing superset intervals, we
are guaranteed that the ending vertices in J are unique.

We now define and sort according an ordering ≺ on J using the Euler tour mapping
f so that J [i] ≺ J [j] for any i < j in the following sense:

[A,B] ≺ [C,D] ⇐⇒ f(A) < f(C) or (A = C and ℓ(B) > ℓ(D)) (B.1)

In Fig. B.2, we have [A,H] ≺ [A, I] ≺ [A,B] ≺ [A,E] ≺ [C,G] ≺ [D, J ].
We write J−1([A,B]) to refer to the index of [A,B] in J . Since IY ⊆ IV for any

Y ∈ Ch(V ), we are guaranteed that min[A,B]∈IV J−1([A,B]) ≤ min[A,B]∈IY J−1([A,B])

for any Y ∈ Ch(V ). However, note that there may be intervals outside of IV with indices
between min[A,B]∈IV J−1([A,B]) and max[A,B]∈IV J−1([A,B]). For any vertex V ∈ V ,
we define

JV = sorted
(
{J−1([A,B]) ∈ {1, . . . , |J |} : [A,B] ∈ J ∩ IV }

)
as the array of indices of intervals in IV such that JV [i] ≺ JV [j] for all 1 ≤ i < j ≤
|IV | = |JV |. See Fig. B.3.

We begin with a simple lemma relating the first time a depth-first search visits a vertex
and the ancestry of vertices.

Lemma B.6. Consider arbitrary vertices A,B, V ∈ V in a rooted tree G with root R. If
A,B ∈ An(V ), then either A ∈ An[B] or B ∈ An[A]. Furthermore, if f(A) ≤ f(B),
then A ∈ An[B].

Proof. Since G is a rooted tree, there is a unique path P from R to any vertex V ∈ V
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A

B

C D

E

Figure B.3: Consider the rooted tree G on 5 vertices with intervals J = {[A,D], [B,C],
[D,E]} and the Euler tour visits A,B,C,D,E in sequence. Then, [A,D] ≺ [B,C] ≺
[D,E] and J−1([A,D]) = 1, J−1([B,C]) = 2, and J−1([D,E]) = 3. In this example,
ID = {[A,D], [D,E]} and JD = [1, 3]. Observe that mini JD[i] < J−1([B,C]) <
maxi JD[i] despite [B,C] ̸∈ ID.

that involves all ancestors of V . Since A,B ∈ An(V ), then either A appears before B
in P (i.e. A ∈ An[B]) or B appears before A in P (i.e. B ∈ An[A]). By definition of
depth-first search from R, if we visit A before B (i.e. f(A) ≤ f(B)), then it must be the
case that A ∈ An[B].

The next lemma tells us that unstabbed intervals form a contiguous interval in JV and
that EV appears first within JV .

Lemma B.7 (Properties of J w.r.t. ≺). Consider an arbitrary V ∈ V where |IV | ≥ 2.

• For any 1 ≤ i < j ≤ |IV |, if JV [j] = [C,D] is stabbed by some Z ∈ An(V ), then
JV [i] = [A,B] is also stabbed by Z.

• If EV ̸= ∅ and IV \EV ̸= ∅, then

max
[A,B]∈EV

J−1([A,B]) ≤ min
[A,B]∈IV \EV

J−1([A,B])

Proof. We prove each property one by one.
First property: SinceJ−1([A,B]) = i < j = J−1([C,D]), we have [A,B] ≺ [C,D].

By Eq. (B.1), this means that either f(A) < f(C) or (A = C and ℓ(B) > ℓ(D)).
Since f(A) ≤ f(C) alawys, we see that A ∈ An[C] by Lemma B.6. We also have
[A,B], [C,D] ∈ IV by definition of JV , so we have B,D ∈ V (TV ). That is, V ∈ An[B]

and V ∈ An[D], which implies that Z ∈ An[B] ∩ An[D] since Z ∈ An(V ). So,

Z ∈ De[C] ∩ (An[B] ∩ An[D]) (Since Z stabs [C,D] and Z ∈ An[B] ∩ An[D])
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⊆ De[C] ∩ An[B]

⊆ De[A] ∩ An[B] (Since A ∈ An[C])

In other words, Z stabs [A,B] as well.
Second property: It suffices to argue that [A,B] ≺ [C,D] for any [A,B] ∈ EV ⊆ IV

and [C,D] ∈ IV \ EV . Since [A,B], [C,D] ∈ IV , we know that B,D ∈ V (TV ),
i.e. V ∈ An[B] and V ∈ An[D]. Since [A,B] ∈ EV , we further have B = V , so
A ∈ An(B) = An(V ) and B = V ∈ An[D].

We will now argue thatA ∈ An(C). This is true for any [C,D] ∈ SV ∪WV ⊆ IV \EV

because V ∈ An[C] in these cases, so it remains to consider [C,D] ∈MV ⊆ IV \EV .
When [C,D] ∈MV , we see thatA ∈ An(V ) and C ∈ An(V ), so Lemma B.6 tells us that
eitherA ∈ An[C] orC ∈ An[A]. However, we cannot haveC ∈ An[A] orA = C because
this will imply that [C,D] is a superset interval with respect to [A,B] since C ∈ An[A]

and B ∈ An[D], but we have already removed all superset intervals. So, it must be the
case that A ∈ An(C).

To conclude, observe that A ∈ An(C) implies f(A) < f(C), therefore [A,B] ≺
[C,D] by Eq. (B.1).

Algorithm 28 and Algorithm 29 describe our DP approach where we always recurse on
subsets within IV , starting with V = R. For any vertex V ∈ V , our DP state will recurse
on the smallest index of the remaining unstabbed intervals within IV . If all intervals
within IV are stabbed, then the recursed index will be∞ and the recursion terminates.

Algorithm 28 Minimum interval stab size on a rooted tree.
1: Input: Rooted tree G = (V ,E) with root R and a set of intervals J .
2: Output: opt(J , R) = DP(R, 0)
3: Compute Euler tour mappings f and ℓ, sort J according to ≺ ordering
4: Remove superset intervals from J
5: Pre-compute indices eV , aY and bV,Y for all V ∈ V and Y ∈ Ch(V )

▷ See Eq. (B.3), Eq. (B.4), and Eq. (B.5)
6: return DP(R, 0)

Algorithm 29 Dynamic programming subroutine DP.
1: Input: Vertex V ∈ V and an index i ∈ {0, 1, . . . , |J | − 1}.
2: Output: DP(V, i)
3: if i =∞ then return 0 ▷ Done processing J
4: αV = 1 +

∑
Y ∈Ch(V ) DP(Y,max{aY , i})

5: βV =
∑

Y ∈Ch(V ) DP(Y,max{bV,Y , i})
6: if eV ≥ i then memo(V, i)← αV ▷ U ∩EV ̸= ∅; see Eq. (B.2) for definition of U
7: else memo(V, i)← min{αV , βV }
8: return memo(V, i)
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Recall the DP recurrence relation given in Eq. (6.3). When recursing on vertex V ∈ V

and index i, we define the set U as follows:

U = {[A,B] ∈ IV : J−1([A,B]) ≥ i} (B.2)

Note that U = J initially when we start off the DP at the root R ∈ V .
To determine whether U ∩EV is empty, we can define

eV =

max[A,B]∈EV
J−1([A,B]) if EV ̸= ∅

−∞ if EV = ∅
(B.3)

and check whether eV ≥ i. This works because Lemma B.7 guarantees that EV appears
in the front of JV , so eV ≥ i ⇐⇒ U ∩ EV ̸= ∅. Meanwhile, the appropriate index
update for U ∩BY in the αV case is max{aY , i} where

aY =

min[A,B]∈BY
J−1([A,B]) if BY ̸= ∅

∞ if BY = ∅
(B.4)

Similarly, the index update U ∩ IY in the βV case is max{bV,Y , i} where

bV,Y =

min[A,B]∈IY J−1([A,B]) if IY ̸= ∅

∞ if IY = ∅
(B.5)

One can verify that all the eV , aY , bV,Y indices can be pre-computed in polynomial time
before executing the DP. To extract a minimum sized stabbing set for J of size opt(J , R),
one can perform a standard backtracing of the memoization table.

Theorem B.8. Together, Algorithm 28 and Algorithm 29 correctly output opt(J , R) in
O(n2 · |J |) time.

Proof. Correctness The indices eV , aY , bV,Y are defined to match Eq. (6.3) and the cor-
rectness follows from Lemma 6.51 (see the next proof). The invariant we maintain
throughout the recursion is as follows: J [i] has not been stabbed by An(V ) whenever we
are in a recursive step at some vertex V ∈ V and index i. We know from Lemma B.7
that any interval [A,B] with J−1([A,B]) < i would have been stabbed. So, recursing
on max{aY , i} is equivalent to recursing on U ∩ IY and max{bV,Y , i} is equivalent to
recursing on U ∩BY in Eq. (6.3), for any Y ∈ Ch(V ). Since we immediately recurse on
the αV case whenever U ∩EV ̸= ∅, we avoid the∞ case in Eq. (6.3).

Runtime The computation time of Euler tour data structure can be done inO(n) time
via depth-first-search on the rooted tree. The removal of superset intervals can be done in
O(|J | log |J |) time. Sorting ofJ according to the≺ ordering can be done inO(|J | log |J |)
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time. For anyV ∈ V , the setsEV ,MV ,SV ,WV , IV ,BV ,CV can be computed inO(|J |)
time, then the indices EV , AY and BV,Y can be computed in O(|J | log |J |) time (we may
need to sort to compute the minimum and maximum values). The DP has at mostO(n·|J |)
states and an execution of Algorithm 29 at vertex V takesO(|Ch(V )|) time (accounting for
memoization), so the Algorithm 29 takesO(n · |J | ·

∑
V ∈V |Ch(V )|) ⊆ O(n2 · |J |) time.

Putting everything together, we see that the overall runtime is O(|J | log |J |+ n2 · |J |) ⊆
O(n2 · |J |) since |J | ≤

(
n
2

)
≤ n2.

Lemma 6.51. At least one of the following must hold for any optimal solution opt with
size opt(U , R) to the interval stabbing problem with respect to ordering π and any vertex
V ∈ V with EV = ∅:

1. Either V ∈ opt or opt includes some ancestor of V .

2. For Y ∈ Ch(V ) such that CV ∩ IY ̸= ∅, we must have WV,Y ∈ opt for some
WV,Y ∈ De(V ) ∩ An[BV,Y ], where [AV,Y , BV,Y ] = argmin

[A,B]∈U ∩CV ∩ IY

{π(B)}.

Proof. Consider any arbitrary vertex V ∈ V and any child Y ∈ Ch(V ) such that CV ∩
IY ̸= ∅. For any U ⊆ J , define

LU ,V,Y = argmin
[A,B]∈U ∩CV ∩ IY

{π(B)} = [AV,Y , BV,Y ]

as the earliest ending interval within U that is covered by V in subtree TY .
Suppose V ̸∈ opt and opt does not include any ancestor of V . To stab any interval

in [A,B] ∈ CV , we must have W ∈ opt for some W ∈ De(V ) ∩ An[B]. Since subtrees
TY are disjoint, we can partition CV into

⊔
Y ∈Ch(V ) CV,Y =

⊔
Y ∈Ch(V ) CV ∩ IY , where

CV,Y is associated to subtree TY . So, for each interval [A,B] ∈ CV,Y , we need to ensure
that W ∈ opt for some W ∈ De(V ) ∩ An[B]. By minimality of BV,Y , stabbing LU ,V,Y

ensures that all intervals in CV,Y are stabbed and any stabbing for CV,Y must also stab
LU ,V,Y .

B.1.4 Subset verification with k-bounded interventions

In this section, we extend the result of Theorem 6.26 to the subset setting by following
a similar proof strategy. One crucial difference in is that previously we rely on the
bipartiteness of the covered edges of G∗ while now we rely on Lemma B.9 to argue that
there is a way to 2-color the atomic minimum subset verifying set.

Lemma B.9. Let G = (V ,E) be a moral DAG and S ⊆ E. Then, there exists a subset
S′ ⊆ E computable in polynomial time such that G[S′] is a forest, R(G,S) ⊆ R(G,S′),
and

⋃
(U,V )∈S′{U, V } ⊆

⋃
(U,V )∈S{U, V }.
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Proof. If G[S] is a forest, the claim trivially holds. Otherwise, we apply the following
recursive argument to tranform S: as long as G still contains an undirected cycle, we
can update S to S′ such that G[S′] has fewer cycles than G[S] while still ensuring that
R(G,S) ⊆ R(G,S′).

Let π be an arbitrary valid ordering for G. Suppose G[S] contains an undirected cycle
C = R→ U1 → . . .→ Uk → S ← Vℓ ← . . .← V1 ← R of length |C| = k+ ℓ+2 ≥ 3,
whereR = U0 = V0 = argminZ∈V (C){π(Z)} and S = argmaxZ∈V (C){π(Z)}. We write
C = R → S ← Vℓ ← . . . ← V1 ← R and C = R → U1 → . . . → Uk → S ← R if
k = 0 or ℓ = 0 respectively.

Since G has no v-structures, we must have Vℓ − Uk in G. Without loss of generality,
suppose Vℓ → Uk. Then, we update S to S′ = S ∪ {Vℓ → Uk} \ {Vℓ → S}. Note
that Vℓ, S ∈ S, so the vertices of the endpoints in S′ are a subset of S. Observe that
R(G,S) ⊆ R(G,S′) because Meek rule R2 will orient Vℓ → S via Vℓ → Uk → S − Vℓ.
Furthermore, the cycle C is either destroyed (if |C| = 3) or is shortened by one (if
|C| > 3). We can repeat this edge replacement argument until G[S′] has strictly one less
undirected cycle than G[S], and eventually until G[S′] has no undirected cycles, i.e. G[S′]

is a forest.
It remains to argue that the recursive procedure described above runs in polynomial

time. We first note that cycle finding can be done in polynomial time using depth-first
search (DFS). Now, consider the potential function ϕ(S) =

∑
e=(U,V )∈S π(U) + π(V ). In

each round, ϕ(S) decreases since we replace Vℓ → Uk by Vℓ → S and π(Uk) < π(S).
Since the initial potential function value is polynomial in n, and we decrease it by at least
1 in each step, the entire procedure runs in polynomial time.

By invoking Lemma B.9 with S as the incident arcs of the minimum size subset
verification set I, we can obtain a 2-coloring of I with respect to S′. Thus, we can apply
the “greedy grouping” generalization strategy as before to achieve the similar guarantees
as Theorem 6.26, generalizing the results beyond T = E.

Theorem B.10. If ν1(G,T ) = ℓ, then νk(G,T ) ≥ ⌈ℓ/k⌉ and there exists a polynomial
time algorithm to compute a bounded size intervention set I of size |I| ≤ ⌈ ℓ

k
⌉+ 1.

Proof. Consider any atomic subset verifying set I of G of size ℓ. Let S be the set of edges
incident to vertices in I. By Lemma B.9, there is a subset S′ ⊆ E such that G[S′] is a
forest, R(G, I) = R(G,S) ⊆ R(G,S′) and

⋃
(U,V )∈S′{U, V } ⊆

⋃
(U,V )∈S{U, V }. Since

G[S′] is a forest and V (G[S′]) ⊆ I, there is a 2-coloring of the vertices in I.
Split the vertices in I into partitions according to the 2-coloring. By construction,

vertices belonging in the same partite will not be adjacent and thus choosing them together
to be in an intervention S will not reduce the number of separated covered edges. Now,
form interventions of size k by greedily picking vertices in I within the same partite. For
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the remaining unpicked vertices (strictly less than k of them), we form a new intervention
with them. Repeat the same process for the other partite.

This greedy process forms groups of size k and at most 2 groups of sizes, one from
each partite. Suppose that we formed z groups of size k in total and two “leftover groups”
of sizes x and y, where 0 ≤ x, y < k. Then, ℓ = z ·k+x+y, ℓ

k
= z+ x+y

k
, and we formed

at most z+2 groups. If 0 ≤ x+ y < k, then ⌈ ℓ
k
⌉ = z+1. Otherwise, if k ≤ x+ y < 2k,

then ⌈ ℓ
k
⌉ = z + 2. In either case, we use at most ⌈ ℓ

k
⌉+ 1 interventions, each of size ≤ k.

One can compute a bounded size intervention set efficiently because the following
procedures can all be run in polynomial time: (i) Lemma B.9 runs in polynomial time; (ii)
2-coloring a tree; (iii) greedily grouping vertices into sizes ≤ k.

B.2 Addendum for Chapter 7

B.2.1 Covariate adjustment in the potential outcomes framework

For simplicity, we describe the potential outcomes framework in the i.i.d. setting, i.e.,
we assume that n samples are drawn independently from a distribution P(V ), though we
note that the following result can be extended to weaker settings (e.g. when samples are
exchangeable but not necessarily independent).

In the PO framework, the treatment variables X are considered to be given, along
with a set ΣX of possible values for X . Given X and ΣX , one takes as their starting
point an indexed set of random variables {Y (x)}x∈ΣX

, with Y (x) denoting the potential
outcome associated with intervening to set X equal to x. Then, the factual outcome Y is
generated according to X and the potential outcomes; typically, one assumes consistency,
i.e., that if X = x, then Y = Y (x). Hence, under the PO framework, we have
Px(y) = P(Y (x) = y) is the probability that Y takes on value y if X is set to x.

Now, Eq. (7.1) can be derived as a consequence of consistency and an additional
assumption about conditional independences. In particular, X is called conditionally
ignorable with respect to Z if Y (x)⊥⊥X | Z for all x ∈ ΣX .

Lemma B.11. Under consistency and conditional ignorability of X with respect to Z, we
have

P(Y (x) = y) =
∑
z∈Z

P(Y = y | Z = z,X = x) · P(Z = z)

Proof.

P(Y (x) = y) =
∑
z∈Z

P(Y (x) = y | Z = z) · P(Z = z) (Law of total probability)

=
∑
z∈Z

P(Y (x) = y | Z = z,X = x) · P(Z = z)

(Since Y (x)⊥⊥X | Z)
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=
∑
z∈Z

P(Y = y | Z = z,X = x) · P(Z = z) (By consistency)

B.2.2 Derivation of expectation bound

Here, we translate the result of [ZBHK24] into our language, showing thatO( |ΣZ |
λαZ

+ 1
λ2αZ

)

samples suffice to obtain an expectation bound of E(|TZ,x,y − T̂Z,x,y|) ≤ λ, for TZ,x,y

defined as in Eq. (7.1).
[ZBHK24] studies the setting where one is given n i.i.d. copies of (Y,X,A)where Y ∈

{0, 1} is the binary outcome,X ∈ {0, 1} is the binary treatment, andA ∈ [d] = {1, . . . , d}
is a multivariate covariate. Under their positivity assumption [ZBHK24, Assumption 2],
P(X = 1 | A = k) ∈ [ε, 1 − ε] holds for some constant ε ∈ (0, 1/2) and any k ∈ [d].
Then, for ψ1 =

∑d
k=1P(A = k) · P(Y = 1 | X = 1, A = k) and plug-in estimator ψ̂1,

Theorem 1 of [ZBHK24] states that E[ψ1− ψ̂1] ≤ |ΣZ |2
α2
Zn2 +

C
αZn

when ψ̂1 is computed using
n i.i.d. samples from P(Y,X,A), for the worst case distribution P(Y,X,A) satisfying
their positivity assumption.

To adapt their result to our setting, let us define Y ′ = 1Y =y, X ′ = 1X=x, and A′

as a flattened version of Z. Relating (Y ′, X ′, A′) to their (Y,X,A) setup, we see that
ψ1 = TZ,x,y, d = |ΣZ |, and αZ = ε. So,

E
[(
TZ,x,y − T̂Z,x,y

)2]
≤ |ΣZ |2

α2
Zn

2
+

C

αZn
, (B.6)

for some absolute constant C > 0, where we have replaced ε by αZ , d by |ΣZ |, and used
that (1− αZ)

2 ≤ 1.
To translate this bound into our desired form, we first apply Jensen’s inequality [Jen06]:

(
E
[∣∣∣TZ,x,y − T̂Z,x,y

∣∣∣])2 ≤ E
[(∣∣∣TZ,x,y − T̂Z,x,y

∣∣∣)2] (Jensen’s inequality)

= E
[(
TZ,x,y − T̂Z,x,y

)2]
≤ 2max

(
|ΣZ |2

α2
Zn

2
,
C

αZn

)
(By Eq. (B.6))

Thus, to obtain that E
(∣∣∣TZ,x,y − T̂Z,x,y

∣∣∣) ≤ λ, it suffices to have 2max
(

|ΣZ |2
α2
Zn2 ,

C
αZn

)
≤

λ2 . Then, solving for n yields n ∈ O
(

|ΣZ |
λαZ

+ 1
λ2αZ

)
as stated.
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B.2.3 Completeness of Bamba for a special case

In Section 8.1, we described a special case of our setting in the graphical framework. In
particular, assuming that G is a DAG and considering only a single treatment variable X ,
it is easy to see that Z = ND(X) is a valid adjustment set, and that S = Pa(X) is a
Markov blanket of X with respect to Z.

Here, we show that Bamba is not just sound (Lemma 7.9) but also complete in a
special setting, i.e. the two conditional independences in Lemma 7.9 are not just sufficient
to ensure that S′ is an adjustment set, they are also necessary. In particular, Lemma B.12
implies that searching for a minimal sized S′ ⊆ Z that satisfies both Y ⊥⊥S \S′ |X ∪S′

and X ⊥⊥S′ \ S | S necessarily produces a minimal sized adjustment set.

Lemma B.12. Consider the graphical causal framework in the causally sufficient setting,
where variables in X are non-ancestors of each other. Let Z = ND(X) ⊆ V \ (X ∪Y )

be the set of non-descendants of X and S = Pa(X) =
⋃

X∈X Pa(X) ⊆ ND(X) = Z

are the parents of X . Then, any subset S′ ⊆ ND(X) = Z such that TS′,x,y = TS,x,y

must satisfy both (i) Y ⊥⊥S \ S′ |X ∪ S′ and (ii) X ⊥⊥S′ \ S | S.

Proof. We know that S = Pa(X) is a valid adjustment set and so it must block any
non-causal paths between X and Y [PTKM18]. Then, since TS′,x,y = TS,x,y, it must be
the case that S′ is also a valid adjustment set.

Condition (i) : Y ⊥⊥S \ S′ |X ∪ S′

Suppose, for a contradiction, that Y \⊥⊥ S \ S′ | X ∪ S′. By contrapositive of the
Markov property (Definition 2.46), there is an active d-connected path in G from some
Y ∈ Y to some A ∈ S \ S′, when X ∪ S′ is conditioned upon. Let PY,A denote such
an active path of minimal length. By minimality of PY,A, there are no internal vertices
from S \ S′ within the path PY,A. We will argue that such a path PY,A cannot exist
by considering the two cases of whether the path PY,A contains some vertex from X

internally.
Case 1: Suppose PY,A contains some vertex from X , i.e. V (PY,A) ∩X ̸= ∅. Let

X ∈X be the vertex in V (PY,A) ∩X that is closest to Y , i.e. there are no other vertices
betweenX and Y along the path PY,A. Let QY,X denote this subpath of PY,A. Since PY,A

is active with respect to X ∪ S′, X must appear as a collider on PY,X . That is, QY,X is a
non-causal path from X to Y that does not contain any internal X vertices.

Case 2: Suppose PY,A does not contain any vertex from X , i.e. V (PY,A) ∩X = ∅.
Since A ∈ S \ S′ ⊆ S = Pa(X), there must be an edge A → X for some X ∈ X .
Therefore, the extended path QY,X = PY,A ∪ {A → X} is a non-causal path from X to
Y that does not contain any internal X vertices.

In either case, we have some non-causal path from X to Y that does not contain any
internal X vertices denoted by QY,X . Since S′ is a valid adjustment set, S′ must block
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QY,X , which implies that PY,A will be blocked by X ∪ S′. This is a contradiction to the
existence of such an active path PY,A in the first place.

Condition (ii) : X ⊥⊥S′ \ S | S
Suppose, for a contradiction, that X \⊥⊥ S′ \ S | S. By contrapositive of the Markov

property (Definition 2.46), there is an active d-connected path from someX ∈X to some
B ∈ S′ \ S, when S is being conditioned upon. Let PX,B denote such an active path.
Note that PX,B cannot begin with an incoming edge into X . This is because otherwise
PX,B has the form X ← C − . . . for some C ∈ Pa(X) = S and so would be not be
active when S is being conditioned upon. So, it must be the case that PX,B begins with
an outgoing edge from X . Then, there must be a collider on PX,B involving a descendant
of X because B ∈ S′ \S ⊆ ND(X). However, the conditioning set S ⊆ ND(X) would
not include this descendant, so PX,B would not be active. This contradicts the existence
of such an active path PX,B in the first place.

B.2.4 Derivations for hardness proof

In the proof of Lemma 7.8, we argued that the distribution P described in Fig. 7.2 has the
following well-defined conditional probabilities:

a b P(b | a) P(X = 0 | a, b) P(X = 0 | a)
∑

x |P(x | a, b)− P(x | a)|

0 0
√
ε/2 1− α +

√
ε/2 1− α + ε/4

√
ε− ε/2

0 1 1−
√
ε/2 1− α 1− α + ε/4 ε/2

1 0 1−
√
ε/2 α α− ε/4 ε/2

1 1
√
ε/2 α−

√
ε/2 α− ε/4

√
ε− ε/2

For convenience, we produce Fig. 7.2 below.

G

A B

X Y

A =

{
1 w.p. ε

4α
· α−ε/4
1−

√
ε/2

0 else

B =


1− A w.p. 1−

√
ε

0 w.p.
√
ε/2

1 w.p.
√
ε/2

X =


A w.p. 1− α
1− A w.p. α−

√
ε/2

B w.p.
√
ε/2

Y =

{
1 if X = 0, A = 1, B = 0

0 else

Figure B.4: Reproduced: Probability distribution P defined over 4 binary variables
{A,B,X, Y } in a topological ordering of A ≺ B ≺ X ≺ Y with parameters ε and α,
where 0 <

√
ε ≤ α ≤ 1/2.

We first check that all the (conditional) probabilities of P are well-defined. Since
0 <
√
ε ≤ α ≤ 1/2, the only non-straightforward term to verify is P(A = 1). Observe
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that

ε

4α
· α− ε/4
1−
√
ε/2
≤ 1 ⇐⇒ ε ·(α−ε/4) ≤ 4α ·(1−

√
ε/2) ⇐⇒ 2α

√
ε+αε−ε2/4 ≤ 4α

which is true as 0 < ε <
√
ε < α ≤ 1 implies 2α

√
ε + αε− ε2/4 ≤ 3α

√
ε ≤ 3α ≤ 4α.

Therefore, 0 ≤ P(A = 1) ≤ 1.
We now proceed to verify the conditional probabilities shown in the table above.

P(X = 0 | A = 0)

= P(B = 0 | A = 0) · P(X = 0 | A = 0, B = 0)

+ P(B = 1 | A = 0) · P(X = 0 | A = 0, B = 1)

= (
√
ε/2) · (1− α +

√
ε/2) + (1−

√
ε/2) · (1− α)

= 1− α + ε/4

and

P(X = 0 | A = 1)

= P(B = 0 | A = 1) · P(X = 0 | A = 1, B = 0)

+ P(B = 1 | A = 1) · P(X = 0 | A = 1, B = 1)

= (1−
√
ε/2) · α + (

√
ε/2) · (α−

√
ε/2)

= α− ε/4

= 1− P(X = 0 | A = 0)

The detailed workings for
∑

x |P(x | a, b) − P(x | a)| for different values of a, b ∈
{0, 1} are given below.

When A = 0 and B = 0:∑
x

|P(x | a, b)− P(x | a)|

= |P(X = 0 | A = 0, B = 0)− P(X = 0 | A = 0)|

+ |P(X = 1 | A = 0, B = 0)− P(X = 1 | A = 0)|

=
∣∣(1− α +

√
ε/2)− (1− α + ε/4)

∣∣+ ∣∣(α−√ε/2)− (α− ε/4)
∣∣

= 2
(√

ε/2− ε/4
)

=
√
ε− ε/2

When A = 0 and B = 1:∑
x

|P(x | a, b)− P(x | a)|
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= |P(X = 0 | A = 0, B = 1)− P(X = 0 | A = 0)|

+ |P(X = 1 | A = 0, B = 1)− P(X = 1 | A = 0)|

= |(1− α)− (1− α + ε/4)|+ |(α)− (α− ε/4)|

= 2 (ε/4)

= ε/2

When A = 1 and B = 0:∑
x

|P(x | a, b)− P(x | a)|

= |P(X = 0 | A = 1, B = 0)− P(X = 0 | A = 1)|

+ |P(X = 1 | A = 1, B = 0)− P(X = 1 | A = 1)|

= |(α)− (α− ε/4)|+ |(1− α)− (1− α + ε/4)|

= 2 (ε/4)

= ε/2

When A = 1 and B = 1:∑
x

|P(x | a, b)− P(x | a)|

= |P(X = 0 | A = 1, B = 1)− P(X = 0 | A = 1)|

+ |P(X = 1 | A = 1, B = 1)− P(X = 1 | A = 1)|

=
∣∣(α−√ε/2)− (α− ε/4)

∣∣+ ∣∣(1− α +
√
ε/2)− (1− α + ε/4)

∣∣
= 2

(√
ε/2− ε/4

)
=
√
ε− ε/2

B.2.5 Weak edges

In this section, we describe a simple concrete example whereby it is suboptimal to first
learn a correct causal graph and then apply identifiability formulas to estimate Px(y). In
particular, correctly learning the causal graph G∗ may require taking a large number of
samples, especially in the presence of “weak edges”. However, one would expect such
edges to contribute little to Px(y).

Suppose a probability distribution P on variables {X, Y, Z} is generated as follows:

Z ←Bern(1/2)

X ←

Z with probability ε > 0

Bern(1/2) with probability 1− ε
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Y ←X ⊕ Z

The causal graph that exactly captures P is a complete DAG with edges Z → X → Y and
Z → Y ; see G1 in Fig. B.5. However, for extremely small ε, one would require Ω(1/ε)

samples to detect a dependency between X and Z. So, with small ε and insufficient
samples, one may erroneously recover a subgraph without the Z → X arc; see G2 in
Fig. B.5.

G1
Z

X Y

G2
Z

X Y

Figure B.5: While it is hard to distinguish G1 from G2 for small ε with few samples from
P , estimating Px(y) using G2 only incurs an additive error of O(ε).

Now, suppose we are interested in estimating P0(1) = P(Y = 1 | do(X = 0)) from
observational data. One can check that the correct answer is P(Y = 1 | do(X = 0)) =

1/2. Applying standard adjustment formulas under G1 yield P(Y = 1 | do(X = 0)) =∑
z∈{0,1}P(Z = z) · P(Y = 1 | X = 0, Z = z) = 1/2 as expected. Meanwhile, under

G2, the estimation would simply by P(Y = 1 | X = 0) = (1− ε)/2 = 1/2− ε/2. Thus,
see that the estimation error is only an additive O(ε) factor away from the ground truth.

B.2.6 Stronger results under causal faithfulness

Recall from Amba (Algorithm 15) that we need to perform conditional independence
checks of the form X ⊥⊥ε ND(X) \S | S, which could potentially involve up to |V | vari-
ables. Furthermore, we also know from Theorem 7.3 that the required sample complexity
of conditional independence testing typically increases as the total number of variables
involved increases. Thus, it would be preferable if we just check whether X ⊥⊥ε V | S for
each V ∈ ND(X) \ S, and derive that X ⊥⊥ND(X) | S. When ε = 0, this implication
is a form compositionality, and is well-known to hold under the faithfulness assumption
(since the set of d-separation statements in a graph is a graphoid, see e.g. [MDLW18,
Chapter 1]), we provide an elementary proof below.

Lemma B.13. Let A,B,C,D be disjoint subsets of variables. Under the causal faith-
fulness assumption, if A⊥⊥B | C and A⊥⊥D | C, then A⊥⊥(B ∪D) | C.

Proof. Suppose, for a contradiction, thatA \⊥⊥ (B∪D) | C. Under the causal faithfulness
assumption, this means that there is a d-connected path P from some A ∈ A to some
V ∈ B ∪D that is active with respect to C. Without loss of generality, due to symmetry
of the statement, suppose that V ∈ B. That is, P is a path from A ∈ A to some V ∈ V
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that is active with respect to C. But such an active path P contradicts the assumption that
A⊥⊥B | C. Contradiction.

Note that Lemma B.13 is false in general with respect to unfaithful distributions.

Example B.14. The simple 3-variable distribution X = Z1 ⊕ Z2, where Z1 and Z2 are
independent fair coin flips is unfaithful to any DAG on 3 nodes. To see why, observe
that any two variables are unconditionally independent but completely dependent upon
conditioning on the third. So, one would minimally have to use a v-structure, say Z1 →
X ← X2 to represent this. However, Z1 → X is an active path which implies Z1 \⊥⊥ X

under the causal faithfulness assumption, which is not true in P(Z1, Z2, X).

Unfortunately, faithfulness alone is not sufficient to ensure the desired implication. As
we demonstrate in the following example (a minor adaptation of the above example), a
distributionP(V )may be faithful to a DAG, but fail to satisfy the desired compositionality-
style property.

Lemma B.15. Let 0 < ε ≤ 1/2. Consider a probability distribution P over three binary
variables (A,B,X) where A ∼ Bern(1/2) and B ∼ Bern(1/2) are two independent
Bernoulli random variables, each with success probability 1/2 and X is defined as
follows:

X =


A⊕B with probability 1− 2ε

A with probability ε

B with probability ε

We have ∆X ⊥⊥A|∅ = ∆X ⊥⊥B|∅ = ε and ∆X ⊥⊥(A,B)|∅ = 1
2
− ε.

Proof. By construction, P(A = 0) = P(B = 0) = P(X = 0) = 1/2. Meanwhile, one
can check that P(X = 0, A = 0) = P(X = 1, A = 1) = 1

4
+ ε

2
and P(X = 0, A =

1) = P(X = 1, A = 0) = 1
4
. For instance, P(X = 0, A = 0) = P(X = 0 | A = 0) ·

P(A = 0) =
(
(1− ε) · 1

2
+ ε+ ε · 1

2

)
· 1
2
= 1

4
+ ε

2
. So,

∑
x,a∈{0,1} |P(x, a)−P(x)·P(a)| =

ε. By Definition 2.40, this establishes ∆X ⊥⊥A|∅ = ε.
The analysis of ∆X ⊥⊥B|∅ = ε is symmetric by replacing the role of A by B in the

above analysis.
SinceA andB are independent Bernoulli random variables, we see thatP(A = a,B =

b) = P(A = a) · P(B = b) = 1
2
· 1
2
= 1

4
for any a, b ∈ {0, 1}. Meanwhile,

P(X = 0 | A = 0, B = 0) = 1

P(X = 0 | A = 0, B = 1) = ε

P(X = 0 | A = 1, B = 0) = ε

P(X = 0 | A = 1, B = 1) = 1− 2ε
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So, ∑
x,a,b∈{0,1}

|P(x, a, b)− P(x) · P(a, b)|

=
∑

x,a,b∈{0,1}

P(a, b) · |P(x | a, b)− P(x)|

=
1

4
·
∑

x,a,b∈{0,1}

∣∣∣∣P(x | a, b)− 1

2

∣∣∣∣ (Since P(a, b) = 1
4

and P(x) = 1
2

always)

=
1

4
·
(∣∣∣∣1− 1

2

∣∣∣∣+ ∣∣∣∣ε− 1

2

∣∣∣∣+ ∣∣∣∣ε− 1

2

∣∣∣∣+ ∣∣∣∣1− 2ε− 1

2

∣∣∣∣) (From above)

=
1

4
· (2− 4ε) (Since ε ≤ 1

2
)

=
1

2
− ε

By Definition 2.40, this establishes ∆X ⊥⊥(A,B)|∅ = 1
2
− ε.

The above example demonstrates that the faithfulness assumption is insufficient for
our purposes. Instead, we need an assumption of the following form; as we will show, this
assumption is implied by a type of strong faithfulness assumption.

Definition B.16. We say thatP(V ) obeys (ε, γ)-strong compositionality if, for any disjoint
sets A,B,C,D ⊆ V , the following is true:

(A⊥⊥ε B | C) ∧ (A⊥⊥ε D | C) =⇒ (A⊥⊥γεB ∪D | C)

Under (ε, γ)-strong compositionality, we can derive that X ⊥⊥ε Z \S | S from smaller
conditional independence tests; in particular, using a bisection arguments, if X ⊥⊥ε V | S
for all V ∈ Z \S, then X ⊥⊥γkε Z \S | S for k = ⌈log2(|Z \S|)⌉. Finally, we relate can
strong compositionality to the faithfulness assumption: strong faithfulness implies strong
compositionality with γ = 0, as follows.

Assumption B.17 (TV Strong faithfulness). If A is d-connected to B given C in G∗, then

∆A⊥⊥B|C > β

Equivalently, ∆A⊥⊥B|C ≤ β =⇒ A is d-separated from B given C.

Lemma B.18 (TV strong faithfulness implies strong compositionality). Suppose P(V ) is
β-TV strong faithful to G∗. Then P(V ) is (β, 0)-compositional.

Proof. Suppose A⊥⊥β B | C and A⊥⊥β D | C. Then, by β-TV strong faithfulness, A
is is d-separated from B given C, and A is d-separated from D given C. Thus, A is
d-separated from B ∪D | C, so A⊥⊥B ∪D | C.



Appendix C

Addendum for Part III

C.1 Addendum for Chapter 9

C.1.1 Extended variant of Theorem 9.3

Let us first prove the case when the algorithm A is deterministic, but α ∈ [0, 1/2]. We
will again use G1 and G2 of Fig. 9.3 (replicated below for convenience as Fig. C.1) as a
counterexample. Our argument follows that of the case where α = 0.

G1
U1

...
Un

2

...

Un
2 +1

Un

V1

...
Un

2

...

Vn
2 +1

Vn

G2
U1

...
Un

2

...

Un
2 +1

Un

V1

...
Un

2

...

Vn
2 +1

Vn

Figure C.1: (Restated) Illustration of G1 and G2 for Theorem 9.3

Special case: A is deterministic. As before, we observe that any algorithm cannot
distinguish between the G1 and G2 after the first n/2 arrivals. Suppose A is (1 − α)-
consistent. Without loss of generality, by symmetry of the argument, suppose G∗ = G2
and A is given advice bit î = 2.

Since A is (1 − α)-consistent, it has to make at least n
2
− (1 − α) · n matches in the

first n
2

arrivals13, leaving at most α · n unmatched offline vertices amongst {u1, . . . un
2
}.

13Otherwise, even if the remaining n
2 vertices are matched, A cannot achieve (1 − α) · n total matches,

violating (1− α)-consistency

246
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Meanwhile, if G∗ = G1 instead, there can only be at most α · n matches amongst the
remaining n

2
arrivals {vn

2
+1, . . . , vn}, resulting in a total matching size of at most n

2
+α·n =(

1
2
+ α

)
·n. That is, any deterministicA that is (1−α)-consistent cannot be strictly more

than
(
1
2
+ α

)
-robust.

General case whereA could be randomized. Unfortunately, randomization does not
appear to help much, as we can repeat all of the above arguments in expectation. That is,
if î = 2, it follows from consistency that in expectation, at least (1− α) · n of all vertices
must be eventually matched, meaning that in expectation there must be n

2
− α · n matches

in the first half. Now, if G1 was the true graph, then in expectation we only have α · n
possible matches to make in the second half, thus we have a maximum of

(
1
2
+ α

)
· n

matches in expectation when î is wrong.

C.1.2 Examples of realized type counts as advice

Example 1: Online Ads. The canonical example of online bipartite matching is that of
online ads [Meh13]. Recall that the online vertices are advertisement slots (also called
impressions) and the offline vertices are advertisers. We can see that the distribution over
types can be possibly forecasted by machine learning models (and in fact, indirectly used
[AMK21] for bipartite matching) and used as advice. This directly gives us Q, possibly
bypassing ĉ. Regardless, the more accurate the forecasting, the lower ℓ1(P ,Q) will be.

Example 2: Food allocation. Consider a conference organizer catering lunch. As a cost-
cutting measure, they cater exactly one food item per attendee, based on their self-reported
initial dietry preferences reported during registration (each attendee may report more than
one item). During the conference, attendees will queue up in random order, sequentially
reporting their preferences once again and being assigned their food. Organizers have
the flexibility to assign food items based on this new reporting of preferences (or, in
a somewhat morally questionable fashion refuse to serve the attendee—though in the
unweighted setting, reasonable algorithms should not have to do this!). Alas, a fraction of
attendees claim a different preference from their initial preference, e.g. because they were
fickle, or did not take initial dietry preference questionnaire seriously. Given that food
is already catered, how should the conference organizers sequentially distribute meals to
minimize hungry attendees?

The attendees are represented by n online vertices, while each of the n offline vertices
represent one of k types of food item14. The attendees’ initial preference gives our advice
Q (the distribution over types of food prefernces), which also describes a perfect matching.
This preference may differ from the distribution over true preferences reported on the day
of the conference P . However, one can reasonable assume that only a small fraction of

14For practical settings, the types of food items is generally much smaller thatn n.
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attendees exhibit such a mismatch, meaning that the ℓ1(P ,Q) is fairly small and advice
should be accepted most of the time.

Example 3: Centralized labor Allocation. Suppose there are n employees andm jobs.
There are η different qualifications. This is represented by a binary matrix {0, 1}n,η, where
Xi,k = 1, if employee i posseses qualification k. Therefore, the i-th row of X , Xi is a
length η boolean string containing all of i’s skills.

For employee i to perform a job, Xi needs to satisfy a boolean formula (say, given
in conjunctive form). This is quite reasonable, e.g. to be an AI researcher, it needs to
have knowledge of some programming language (Python, Matlab, etc.), some statistics
(classical or modern), and some optimization (whether discrete or continuous). In the
bipartite graph, employee i has an edge to job j if and only if Xi satisfies this formula.

In this case, the qualifications of each employee are known by the company, who has
access to their employees. Given the qualifications, the set of jobs that may be performed
can be computed offline and used as advice. This advice may not be entirely correct: for
example, employees may have picked up new skills (hence there may be more edges than
we thought, but no less). Of course, there could also be some employees with phoney
qualifications; this fraction is not too high.

One interesting property about this application is that advice may only be imperfect
in the sense that edges could be added. This means that if we just mimicked, we are
guaranteed to get at least n̂. Also, the coarsening method is more easily applied.

C.1.3 Computing the optimal remapping σ via a maximum flow for-
mulation for offline setting

Consider the offline setting where we are given the true counts c∗ and the advice counts
ĉ. Suppose c∗ has r non-zero counts, represented by: ⟨L∗

1, c
∗
1⟩, ⟨L∗

2, c
∗
2⟩, . . . ⟨L∗

r, c
∗
r⟩,

where
∑r

i=1 c
∗
i = n. Meanwhile, suppose ĉ has s non-zero counts, represented by:

⟨L̂1, ĉ1⟩, ⟨L̂2, ĉ2⟩, . . . ⟨L̂s, ĉs⟩, where
∑s

i=1 ĉi = n. To compute a remapping from c∗ to ĉ

to maximize the number of resulting overlaps, consider the following max flow formulation
on a directed graph G = (V ,E) with |V | = r + s+ 2 nodes:

• Create a node for each of L∗
1, . . . , L

∗
r, L̂1, . . . , L̂s.

• Create a “source” and a “destination” node.

• Add an edge with a capacity c∗i from the “source” node to each of the L∗
i nodes, for

i ∈ {1, . . . , r}

• (∗) Add an edge from L∗
i to L̂j with capacity c∗i if L̂j ⊆ L∗

i , for i ∈ {1, . . . , r} and
j ∈ {1, . . . , s}.
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• Add an edge with a capacity ĉj from each of the L̂j nodes to the “destination” node,
for j ∈ {1, . . . , s}.

• Compute the maximum flow from “source” to “destination”.

Since the graph has integral edge weights, the maximum flow is integral and the flow
across each edge is integral. The resultant maximum flow is the maximum attainable
overlap between a remapped c∗ and ĉ, and we can obtain the remapping σ by reading off
the flows between on the edges from (∗).

C.1.4 ILP for advice coarsening

Here, we give an integer linear program (ILP) that takes in any number |T̂ | = r̂ of desired
groupings as input and produces a grouping proposed advice count ĉr̂ on r̂ labels that
implies the maximum possible matching. Recall that the a smaller number of resulting
groups r̂ directly translates to fewer samples sr̂,ε,δ required in TestAndMatch. So, to
utilize this ILP, one can solve for decreasing values of r = |L̂|, |L̂| − 1, . . . , 1 and evaluate
the resulting maximum matching size n̂r for each proposed advice count ĉr. Then, one
can either use the smallest possible r which still preserves the size of maximum matching
or even combine this with the idea from Section 9.6.3 if one needs to further decrease r.

We propose to update the labels by taking intersections of the patterns, i.e. for any
resulting group Gi, we define its label pattern as

⋂
V ∈Gi

N(V ). Since taking intersections
only restricts the edges which can be used in forming a maximum matching, this ensures
that Mimic will always be able to mimic any proposed matching implied by the grouped
patterns.

Explanation of constants and variables

• Given the n online input patterns, bi,j is a Boolean constant indicating whether
online vertex i ∈ [n] does not have j ∈ [n] as a neighbor in its pattern.

• Main decision variable: xi,j whether edge from online vertex i to offline vertex j is
part of the matching.

• Auxiliary variable: zi,ℓ is an indicator whether online vertex i ∈ [n] is assigned to
group ℓ ∈ [k].

• Product variable: wi,j,ℓ = zi,ℓ · zj,ℓ is an indicator whether both online vertices i and
j are in group ℓ

The ILP

max
∑

(i,j)∈E

xi,j
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s.t.
∑
j∈[n]

(i,j)∈E

xi,j ≤ 1 ∀i ∈ [n] (C1)

∑
i∈[n]

(i,j)∈E

xi,j ≤ 1 ∀j ∈ [n] (C2)

xi,j ≤ 1− wi,q,ℓ · bq,j ∀(i, j) ∈ E, q ∈ [n], ℓ ∈ [k] (C3)

wi,j,ℓ ≤ zi,ℓ ∀i ∈ [n], ℓ ∈ [k] (C4)

wi,j,ℓ ≤ zj,ℓ ∀j ∈ [n], ℓ ∈ [k] (C5)

wi,j,ℓ ≥ zi,ℓ + zj,ℓ − 1 ∀i, j ∈ [n], ℓ ∈ [k] (C6)

k∑
ℓ=1

zi,ℓ = 1 ∀i ∈ [n] (C7)

xi,j ∈ {0, 1} ∀(i, j) ∈ E

zi,ℓ ∈ {0, 1} ∀i ∈ [n], ℓ ∈ [k]

wi,j,ℓ ∈ {0, 1} ∀i, j ∈ [n], ℓ ∈ [k]

Explanation of constraints

• (C1, C2) Standard matching constraints.

• (C3) Can only use edge (i, j) if it is not “disabled” due to intersections. As long
as some other vertex in the same group as i does not have j, the edge (i, j) will be
disabled.

• (C4, C5, C6) Encoding wi,j,ℓ = zi,ℓ · zj,ℓ.

• (C7) Every vertex assigned exactly one group.

C.1.5 Proof of concept

It is our understanding that the tester proposed by [JHW18] requires a significant amount
of hyperparameter tuning and no off-the-shelf implementation is available [Han24]. One
may consider using an older method by [VV11] which is also sublinear in the number of
samples but their proposed algorithm is for non-tolerant testing and requires a non-trivial
code adaptation before it is applicable to ℓ1 estimation.

As a proof-of-concept, we implemented the TestAndMatch algorithm with the empir-
ical ℓ1 estimator and study the resultant competitive ratio under degrading advice quality.
See https://github.com/cxjdavin/online-bipartite-matching-with-imperfect-advice for the
source code.

https://github.com/cxjdavin/online-bipartite-matching-with-imperfect-advice
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Implementation details

From Section 9.3.1, we know that the state-of-the-art advice-less algorithm for random
order arrival is the Ranking algorithm of [KVV90] which achieve a competitive ratio of
β = 0.696 [MY11].

For our testing threshold, we set ε = n̂/n−β so that τ = 2(n̂/n−β)− ε = n̂/n−β.
We also implemented the following practical extensions to TestAndMatch which we
discussed in Section 9.6:

1. Sigma remapping (Section 9.6.1)

2. Bucketing so that r̂/ε2 < n (Section 9.6.2)

3. Patching so that n̂′ = n (Section 9.6.3)

We tested 4 variants of TestAndMatch, one with all extensions enabled and three
others that disables one extension at a time (for ablation testing).

Instances

Our problem instances are generated from the synthetic hard known i.i.d. instance of
[MGS12] where any online algorithm achieves a competitive ratio of at most 0.823 in
expectation:

• Let Yk denote the set of online vertices with k random offline neighbors (out of
(
n
k

)
)

• Let m =
c∗2.5
2
· n, where c∗2.5 = 0.81034 is some constant defined in [MGS12] (not

to be confused with our type counts c∗)

• Sample m random online vertices from Y2, i.e. each online vertex is adjacent to a
random subset of 2 offline vertex.

• Sample m random online vertices from Y3, i.e. each online vertex is adjacent to a
random subset of 3 offline vertex.

• Sample n− 2m random online vertices from Yn, i.e. each online vertex is adjacent
to every offline vertex.

• Permute the online vertices for a random order arrival

Here, the support size of any generated type count c∗ is roughly 0.8n due to the samples
from Y2 and Y3.
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Corrupting advice

Starting with perfect advice ĉ = c∗, we corrupt the advice by an α parameter using two
types of corruption.

1. Pick a random α ∈ [0, 1] fraction of online vertices

2. Generate a random type for each of them by independently connecting to each offline
vertex with probability lnn

10n
.

3. Type 1 corruption (add extra connections): Define the new type as the union of the
old vertex type and the new random type.

4. Type 2 corruption (replace connections): Define the new type as the new random
type.

As a remark, our random type generation biases towards a relatively sparse corrupted
graph.

Preliminary results

We generated 10 random graph instances with n = 2000 offline and n online vertices.
Fig. C.2 illustrates the resulting plots with error bars.

Figure C.2: n = 2000, averaged over 10 runs. TaM refers to our implementation of
TestAndMatch.

In all cases, we see that the attained competitive ratio is highest when all extensions
are enabled. We also see that the degradation below the baseline is not very severe (< 0.1

for all cases, even when not all extensions are enabled).
Unsurprisingly, the competitive ratios of Ranking and “TaM without bucket” coincide

because because r/ε2 > n and we always default to baseline without performing any tests
(to maintain robustness).

For corruption type 1, the “sigma remapping” extension makes our algorithm robust
against additive edge corruption, and so the “patching” extension has no further impact.
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C.2 Addendum for Chapter 10

C.2.1 Tolerant testing

In this section, we present an algorithm for testing whether an unknown distribution is
close to a standard normal distribution. More specifically, we first describe a tolerant
tester for the property that the mean of an isotropic Gaussian distribution equals zero.
Subsequently, we present a tolerant tester for the property that the covariance matrix
equals the identity matrix.

Tolerant testing for mean

The definition of a tolerant tester for the mean of an isotropic Gaussian distribution is
given below.

Definition C.1 (Tolerant testing of isotropic Gaussian mean). Fix m ≥ 1, d ≥ 1, ε2 >
ε1 > 0, and δ > 0. Suppose µ ∈ Rd is a hidden mean vector and we draw m samples
x1, . . . ,xm ∼ N(µ, Id). An algorithm ALG is said to be a (ε1, ε2, δ)-tolerant isotropic
Gaussian mean tester if it satisfies the following two conditions:

1. If ∥µ∥2 ≤ ε1, then ALG should Accept with probability at least 1− δ

2. If ∥µ∥2 ≥ ε2, then ALG should Reject with probability at least 1− δ.

ALG is allowed to decide arbitrarily when ε1 < ∥µ∥2 < ε2.

It is known that the test statistic yn =
∥∥∥ 1√

n

∑n
i=1 xi

∥∥∥2
2

can be used for non-tolerant
isotropic Gaussian mean testing with an appropriate threshold; see [DKS17, Appendix
C]. With the following lemma we show that yn can also be used for tolerant isotropic
Gaussian mean testing.

Lemma C.2. Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose µ ∈ Rd is
a hidden mean vector and we draw m i.i.d. samples x1, . . . ,xm ∼ N(µ, Id). When
d ≥

(
16ε22
ε22−ε21

)2
andm ∈ O

( √
d

ε22−ε21
log
(
1
δ

))
, TolerantIGMT (Algorithm 30) is a (ε1, ε2, δ)-

tolerant isotropic Gaussian mean tester.

Proof. The total number of samples m required is nr ∈ O
( √

d
ε22−ε21

log
(
1
δ

))
since Toler-

antIGMT uses n = 16
√
d

ε22−ε21
i.i.d. samples in each of the r ∈ O(log(1

δ
)) rounds.

For correctness, we will prove that each round i ∈ {1, . . . , r} succeeds with proba-
bility at least 2/3. Then, by Chernoff bound, the majority outcome out of r ≥ log(12

δ
)

independent tests will be correct with probability at least 1− δ.
Now, fix an arbitrary round i ∈ {1, . . . , r}. TolerantIGMT uses n = 16

√
d

ε22−ε21
≥ 1 i.i.d.

samples to form a statistic y(i)n and tests against the threshold τ = d +
n(ε21+ε22)

2
. From
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Algorithm 30 The TolerantIGMT algorithm.
Input: ε2 > ε1 > 0, δ ∈ (0, 1), m i.i.d. samples of N(µ, Id), where µ ∈ Rd

Output: Fail (too little samples), Accept (∥µ∥2 ≤ ε1), or Reject (∥µ∥2 ≥ ε2).
1: Define testing threshold τ = d+

n(ε21+ε22)

2

2: Define sample batch size n = 16
√
d

ε22−ε21

3: Define number of rounds r =
⌈
log(12

δ
)
⌉

if
⌈
log(12

δ
)
⌉

is odd, otherwise define r =
1 +

⌈
log(12

δ
)
⌉

4: if m < nr then
5: return Fail
6: else
7: for i ∈ {1, . . . , r} do
8: Use an unused batch of n i.i.d. samples x(i)

1 , . . . ,x
(i)
n ∼ N(µ, Id)

9: Compute test statistic y(i)n =
∥∥∥ 1√

n

∑n
i=1 x

(i)
i

∥∥∥2
2

for the ith test

10: Define ith outcome R(i) as Accept if y(i)n ≤ τ and Reject otherwise
11: return majority(R(1), . . . , R(r))

Lemma 2.32 (first item), we know that y(i)n ∼ χ′2
d (λ) is a non-central chi-square random

variable with λ = n∥µ∥22. Let us define t = n(ε22−ε21)

2
> 0. Observe that we can rewrite the

testing threshold τ in two different ways: τ = d+
n(ε21+ε22)

2
= d+ nε21 + t = d+ nε22 − t.

Case 1: ∥µ∥2 ≤ ε1

In this case, we have λ = n∥µ∥22 ≤ nε21 and τ = d+ nε21 + t. So,

Pr(y(i)n > τ) = Pr(y(i)n > d+ nε21 + t) (since τ = d+ nε21 + t)

≤ Pr(y(i)n > d+ λ+ t) (since λ ≤ nε21)

≤ exp

(
− dt2

4(d+ 2λ)(d+ 2λ+ t)

)
(apply Lemma 2.32 (second item) with t > 0)

≤ exp

(
− dt2

4(d+ 2nε21)(d+ 2nε21 + t)

)
(since λ ≤ nε21)

≤ exp

(
− dn2(ε22 − ε21)2

16(d+ 2nε21)(d+ 2nε22)

)
(since t = n(ε22−ε21)

2
≤ 2n(ε22 − ε21))

= exp

(
− 162d2

16(d+ 2nε21)(d+ 2nε22)

)
(since n = 16

√
d

ε22−ε21
)

= exp

− 16(
1 +

2nε21
d

)(
1 +

2nε22
d

)


(dividing both numerator and denominator by 16d2)

= exp

− 16(
1 +

32ε21√
d(ε22−ε21)

)(
1 +

32ε22√
d(ε22−ε21)

)
 (since n = 16

√
d

ε22−ε21
)
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= exp

(
− 16

(1 + 2)(1 + 2)

)
(since d ≥

(
16ε22
ε22−ε21

)2
≥
(

16ε21
ε22−ε21

)2
)

= exp

(
−16

9

)
<

1

3

Thus, when ∥µ∥2 ≤ ε1, we have Pr(y
(i)
n ≤ τ) ≥ 2/3 and the ith test outcome will be

correctly an Accept with probability at least 2/3.
Case 2: ∥µ∥2 ≥ ε2

In this case, we have λ = n∥µ∥22 ≥ nε22 > nε21 and τ = d+ nε22 − t. We first observe
the following inequalities:

• Since n ≥ 1, d ≥ 1, λ ≥ nε22, and ε2 > ε1 > 0, we see that(
2− nε21

λ
− nε22

λ

)2

≥
(
1− ε21

ε22

)2

and
(
d

λ
+ 2

)2

≤
(

d

nε22
+ 2

)2

(C.1)

• Since n = 16
√
d

ε22−ε21
≥ 1 and d ≥

(
16ε22
ε22−ε21

)2
≥ 1, we see that

(
1 +

2nε22
d

)2

≤ 32 (C.2)

So,

Pr(y(i)n < τ) = Pr(y(i)n < d+ nε22 − t) (since τ = d+ nε22 − t)

= Pr(y(i)n < d+ λ− (λ+ t− nε22)) (Rewriting)

≤ exp

(
−d(λ+ t− nε22)2

4(d+ 2λ)2

)
(apply Lemma 2.32 (third item) with 0 < λ+ t− nε22 < d+ λ)

= exp

(
−
d
(
λ− n

2
ε21 − n

2
ε22
)2

4(d+ 2λ)2

)
(since t = n(ε22−ε21)

2
)

= exp

−d
(
2− nε21

λ
− nε22

λ

)2
16
(
d
λ
+ 2
)2


(Pulling out the factor of λ

2
from numerator)

≤ exp

− d
(
1− ε21

ε22

)2
16
(

d
nε22

+ 2
)2
 (by Eq. (C.1))

≤ exp

− n2 (ε22 − ε21)
2

16d
(
1 +

nε22
d

)2
 (Pulling out factors of n, d, and ε22)
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= exp

− 16(
1 +

nε22
d

)2
 (since n = 16

√
d

ε22−ε21
)

= exp

(
−16

32

)
= exp

(
−16

9

)
<

1

3
(by Eq. (C.2))

Thus, when ∥µ∥2 ≥ ε2, we have Pr(y
(i)
n ≥ τ) ≥ 2/3 and the ith test outcome will be

correctly a Reject with probability at least 2/3.

We are now ready to state the main theorem below.

Lemma 10.5 (Tolerant mean tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥
(

16ε22
ε22−ε21

)2
,

there is a tolerant tester that uses O
( √

d
ε22−ε21

log
(
1
δ

))
i.i.d. samples from N(µ, Id) and

satisfies the following two conditions:

1. If ∥µ∥2 ≤ ε1, then the tester outputs Accept with probability at least 1− δ.

2. If ∥µ∥2 ≥ ε2, then the tester outputs Reject with probability at least 1− δ.

The tester is allowed to output Accept or Reject arbitrarily when ε1 < ∥µ∥2 < ε2.

Proof. Use the guarantee of Lemma C.2 on TolerantIGMT (Algorithm 30) with param-
eters ε1 = ε and ε2 = 2ε.

Tolerant testing for covariance matrix

We now give the definition of a tolerant tester for the unknown covariance matrix being
equal to identity.

Definition C.3 (Tolerant testing of zero-mean Gaussian covariance matrix). Fix m ≥ 1,
d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose Σ ∈ Rd×d is a hidden full rank covariance
matrix and we draw m samples x1, . . . ,xm ∼ N(0,Σ). An algorithm ALG is said to be
a (ε1, ε2, δ)-tolerant zero-mean Gaussian covariance tester if it satisfies the following two
conditions:

1. If ∥Σ− Id∥F ≤ ε1, then ALG should Accept with probability at least 1− δ

2. If ∥Σ− Id∥F ≥ ε2, then ALG should Reject with probability at least 1− δ.

ALG is allowed to decide arbitrarily when ε1 < ∥Σ− Id∥2 < ε2.

Definition C.4 (Test statistic Tn). Let x1, . . . , xn be n i.i.d. samples from ∼ N(0,Σ) for
an unknown Σ ∈ Rd×d. For i ̸= j, we define h(xi, xj) = (x⊤i xj)

2 − (x⊤i xi + x⊤j xj) + d.
Then, we define Tn as

Tn =
2

k(k − 1)

∑
1≤i<j≤k

h(xi, xj)
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It is known that the test statistic Tn (Definition C.4) can be used for non-tolerant
zero-mean Gaussian covariance testing with an appropriate threshold; see [CM13]. With
the following lemma, we show that Tn can also be used for tolerant zero-mean Gaussian
covariance testing.

Algorithm 31 TolerantZMGCT.
Input: ε2 > ε1 > 0, δ ∈ (0, 1), m i.i.d. samples of N(0,Σ), where Σ ∈ Rd×d

Output: Fail (too little samples), Accept (∥Σ− Id∥2F ≤ ε21), or Reject (∥Σ− Id∥2F ≥
ε22)

1: Define testing threshold τ =
ε22+ε21

2

2: Define sample batch size n = 3200 · d ·max

{
1
ε21
,
(

ε21
ε22−ε21

)2
, 2
(

ε2
ε22−ε21

)2}
3: Define number of rounds r =

⌈
log(12

δ
)
⌉

if
⌈
log(12

δ
)
⌉

is odd, otherwise define r =
1 +

⌈
log(12

δ
)
⌉

4: if m < nr then
5: return Fail
6: else
7: for i ∈ {1, . . . , r} do
8: Use an unused batch of n i.i.d. samples x(i)

1 , . . . ,x
(i)
n ∼ N(0,Σ)

9: Compute test statistic T (i)
n according to Definition C.4 for the ith test

10: Define ith outcome R(i) as Accept if T (i)
n ≤ τ and Reject otherwise

11: return majority(R(1), . . . , R(r))

Lemma C.5. Fix m ≥ 1, d ≥ 1, ε2 > ε1 > 0, and δ > 0. Suppose Σ ∈ Rd×d is a hidden
full rank covariance matrix and we draw m i.i.d. samples x1, . . . ,xm ∼ N(0,Σ). When

d ≥ ε22 and m ≥ O
(
d ·max

{
1
ε21
,
(

ε21
ε22−ε21

)2
,
(

ε2
ε22−ε21

)2}
· log

(
1
δ

))
, TolerantZMGCT

(Algorithm 31) is a (ε1, ε2, δ)-tolerant zero-mean Gaussian covariance tester.

To prove Lemma C.5, we first state the expectation and variance of Tn known from
[CM13], and give an upper bound on the variance that will be useful for subsequent
analysis.

Lemma C.6 ([CM13]). For the test statistic Tn defined in Definition C.4, we haveE(Tn) =
∥Σ− Id∥2F and σ2(Tn) =

4
n(n−1)

[
Tr2(Σ2) + Tr(Σ4)

]
+ 8

n
Tr(Σ2(Σ− Id)

2).

Lemma C.7. Fix d, n ≥ 1, Σ ∈ Rd×d, and b ≥ 0. If ∥Σ − Id∥2F = b2d
n

, then ∥Σ∥2F ≤

d ·
(
1 + b√

n

)2
.

Proof. Since the matrices can be treated as vectors in Rd2 and then the Frobenius norm
corresponds to the ℓ2 norm, we see that

∥Σ∥F ≤ ∥Σ− Id∥F + ∥Id∥F (Triangle inequality)
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= b ·
√
d

n
+
√
d (Since ∥Σ− Id∥2F = b2d

n
and ∥Id∥2F = d)

=
√
d

(
1 +

b√
n

)

Therefore, ∥Σ∥2F ≤ d ·
(
1 + b√

n

)2
as desired.

Lemma C.8. Fix d ≥ 1, n ≥ 2, Σ ∈ Rd×d, and b ≥ 0. If ∥Σ− Id∥2F = b2d
n

, then for the
test statistic Tn defined in Definition C.4, we have

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
Proof. We begin by observing two simple upper bounds for Tr(Σ4) and Tr(Σ2(Σ−Id)

2).

Tr(Σ4) = ∥Σ2∥2F ≤ ∥Σ∥2F · ∥Σ∥2F = ∥Σ∥4F = Tr2(Σ2) (C.3)

Since Σ(Σ− Id) = Σ2 −Σ = (Σ− Id)Σ, i.e. Σ and Σ− Id commute, we have

Tr(Σ2(Σ− Id)
2) = Tr((Σ(Σ− Id))

2) = ∥Σ(Σ− Id)∥2F
≤ ∥Σ∥2F · ∥Σ− Id∥2F = Tr(Σ2) · Tr((Σ− Id)

2) (C.4)

Σ2(Tn)

=
4

n(n− 1)

[
Tr2(Σ2) + Tr(Σ4)

]
+

8

n
Tr(Σ2(Σ− Id)

2) (By Lemma C.6)

≤ 8

n(n− 1)

[
Tr2(Σ2) + (n− 1) · Tr(Σ2(Σ− Id)

2)
]

(By Eq. (C.3))

≤ 8

n(n− 1)

[
Tr2(Σ2) + (n− 1) · Tr(Σ2) · Tr((Σ− Id)

2)
]

(By Eq. (C.4))

=
8

n(n− 1)
· Tr(Σ2) ·

[
Tr(Σ2) + (n− 1) · Tr((Σ− Id)

2)
]

≤ 8

n(n− 1)
· Tr(Σ2) ·

[
Tr(Σ2) + n · Tr((Σ− Id)

2)
]

(Since Tr((Σ− Id)
2) ≥ 0)

≤ 8

n(n− 1)
· d ·

(
1 +

b√
n

)2

·

(
d ·
(
1 +

b√
n

)2

+ n · Tr((Σ− Id)
2)

)
(Since Tr(Σ2) = ∥Σ∥2F and by Lemma C.7)

=
8

n(n− 1)
· d ·

(
1 +

b√
n

)2

·

(
d ·
(
1 +

b√
n

)2

+ b2 · d

)
(Since Tr((Σ− Id)

2) = ∥Σ− Id∥2F = b2d
n

)
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=
8d2

n(n− 1)
·
(
1 +

b√
n

)2

·

((
1 +

b√
n

)2

+ b2

)

≤ 16d2

n2
·
(
1 +

b√
n

)2

·

((
1 +

b√
n

)2

+ b2

)
(Since n ≥ 2)

≤ 64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(Since (a+ b)2 ≤ 2a2 + 2b2)

Proof of Lemma C.5. Let us define ∆ε1,ε2 = max

{
1
ε21
,
(

ε21
ε22−ε21

)2
, 2
(

ε2
ε22−ε21

)2}
> 0 and

suppose ∥Σ− Id∥2F = b2d
n

for some b ≥ 0.
The total number of samples m required is nr ∈ O

(
d ·∆ε1,ε2 · log

(
1
δ

))
since Tol-

erantZMGCT uses n = 3200 · d · ∆ε1,ε2 i.i.d. samples in each of the r ∈ O(log(1
δ
))

rounds.
For correctness, we will prove that each round i ∈ {1, . . . , r} succeeds with proba-

bility at least 2/3. Then, by Chernoff bound, the majority outcome out of r ≥ log(12
δ
)

independent tests will be correct with probability at least 1− δ.
Now, fix an arbitrary round i ∈ {1, . . . , r}. TolerantZMGCT usesn = 3200·d·∆ε1,ε2

i.i.d. samples to form a statistic T
(i)
n (Definition C.4) and tests against the threshold

τ =
ε22+ε21

4
.

Case 1: ∥Σ− Id∥2F ≤ ε21

We see that

b2 =
n

d
· ∥Σ− Id∥2F (Since ∥Σ− Id∥2F = b2d

n
)

= 3200 ·∆ε1,ε2 · ∥Σ− Id∥2F (Since n = 3200 · d ·∆ε1,ε2)

≤ 3200 ·∆ε1,ε2 · ε21 (Since ∥Σ− Id∥2F ≤ ε21)

and

1 +
b2

n
= 1 +

∥Σ− Id∥2F
d

(Since ∥Σ− Id∥2F = b2d
n

)

≤ 1 +
ε21
d

(Since ∥Σ− Id∥2F ≤ ε21)

≤ 2 (Since d ≥ ε22 > ε21)

So,

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(By Lemma C.8)

≤ 64d2

n2
· 2 ·

(
2 + 3200 ·∆ε1,ε2 · ε21

)
(From above)
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=
64 · 2
32002

· 1

∆2
ε1,ε2

·
(
2 + 3200 ·∆ε1,ε2 · ε21

)
(Since n = 3200 · d ·∆ε1,ε2)

≤ 64 · 2
32002

· 1

∆2
ε1,ε2

· 3202 ·∆ε1,ε2 · ε21 (Since ∆ε1,ε2ε
2
1 ≥ 1)

≤ 64 · 2 · 3202
32002

· (ε22 − ε21)2 (Since
(

ε21
ε22−ε21

)2
≤ ∆ε1,ε2)

Chebyshev’s inequality then tells us that

Pr (Tn > τ) = Pr

(
Tn > ε21 +

ε22 − ε21
2

)
(Since τ =

ε22+ε21
2

= ε21 +
ε22−ε21

2
)

≤ Pr

(
Tn > ∥Σ− Id∥2F +

ε22 − ε21
2

)
(Since ∥Σ− Id∥2F ≤ ε21)

= Pr

(
Tn > E[Tn] +

ε22 − ε21
2

)
(By Lemma C.6)

≤ Pr

(
|Tn − E[Tn]| >

ε22 − ε21
2

)
(Adding absolute sign)

≤ σ2(Tn) ·
(

2

ε22 − ε21

)2

(Chebyshev’s inequality)

≤ 64 · 2 · 3202
32002

· (ε22 − ε21)2 ·
4

(ε22 − ε21)2
(From above)

<
1

3

Thus, when ∥Σ − Id∥2F ≤ ε21, we have Pr (Tn < τ) ≥ 2/3 and the ith test outcome will
be correctly an Accept with probability at least 2/3.

Case 2: ∥Σ− Id∥2F ≥ ε22

We can lower bound b2 as follows:

b2 =
n

d
· ∥Σ− Id∥2F (Since ∥Σ− Id∥2F = b2d

n
)

= 3200 ·∆ε1,ε2 · ∥Σ− Id∥2F (Since n = 3200 · d ·∆ε1,ε2)

≥ 3200 ·∆ε1,ε2 · ε22 (Since ∥Σ− Id∥2F ≥ ε22)

Meanwhile, we can lower bound n as follows:

n = 3200 · d ·∆ε1,ε2 (Since n = 3200 · d ·∆ε1,ε2)

≥ 3200 · ε22 ·∆ε1,ε2 (Since d ≥ ε22)

≥ 3200 · ε22 ·∆ε1,ε2

∆ε1,ε2 ·
(

ε22−ε21
ε2

)2
− 1

(Since ∆ε1,ε2 ≥ 2
(

ε2
ε22−ε21

)2
)

Using these lower bounds on b2 and n (which we color for convenience), we can
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conclude that 1 + b2

n
≤ b2

3200
·
(

ε22−ε21
ε22

)2
via the following two equivalences:

1 +
b2

n
≤ b2

3200
·
(
ε22 − ε21
ε22

)2

⇐⇒ b2 ≥ n

n
3200
·
(

ε22−ε21
ε22

)2
− 1

and

3200 ·∆ε1,ε2 · ε22 ≥
n

n
3200
·
(

ε22−ε21
ε22

)2
− 1

⇐⇒ n ≥ 3200 ·∆ε1,ε2 · ε22
∆ε1,ε2 · ε22 ·

(
ε22−ε21
ε22

)2
− 1

=
3200 · ε22 ·∆ε1,ε2

∆ε1,ε2 ·
(

ε22−ε21
ε2

)2
− 1

So,

σ2(Tn) ≤
64d2

n2
·
(
1 +

b2

n

)
·
(
1 +

b2

n
+ b2

)
(By Lemma C.8)

≤ 64 · 2 · d
2

n2
·

(
b2

3200
·
(
ε22 − ε21
ε22

)2
)
·

(
b2

3200
·
(
ε22 − ε21
ε22

)2

+ b2

)
(Since 1 + b2

n
≤ b2

3200
·
(

ε22−ε21
ε22

)2
)

=
64 · 2 · 2
3200

·
(
ε22 − ε21
ε22

)2

· d
2

n2
· b4 (Since 1

3200

(
ε22−ε21
ε22

)2
≤ 1)

=
64 · 2 · 2
3200

·
(
ε22 − ε21
ε22

)2

· ∥Σ− Id∥4F (Since ∥Σ− Id∥2F = b2d
n

)

Chebyshev’s inequality then tells us that

Pr (Tn < τ) = Pr

(
Tn < ε22 ·

(
1− ε22 − ε21

2ε22

))
(Since τ =

ε22+ε21
2

= ε22 −
ε22−ε21

2
= ε22 ·

(
1− ε22−ε21

2ε22

)
)

≤ Pr

(
Tn < ∥Σ− Id∥2F ·

(
1− ε22 − ε21

2ε22

))
(Since ∥Σ− Id∥2F ≥ ε22)

= Pr

(
∥Σ− Id∥2F − Tn > ∥Σ− Id∥2F ·

ε22 − ε21
2ε22

)
(Rearranging)

= Pr

(
E[Tn]− Tn > ∥Σ− Id∥2F ·

ε22 − ε21
2ε22

)
(By Lemma C.6)

≤ Pr

(
|E[Tn]− Tn| > ∥Σ− Id∥2F ·

ε22 − ε21
2ε22

)
(Adding absolute sign)

≤ σ2(Tn) ·
(

1

∥Σ− Id∥2F
· 2ε22
ε22 − ε21

)2

(Chebyshev’s inequality)



APPENDIX C. ADDENDUM FOR PART III 262

≤ 64 · 2 · 2
3200

·
(
ε22 − ε21
ε22

)2

· ∥Σ− Id∥4F ·
(

1

∥Σ− Id∥2F
· 2ε22
ε22 − ε21

)2

(From above)

=
64 · 2 · 2 · 4

3200

<
1

3

Thus, when ∥Σ − Id∥2F ≥ ε22, we have Pr (Tn > τ) ≥ 2/3 and the ith test outcome will
be correctly an Reject with probability at least 2/3.

Lemma 10.6 (Tolerant covariance tester). Given ε2 > ε1 > 0, δ ∈ (0, 1), and d ≥ ε22,

there is a tolerant tester that uses O
(
d ·max

{
1
ε21
,
(

ε22
ε22−ε21

)2
,
(

ε2
ε22−ε21

)2}
log
(
1
δ

))
i.i.d.

samples from N(0,Σ) and satisfies the following two conditions:

1. If ∥Σ− Id∥F ≤ ε1, then the tester outputs Accept with probability at least 1− δ.

2. If ∥Σ− Id∥F ≥ ε2, then the tester outputs Reject with probability at least 1− δ.

The tester is allowed to output Accept or Reject arbitrarily when ε1 < ∥Σ− Id∥2 < ε2.

Proof. Use the guarantee of Lemma C.5 on TolerantZMGCT (Algorithm 31) with
parameters ε21 = ε2 and ε22 = 2ε2.

C.2.2 Deferred derivation

Here, we show how to derive Eq. (10.3) from Eq. (10.2).
For any two vectors a, b ∈ Rd, observe that ∥a − b∥22 = ⟨a − b,a − b⟩ = (a −

b)⊤(a− b) = a⊤a− 2a⊤b+ b⊤b, since a⊤b = b⊤a is just a number. So,

1

n

n∑
i=1

∥yi − µ̂∥22 =
1

n

n∑
i=1

(
y⊤
i yi − 2y⊤

i µ̂+ µ̂⊤µ̂
)

1

n

n∑
i=1

∥yi −Xµ∥22 =
1

n

n∑
i=1

(
y⊤
i yi − 2y⊤

i µ+ µ⊤µ
)

Therefore,

∥µ̂− µ∥22 =
1

n

n∑
i=1

∥µ̂− µ∥22

=
1

n

n∑
i=1

(
µ̂⊤µ̂− 2µ⊤µ̂+ µ⊤µ

)
≤ 1

n

n∑
i=1

(
2y⊤

i µ̂− 2y⊤
i µ+ µ⊤µ− 2µ⊤µ̂+ µ⊤µ

)
(Since Eq. (10.3) tells us that 1

n

∑n
i=1 ∥yi − µ̂∥22 ≤ 1

n

∑n
i=1 ∥yi − µ∥22)
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=
2

n

n∑
i=1

(
(µ+ gi)

⊤ (µ̂− µ)− µ⊤µ̂+ µ⊤µ
)

(Since yi = µ+ gi)

=
2

n

n∑
i=1

(
g⊤
i (µ̂− µ)

)
=

2

n

n∑
i=1

⟨gi, µ̂− µ⟩

=
2

n
⟨

n∑
i=1

gi, µ̂− µ⟩ (Linearity of inner product)

establishing Eq. (10.3) as desired.

C.2.3 The adjustments for the general covariance setting

Here, we provide the deferred proofs of Lemma 10.11 and Lemma 10.12 from Sec-
tion 10.5.1.

Lemma 10.11. For any δ ∈ (0, 1), there is an explicit preconditioning process that uses d
i.i.d. samples from N(0,Σ) and succeeds with probability at least 1− δ in constructing a
matrix A ∈ Rd×d such that λmin(AΣA) ≥ 1. Furthermore, for any full rank PSD matrix
Σ̃ ∈ Rd×d, we have ∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ = ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥.

Proof. Suppose Σ̂ ∈ Rd×d be the empirical covariance constructed from n = d i.i.d.
samples from N(0,Σ). Let λ1 ≤ . . . ≤ λd and λ̂1 ≤ . . . ≤ λ̂d be the eigenvalues of Σ
and Σ̂ respectively. By Lemma 2.26, we know that:

• With probability 1, we have that Σ̂ and Σ share the same eigenspace.

• With probability at least 1− δ, we have λ̂1

λ1
≤ 1 + c0 ·

√
d+log 1/δ

d
for some absolute

constant c0.

Let v̂1, . . . , v̂d be the eigenvectors corresponding to the eigenvalues λ̂1, . . . , λ̂d. Define
the following terms:

• Vsmall = {i ∈ [d] : λ̂i < 1} and Vbig = [d] \ Vsmall

• Πsmall =
∑

i∈Vsmall
v̂iv̂

⊤
i and Πbig =

∑
i∈Vbig

v̂iv̂
⊤
i

• A =
√
kΠsmall +Πbig, where k =

(
1 + c0 ·

√
d+log 1/δ

n

)
· 1

λ̂1

We first argue that the smallest eigenvalue of AΣA is at least 1, i.e. λmin(AΣA) ≥ 1.
To show this, it suffices to show that u⊤AΣAu ≥ 1 for any unit vector u ∈ Rd. By
definition,

u⊤AΣAu = ku⊤ΠsmallΣΠsmallu+ u⊤ΠbigΣΠbigu
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since the cross terms are zero because u⊤ΠsmallΣΠbigu = u⊤ΠbigΣΠsmallu = 0. Now,
observe that u⊤ΠsmallΣΠsmallu ≥ λ1 · ∥Πsmallu∥22 and u⊤ΠbigΣΠbigu ≥ ∥Πbigu∥22.
Meanwhile, by Pythagoras theorem, we know that ∥Πsmallu∥22+∥Πbigu∥22 = 1. Therefore,

u⊤AΣAu =ku⊤ΠsmallΣΠsmallu+ u⊤ΠbigΣΠbigu

≥kλ1 · ∥Πsmallu∥22 + ∥Πbigu∥22
≥
(
∥Πsmallu∥22 + ∥Πbigu∥22

)
=1

where the last inequality is because k =

(
1 + c0 ·

√
d+log 1/δ

n

)
· 1

λ̂1
≥ 1

λ1
.

To complete the proof, note that for any full rank PSD matrix Σ̃ ∈ Rd×d, we have

∥(AΣ̃A)−1/2AΣA(AΣ̃A)−1/2 − Id∥ = ∥(AΣ̃A)−1AΣA− Id∥

= ∥A−1Σ̃−1ΣA− Id∥

= ∥Σ̃−1ΣAA−1 − Id∥

= ∥Σ̃−1Σ− Id∥

= ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥

Lemma 10.12. Fix dimension d ≥ 2 and group size k ≤ d. Consider the q = 2 setting
where T ∈ Rd×d is a matrix. Define w = 10d(d−1) log d

k(k−1)
. Pick sets B1, . . . ,Bw each of

size k uniformly at random (with replacement) from all the possible
(
d
k

)
sets. With high

probability in d, this is a (q = 2, d, k, a = 1, b = 30(d−1) log d
(k−1)

)-partitioning scheme.

Proof. By definition, we have |B1|, . . . , |Bw| = k. Let us define E1,i,j as the event that
the cell (i, j) of T never appears in any of the submatrices TB1 , . . . ,TBw , and E2,i,j as the
event that the cell (i, j) of T appears in strictly more than b submatrices. In the rest of this
proof, our goal is to show that Pr[E1] and Pr[E2] are small, where E1 = ∪(i,j)∈[d]×[d]E1,i,j
and E2 = ∪(i,j)∈[d]×[d]E2,i,j .

Fix any two distinct i, j ∈ [d]. For ℓ ∈ [w], let us define X i,j
ℓ as the indicator event

that the cell (i, j) in T appears in the ℓth principal submatrix TBℓ
when i, j ∈ Bℓ. By

construction,

Pr[X i,j
ℓ = 1] =


(d−2
k−2)
(dk)

= k(k−1)
d(d−1)

if i ̸= j

(d−1
k−1)
(dk)

= k
d

if i = j

To analyze E1, we first consider i, j ∈ [d] where i ̸= j. We see that
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Pr[E1,i,j] =
w∏

ℓ=1

Pr[X i,j
ℓ = 0] =

(
1− k(k − 1)

d(d− 1)

)w

≤ exp

(
−wk(k − 1)

d(d− 1)

)
= exp (−10 log d) = 1

d10

Meanwhile, when i = j,

Pr[E1,i,i] =
w∏

ℓ=1

Pr[X i,i
ℓ = 0] =

(
1− k

d

)w

≤ exp

(
−wk
d

)
≤ exp (−10 log d) = 1

d10

Taking union bound over (i, j) ∈ [d]× [d], we get

Pr[E1] ≤
∑

(i,j)∈[d]×[d]

Pr[E1,i,j] ≤
d2

d10
=

1

d8

To analyze E2, let us first define Zi,j =
∑w

ℓ=1X
i,j
ℓ for any i, j ∈ [d]. Since the X i,j

ℓ

variables are indicators, linearity of expectations tells us that

E[Zi,j] =
w∑

ℓ=1

E[X i,j
ℓ ] =


∑w

ℓ=1
k(k−1)
d(d−1)

= wk(k−1)
d(d−1)

if i ̸= j∑w
ℓ=1

k
d
= wk

d
if i = j

For i ̸= j, applying Chernoff bound yields

Pr[Zi,j > (1 + 2) · E[Zi,j]] ≤ exp

(
−E[Zi,j] · 22

2 + 2

)
≤ exp

(
−E[Zi,j]

)
= exp

(
−wk(k − 1)

d(d− 1)

)
= exp (−10 log d) = 1

d10

Meanwhile, when i = j,

Pr[Zi,i > (1 + 2) · E[Zi,i]] ≤ exp

(
−E[Zi,i] · 22

2 + 2

)
≤ exp

(
−E[Zi,i]

)
= exp

(
−wk
d

)
≤ exp (−10 log d) = 1

d10

By defining

b = 3 · max
i,j∈[d]

E[Zi,j] =
3wk

d
=

30(d− 1) log d

(k − 1)
,

we see that Pr[E2,i,j] = Pr[Zi,j > b] ≤ Pr[Zi,j > (1+ 2) ·E[Zi,j]] ≤ 1
d10

and Pr[E2,i,i] =

Pr[Zi,j > b] ≤ Pr[Zi,i > (1 + 2) · E[Zi,i]] ≤ 1
d10

. Therefore, taking union bound over
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(i, j) ∈ [d]× [d], we get

Pr[E2] ≤
∑

(i,j)∈[d]×[d]

Pr[E2,i,j] ≤
d2

d10
=

1

d8

In conclusion, this construction satisfy all 3 conditions of Definition 10.7 with high
probability in d.

Polynomial running time of Eq. (10.6)

In this section, we show that Eq. (10.6) in Lemma 10.15 can be reformulated as a semidef-
inite program (SDP) that is polynomial time solvable. Recall that we are given n samples
y1, . . . ,yn ∼ N(0,Σ) under the assumption that ∥vec(Σ − Id)∥1 ≤ r for some r > 0,
and Eq. (10.6) was defined as follows:

Σ̂ = argmin
A ∈ Rd×d is p.s.d.
∥vec(A−Id)∥1≤r

λmin(A)≥1

n∑
i=1

∥A− yiy
⊤
i ∥2F

To convert our optimization problem to the standard SDP form, we “blow up” the
problem dimension into some integer n′ ∈ poly(d). Let m be the number of constraints
and n′ be the problem dimension. For symmetric matrices C,D1, . . . ,Dm ∈ Rn′×n′ and
values b1, . . . , bm ∈ R, the standard form of a SDP is written as follows:

min
X∈Rn′×n′

⟨C,X⟩

subject to ⟨D1,X⟩ = b1
...

⟨Dm,X⟩ = bm

X ⪰ 0

(C.5)

where the inner product between two matrices A,B ∈ Rn′×n′ is written as

⟨A,B⟩ =
n′∑
i=1

n′∑
j=1

Ai,jBi,j

For further expositions about SDPs, we refer readers to [VB96, BV04, Fre04, GM12]. In
this section, we simply rely on the following known result to argue that our optimization
problem will be polynomial time (in terms of n, d, and r) after showing how to frame
Eq. (10.6) in the standard SDP form.

Theorem C.9 (Implied by [HJS+22]). Consider an SDP instance of the form Eq. (C.5).
Suppose it has an optimal solution X∗ ∈ Rn′×n′ and any feasible solution X ∈ Rn′×n′
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satisfies ∥X∥2 ≤ R for some R > 0. Then, there is an algorithm that produces X̂ in
O(poly(n, d, log(1/ε))) time such that ⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ εR · ∥C∥2.

Remark C.10. Apart from notational changes, Theorem 8.1 of [HJS+22] actually deals
with the maximization problem but here we transform it to our minimization setting. They
also guarantee additional bounds on the constraints with respect to X̂ , which we do not
use.

In the following formulation, for any indices i and j, we define δi,j ∈ {0, 1} as the
indicator indicating whether i = j. This will be useful for representation of the identity
matrix.

Re-expressing the objective function

Observe that for any i ∈ [n], we have

∥A− yiy
⊤
i ∥2F = Tr

(
(A− yiy

⊤
i )

⊤(A− yiy
⊤
i )
)

= Tr
(
A⊤A

)
− 2Tr

(
yiy

⊤
i A
)
+ Tr

(
yiy

⊤
i yiy

⊤
i

)
Since y1, . . . ,yn ∈ Rd are constants with respect to the optimization problem, we can
ignore theTr

(
yiy

⊤
i yiy

⊤
i

)
term and instead minimizenTr

(
A⊤A

)
−2
∑n

i=1Tr
(
yiy

⊤
i A
)
.

As A⊤A is a quadratic expression, let us define an auxiliary matrix B ∈ Rd×d which we
will later enforce Tr(B) ≥ Tr(ATA). Defining a symmetric matrix Y =

∑n
i=1 yiy

⊤
i ∈

Rd×d, the minimization objective becomes

nTr (B)− 2Tr (Y A) = nB1,1 + . . .+ nBd,d − 2⟨Y ,A⟩ (C.6)

Defining the variable matrix X

Let n′ = 2d2 + 3d+ 2 and let us define the SDP variable matrix X ∈ Rn′×n′ as follows:

X =



B A⊤

A Id

A− Id

U

S

sU

sB


∈ Rn′×n′

where the empty parts of X are zero matrices of appropriate sizes, B ∈ Rd×d is an
auxiliary matrix aiming to capture A⊤A, and U and S are diagonal matrices of size d2:

U = diag(u1,1, u1,2, . . . , u1,d, . . . , ud,1, . . . , ud,d) ∈ Rd2×d2
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S = diag(s1,1, s1,2, . . . , s1,d, . . . , sd,1, . . . , sd,d) ∈ Rd2×d2

For convenience, we define

M =

[
B A⊤

A Id

]
∈ R2d×2d

so we can write

X =



M

A− Id

U

S

sU

sB


∈ Rn′×n′ (C.7)

In the following subsections, we explain how to ensure that submatrices in X model
the desired notions and constraints on A, B, and so on. For instance, we will use U

to enforce ∥vec(A − Id)∥1 ≤ r in an element-wise fashion and use S and sU for slack
variables to transform inequality constraints to equality ones. The slack variable sB is
used for upper bounding the norm of B later, so that we can argue that the feasible region
is bounded.

Defining the cost matrix C

To capture the objective function Eq. (C.6), let us define a symmetric cost matrix C ∈
Rn′×n′ as follows:

C =

diag(n, . . . , n) −Y−Y 0d×d

0(2d2+d+2)×(2d2+d+2)

 ∈ Rn′×n′ (C.8)

One can check that ⟨C,X⟩ = nB1,1 + . . .+ nBd,d − 2⟨Y ,A⟩.

Enforcing zeroes, ones, and linking A entries with A− Id

To enforce that the empty parts of X always solves to zeroes, we can define a symmetric
constraint matrix Dzero

i,j ∈ Rn′×n′ such that

(Dzero
i,j )i′,j′ =

1 if i′ = i and j′ = j

0 otherwise
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and bzeroi,j = 0. Then, ⟨Dzero
i,j ,X⟩ = bzeroi,j resolves to Xi,j = ⟨Dzero

i,j ,X⟩ = bzeroi,j = 0. We
can similarly enforce that the appropriate part of X in M resolves to Id.

Now, to ensure that the A submatrices within M are appropriately linked to A− Id,
we can define a symmetric constraint matrix DA

i,j ∈ Rn′×n′ such that

DA
i,j =



0d×d ∗
∗ 0d×d

†
0d2×d2

0d2×d2

0

0


∈ Rn′×n′

and bBi,j = 0, where ∗ contains 1
4

at the (i, j)-th and (j, i)-th entries and † contains δi,j − 1
2

at the (i, j)-th and (j, i)-th entries, with 0 everywhere else; if i = j, we double the value.
So, ⟨DA

i,j,X⟩ = bAi,j would enforce that the (i, j)-th and (j, i)-th entries between the A

submatrices within M and those in A− Id are appropriately linked.

Modeling the ℓ1 constraint

To encode ∥vec(A− Id)∥1 ≤ r in SDP form, let us define auxiliary variables {ui,j}i,j∈[d]
and define the linear constraints:

• −Ai,j − ui,j ≤ −δi,j , for all i, j ∈ [d]

• Ai,j − ui,j ≤ δi,j , for all i, j ∈ [d]

•
∑d

i=1

∑d
j=1 ui,j ≤ r

The first two constraints effectively encode |Ai,j − δi,j| ≤ ui,j and so the third constraint
captures ∥vec(A−Id)∥1 ≤ r as desired. To convert the inequality constraint to an equality
one, we use the slack variables {si,j}i,j∈[d] in S. For instance, we can define symmetric
constraint matrices D+

i,j ∈ Rn′×n′ , D−
i,j ∈ Rn′×n′ , and Dr

i,j ∈ Rn′×n′ with b+i,j = b−i,j = 0

and br = r as follows:

D+
i,j =



0d×d ∗
∗ 0d×d

0d×d

†
‡

0

0


D−

i,j =



0d×d −∗
−∗ 0d×d

0d×d

†
‡

0

0


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Dr
i,j =



02d×2d

0d×d

1d2×d2

0d2×d2

1

0


where ∗ contains δi,j−1

4
at the (i, j)-th and (j, i)-th entries, † contains−1

2
at the (i, j)-th and

(j, i)-th entries, and ‡ contains 1
2

at the (i, j)-th and (j, i)-th entries, with 0 everywhere else;
if i = j, we double the value. So, ⟨D+

i,j,X⟩ = b+i,j models δi,j − Ai,j − ui,j + si,j = 0,
⟨D−

i,j,X⟩ = b−i,j models Ai,j − δi,j − ui,j + si,j = 0, and ⟨Dr
i,j,X⟩ = bri,j models

sS +
∑

i=1

∑
j=1 ui,j = r.

Positive semidefinite constraints

By known properties of the (generalized) Schur complement [Zha05, Section 1.4 and
Section 1.6], it is known that X ⪰ 0 if and only if the following properties hold simulta-
neously:

1. M ⪰ 0

2. A− Id ⪰ 0 ⇐⇒ A ⪰ Id ⇐⇒ λmin(A) ≥ 1, which also implies that A is psd

3. U ⪰ 0 ⇐⇒ u1,1, u1,2, . . . , u1,d, . . . , ud,1, . . . , ud,d ≥ 0

4. S ⪰ 0 ⇐⇒ s1,1, s1,2, . . . , s1,d, . . . , sd,1, . . . , sd,d ≥ 0

5. sU ≥ 0

6. sB ≥ 0

For the first property, since Id ≻ 0, Schur complement tells us thatM =

[
B A⊤

A Id

]
⪰

0 if and only if B ⪰ A⊤A. Observe that B ⪰ A⊤A implies Tr(B) ≥ Tr(A⊤A), which
aligns with our intention of modeling A⊤A by B. Note that the objective function is
nTr(B) − 2Tr(Y A) and we have that Tr(B) ≥ Tr(A⊤A) for all feasible matrices B.
Thus, for any pair (A∗,B∗) that minimizes of the objective function, it has to be that
Tr(B∗) = Tr((A∗)⊤A∗), since otherwise, the pair (A∗,B∗∗ = (A∗)⊤A∗) would have a
smaller value.

Enforcing an upper bound on ∥B∥2

To apply Theorem C.9, we need to argue that the feasible region of our SDP is bounded
and non-empty, so that ∥X∥2 is upper bounded. To do so, we need to enforce an upper
bound on ∥B∥2.
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Since ∥vec(A− Id)∥1 ≤ r, by triangle inequality and standard norm inequalities, we
see that

∥A∥2 ≤ ∥A− Id∥2 + ∥Id∥2 ≤ ∥A− Id∥F + ∥Id∥2
= ∥vec(A− Id)∥2 + d ≤ ∥vec(A− Id)∥1 + d ≤ r + d (C.9)

As B is supposed to model ATA and is constrained only by B ⪰ ATA, it is feasible to
enforce Tr(B) ≤ ∥B∥2F ≤ d · (r + d)4 because

∥ATA∥2F ≤ d · ∥ATA∥22 = d · ∥A∥42 ≤ d · (r + d)4

To this end, let us define a symmetric constraint matrix DB
i,j ∈ Rn′×n′ such that

DB =

Id 0(2d2+2d+1)×(2d2+2d+1)

1

 ∈ Rn′×n′

and bB = d · (r + d)4. Then, ⟨DB,X⟩ = bB resolves to Tr(B) + sB = ⟨DB,X⟩ =
bB = d · (r+ d)4. In other words, since the slack variable sB is non-negative, i.e. sB ≥ 0,
we have

∥B∥2 ≤ Tr(B) ≤ ∥B∥2F ≤ d · (r + d)4 (C.10)

Bounding ∥C∥2 and ∥X∥2

Recalling the definition of C in Eq. (C.8), we see that

∥C∥2 ≤

∥∥∥∥∥
[
diag(n, . . . , n) −Y

−Y 0d×d

]∥∥∥∥∥
2

≤ n+ ∥Y ∥2

Meanwhile, we know from Lemma 2.26 that

∥Y ∥2 ≤ ∥Σ∥2 ·

(
1 +O

(√
d+ log 1/δ

n

))

with probability at least 1− δ.
Recall from Algorithm 24 that when we solve the optimization problem of Eq. (10.6),

we have that ∥vec(Σ − I)∥1 ≤ r. So, by a similar chain of arguments as Eq. (C.9), we
see that

∥Σ∥2 ≤ ∥Σ− Id∥2 + ∥Id∥2 ≤ ∥Σ− Id∥F + ∥Id∥2
= ∥vec(Σ− Id)∥2 + d ≤ ∥vec(Σ− Id)∥1 + d = r + d
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Therefore,

∥C∥2 ≤ n+ ∥Σ∥2 ·

(
1 +O

(√
d+ log 1/δ

n

))

≤ n+ (r + d) ·

(
1 +O

(√
d+ log 1/δ

n

))
∈ poly(n, d, r)

Meanwhile, recalling definition of X from Eq. (C.7), we see that for any feasible
solution X ,

∥X∥2 ≤ max {∥M∥2, ∥A− Id∥2, ∥U∥2, ∥S∥2, sU , sB}

By Eq. (C.10), we have that ∥B∥2 ≤
√
d · (r + d)2. So,

∥M∥2 ≤ ∥B∥2 + ∥A∥2 + 1 ≤ d · (r + d)4 + r + d+ 1 ∈ poly(d, r)

Also, all the remaining terms are in poly(r, d) since ∥vec(A − Id)∥1 ≤ r. Therefore,
∥X∥2 ∈ poly(d, r) with probability 1− δ. So, ∥X∥2 ≤ R for some R ∈ poly(d, r).

Putting together

Suppose we aim for an additive error of ε′ > 0 in Eq. (10.7) when we solve Eq. (10.6). From
above, we have that ∥C∥2, R ∈ poly(n, d, r). Let us define ε = ε′

R·∥C∥2 in Theorem C.9.
Then, the algorithm of Theorem C.9 produces X̂ ∈ Rn′×n′ in poly(n, d, log(1/ε)) ⊆
poly(n, d, log(R·∥C∥2

ε′
)) ⊆ poly(n, d, r, log(1/ε′)) time such that ⟨C, X̂⟩ ≤ ⟨C,X∗⟩ +

εR · ∥C∥2 = ⟨C,X∗⟩+ ε′ as desired.

C.3 Addendum for Chapter 11

C.3.1 Path essential graph

In this section, we explain why our algorithm (Algorithm 27) is simply the classic “binary
search with prediction”15 when the given essential graph E(G∗) is an undirected path on
n vertices. So, another way to view our result is a generalization that works on essential
graphs of arbitrary moral DAGs.

When the given essential graph is a path E(G∗) on n vertices, we know that there are n
possible DAGs in the Markov equivalence class where each DAG corresponds to choosing
a single root node and having all edges pointing away from it. Observe that a verifying
set of any DAG is then simply the root node as the set of of covered edges in any rooted

15e.g. see https://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search

https://en.wikipedia.org/wiki/Learning_augmented_algorithm#Binary_search
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tree are precisely the edges incident to the root.
Therefore, given any G̃ ∈ [G∗], we se that h(G∗, Ṽ) measures the number of hops

between the root of the advice DAG G̃ and the root of the true DAG G∗. Furthermore,
by Meek rule R1, whenever we intervene on a vertex U on the path, we will fully orient
the “half” of the path that points away from the root while the subpath between U and
the root remains unoriented (except the edge directly incident to U ). So, one can see that
Algorithm 27 is actually mimicking exponential search from the root of G̃ towards the root
of G∗. Then, once the root of G∗ lies within the r-hop neighborhood H, SubsetSearch
uses O(log |V (H)|) interventions, which matches the number of queries required by
binary search within a fixed interval over |V (H)| nodes.

C.3.2 Ratio of verification numbers

Lemma 11.9 (Covered edge status changes due to covered edge reversal). Let G∗ be a
moral DAG with MEC [G∗] and consider any DAG G ∈ [G∗]. Suppose G = (V ,E) has a
covered edge X → Y ∈ C(G) and we reverse X → Y to Y → X to obtain a new DAG
G ′ ∈ [G∗]. Then, all of the following statements hold:

1. Y → X ∈ C(G ′). Note that this is the covered edge that was reversed.

2. If an edge E does not involve X or Y , then E ∈ C(G) if and only if E ∈ C(G ′).

3. If X ∈ ChG(A) for some A ∈ V \ {X, Y }, then A → X ∈ C(G) if and only if
A→ Y ∈ C(G ′).

4. If B ∈ ChG(Y ) and X → B ∈ E(G) for some B ∈ V \ {X, Y }, then Y → B ∈
C(G) if and only if X → B ∈ C(G ′).

Proof. The only parental relationships that changed when we reversingX → Y to Y → X

are PaG′(Y ) = PaG(Y ) \ {X} and PaG′(X) = PaG(X) ∪ {Y }. For any other vertex
U ∈ V \ {X, Y }, we have PaG′(U) = PaG(U).

The first two points have the same proof: as parental relationships of both endpoints
are unchanged, the covered edge status is unchanged. We now prove the other two points.

3. Since X → Y ∈ C(G) is a covered edge in G and X ∈ ChG(A) means A → X ∈
E(G), we must have A→ Y ∈ E(G). We prove both directions separately.

Suppose A→ X ∈ C(G) is a covered edge in G. Then, PaG(A) = PaG(X) \ {A}.
SinceX → Y ∈ C(G) is a covered edge in G, we have PaG(X) = PaG(Y )\{X} =
PaG′(Y ). Therefore, PaG′(A) = PaG(A) = PaG(X) \ {A} = PaG′(Y ) \ {A}, and
so A→ Y ∈ C(G ′) is a covered edge in G.

Suppose A → X ̸∈ C(G) is not a covered edge in G. Then, one of the two cases
must occur:
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(a) There exists some vertex U such that U → A and U ̸→ X in G.
Since X → Y ∈ C(G) is a covered edge in G, U ̸→ X implies U ̸→ Y in G.
Therefore, A→ Y ̸∈ C(G ′) due to U → A.

(b) There exists some vertex V such that V → X and V ̸→ A in G.
There are two possibilities for V ̸→ A: V \− A or V ← A. If V \− A,
then V → X ← A is a v-structure, but G is a moral DAG. If V ← A,
then X ̸∈ Ch(A) since we have A → V → X . Both possibilities lead to
contradictions.

The first case implies A→ Y ̸∈ C(G ′) while the second case cannot happen.

4. We prove both directions separately.

Suppose Y → B ∈ C(G) is a covered edge in G. Then, PaG(B) = PaG(Y )∪ {Y }.
Since X → Y ∈ C(G) is a covered edge in G, we have PaG(X) = PaG(Y ) \ {X}.
So, we have PaG′(B)\{X} = PaG(B)\{X} = PaG(Y )∪{Y }\{X} = PaG(X)∪
{Y } = PaG′(X). Thus, X → B ∈ C(G ′) is a covered edge in G ′.

Suppose Y → B ̸∈ C(G). Then, one of the two cases must occur:

• There exists some vertex U → Y and U ̸→ B in G.
Since X → Y ∈ C(G) is a covered edge in G, U → Y implies U → X .
Therefore, X → B ̸∈ C(G ′) due to U ̸→ B.

• There exists some vertex V → B and V ̸→ Y in G.
There are two possibilities for V ̸→ Y : V \− Y or V ← Y . If V \− Y ,
then V → B ← Y is a v-structure, but G is a moral DAG. If V ← Y ,
then B ̸∈ Ch(Y ) since we have Y → V → B. Both possibilities lead to
contradictions.

The first case implies X → B ̸∈ C(G ′) while the second case cannot happen.

We use the following simple lemma in our proof of Lemma 11.11.

Lemma C.11. For any covered edgeX → Y in a DAGG = (V ,E), we have Y ∈ Ch(X).
Furthermore, each vertex only appears as an endpoint of some covered edge at most once.

Proof. For the first statement, suppose, for a contradiction, that Y ̸∈ Ch(X). Then, there
exists some Z ∈ V \ {X, Y } such that Z ∈ De(X) ∩ An(Y ). Fix an arbitrary ordering
π for G and let Z∗ = argmaxZ∈De(X)∩An(Y ){π(Z)}. Then, we see that Z∗ → Y while
Z∗ ̸→ X since Z∗ ∈ De(X). So, X → Y cannot be a covered edge. Contradiction.

For the second statement, suppose, for a contradiction, that there are two covered edges
U → X, V → X ∈ C(G) that ends with X . Since U → X ∈ C(G), we must have
V → U . Since V → X ∈ C(G), we must have U → V . We cannot have both U → V

and V → U simultaneously. Contradiction.
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Lemma 11.11 (Formal version of Lemma 11.7). Consider two moral DAGsG1 andG2 from
the same MEC such that they differ only in one covered edge direction: X → Y ∈ E(G1)
and Y → X ∈ E(G2). Let S ⊆ E be a subset such that X → Y, Y → X ̸∈ S. If X has
a direct parent A ∈ V in G1, we further require A → X ∈ S. When πG1 is an ordering
for G1 such that Y = argminZ∈V :X→Z∈C(G1){πG1(Z) +n2 ·1X→Z∈S} with CRG maximal
matchingMG1,πG1 ,S

, one can transform πG1 to πG2 andMG1,πG1 ,S
to another CRG maximal

matching MG2,πG2 ,S
for C(G2) such that |MG1,πG1 ,S

| = |MG2,πG2 ,S
|.

Proof. Define U = argminZ∈ChG1 (X){πG1(Z)} as the lowest ordered child of X . Note
that Algorithm 26 chooses X → Y instead of X → U by definition of Y . This implies
that X → U ∈ S whenever U ̸= Y .

Let us define πG2 as follows:

πG2(V ) =



πG1(X) if V = Y

πG1(U) if V = X

πG1(Y ) if V = U

πG1(V ) else

Clearly, πG1(X) < πG1(Y ) and πG2(X) > πG2(Y ). Meanwhile, for any other two adjacent
vertices V and V ′, observe that πG1(V ) < πG1(V

′) ⇐⇒ πG2(V ) < πG2(V
′) so πG2 agrees

with the arc orientations of πG1 except forX−Y . See Fig. 11.3 for an illustrated example.
Define vertex B as follows:

B = argmin
Z∈V : Z∈De(X) and Y→Z∈C(G1)

{πG1(Z) + n2 · 1X→Z∈S}

If vertexB exists, then we know thatB ∈ ChG1(Y ) andX → B ∈ C(G2) by Lemma C.11
and Lemma 11.9. By minimality of B, Definition 11.10 will choose Y → B if picking
a covered edge starting with Y for MG1,πG1 ,S

. So, we can equivalently define vertex B as
follows:

B = argmin
Z∈V : Z∈De(Y ) and X→Z∈C(G2)

{πG2(Z) + n2 · 1X→Z∈S}

By choice of πG2 , Definition 11.10 will choose X → B if picking a covered edge starting
with X for MG2,πG2 ,S

.
We will now construct a same-sized maximal matchingMG2,πG2 ,S

fromMG1,πG1 ,S
(Step

1), argue that it is maximal matching of C(G2) (Step 2), and that it is indeed a conditional-
root-greedy matching for C(G2) with respect to πG2 and S (Step 3). There are three cases
that cover all possibilities:

Case 1 Vertex A exists, A→ X ∈MG1,πG1 ,S
, and vertex B exists.

Case 2 Vertex A exists, A→ X ∈MG1,πG1 ,S
, and vertex B does not exist.
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Case 3 A→ X ̸∈MG1,πG1 ,S
.

This could be due to vertex A not existing, or A → X ̸∈ C(G1), or MG1,πG1 ,S

containing a covered edge ending at A so A→ X was removed from consideration.

Step 1: Construction of MG2,πG2 ,S
such that |MG2,πG2 ,S

| = |MG1,πG1 ,S
|.

By Lemma 11.9, covered edge statuses of edges whose endpoints do not involve X or
Y will remain unchanged. By definition of Y , we know that Definition 11.10 will choose
X → Y if picking a covered edge starting with X for MG1,πG1 ,S

.
Since A → X ∈ MG1,πG1

in cases 1 and 2, we know that there is no arcs of the form
X → · in MG1,πG1 ,S

. Since there is no arc of the form · → X in MG1,πG1 ,S
in case 3, we

know that X → Y ∈MG1,πG1 ,S
.

Case 1 Define MG2,πG2 ,S
=MG1,πG1 ,S

∪ {A→ Y,X → B} \ {A→ X, Y → B}.

Case 2 Define MG2,πG2 ,S
=MG1,πG1 ,S

∪ {A→ Y } \ {A→ X}.

Case 3 Define MG2,πG2 ,S
=MG1,πG1 ,S

∪ {Y → X} \ {X → Y }.

By construction, we see that |MG2,πG2 ,S
| = |MG1,πG1 ,S

|.

Step 2: MG2,πG2 ,S
is a maximal matching of the covered edge C(G2) of G2.

To prove that MG2,πG2 ,S
is a maximal matching of C(G2), we argue in three steps:

2(i) Edges of MG2,πG2 ,S
belong to C(G2).

2(ii) MG2,πG2 ,S
is a matching of C(G2).

2(iii) MG2,πG2 ,S
is maximal matching of C(G2).

Step 2(i): Edges of MG2,πG2 ,S
belong to C(G2).

By Lemma 11.9, covered edge statuses of edges whose endpoints do not involve X
or Y will remain unchanged. Since MG1,πG1 ,S

is a matching, it has at most one edge E
involving endpoint X and at most one edge E ′ involving endpoint Y (E ′ could be E).

Case 1 Since B exists, the edges in MG1,πG1 ,S
with endpoints involving {X, Y } are

A→ X and Y → B. By Lemma 11.9, we know that A→ Y,X → B ∈ C(G2).

Case 2 SinceB does not exist, the only edge inMG1,πG1 ,S
with endpoints involving {X, Y }

is A→ X . By Lemma 11.9, we know that A→ Y ∈ C(G2).

Case 3 Since A→ X ̸∈MG1,πG1 ,S
, we have X → Y ∈MG1,πG1 ,S

by minimality of Y .

In all cases, we see that MG2,πG2 ,S
⊆ C(G2).
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Step 2(ii): MG2,πG2 ,S
is a matching of C(G2).

It suffices to argue that there are no two edges in MG2,πG2 ,S
sharing an endpoint. Since

MG1,πG1 ,S
is a matching, this can only happen via newly added endpoints in MG2,πG2 ,S

.

Case 1 The endpoints of newly added edges are exactly the endpoints of removed edges.

Case 2 Since we removed A → X and added A → Y , it suffices to check that there are
no edges in MG1,πG1 ,S

involving Y . This is true since B does not exist in Case 2.

Case 3 The endpoints of newly added edges are exactly the endpoints of removed edges.

Therefore, we conclude that MG2,πG2 ,S
is a matching of C(G2).

Step 2(iii): MG2,πG2 ,S
is a maximal matching of C(G2).

For any U → V ∈ C(G2), we show that there is some edge in MG2,πG2 ,S
with at

least one of U or V is an endpoint. By Lemma 11.9, covered edge statuses of edges
whose endpoints do not involve X or Y will remain unchanged, so it suffices to consider
|{U, V } ∩ {X, Y }| ≥ 1.

We check the following 3 scenarios corresponding to |{U, V } ∩ {X, Y }| ≥ 1 below:

(i) Y ∈ {U, V }.

The endpoints of MG2,πG2 ,S
always contains Y .

(ii) Y ̸∈ {U, V } and X → V ∈ C(G2), for some V ∈ V \ {X, Y }.

Since X → V ∈ C(G2) and Y → X in G2, it must be the case that Y → V in G2.
Since G1 and G2 agrees on all arcs except X − Y , we have that Y → V in G1 as
well. Since X → V ∈ C(G2), we know that V ∈ ChG2(X) via Lemma C.11. So,
we have Y → V ∈ C(G1) via Lemma 11.9. Since the set {V : Y → V ∈ C(G1)}
is non-empty, vertex B exists. In both cases 1 and 3, the endpoints of MG2,πG2 ,S

includes X .

(iii) Y ̸∈ {U, V } and U → X ∈ C(G2), for some U ∈ V \ {X, Y }.

By Lemma C.11, we know thatX ∈ ChG2(U). Meanwhile, since Y → X ∈ C(G2),
we must have U → Y in G2. However, this implies that X ̸∈ ChG2(U) since
U → Y → X exists. This is a contradiction, so this situation cannot happen.

As the above argument holds for any U → V ∈ C(G2), we see that MG2,πG2 ,S
is

maximal matching for C(G2).
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Step 3: MG2,πG2 ,S
is a conditional-root-greedy maximal matching.

We now compare the execution of Algorithm 26 on (πG1 ,S) and (πG2 ,S). Note that
S remains unchanged. We know the following:

• Since πG2(Y ) = πG1(X) and A → X ∈ S, if A exists and A → X is chosen by
Algorithm 26 on (πG1 ,S), then it means that there are noA→ V arc in C(G1) such
that A → V ̸∈ S. So, A → Y will be chosen by Algorithm 26 on (πG2 ,S) if A
exists.

• Since πG2(Y ) = πG1(X), X is chosen as a root by Algorithm 26 on (πG1 ,S) if and
only if Y is chosen as a root by Algorithm 26 on (πG2 ,S).

• By definition of B, if it exists, then Y → B ∈ MG1,πG1 ,S
⇐⇒ X → B ∈

MG2,πG2 ,S
.

• By the definition of πG2 , we see that Algorithm 26 makes the “same decisions” when
choosing arcs rooted on V \ {A,X, Y,B}.

Therefore,MG2,πG2 ,S
is indeed a conditional-root-greedy maximal matching for C(G2)

with respect to πG2 and S.
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