
Massively Parallel Algorithms

Computer Science, ETH Zurich

Mohsen Ghaffari

Lecture Notes by
Davin Choo

Version: 19
th June, 2019

Contents

Notation and useful inequalities

Administrative matters

1 The MPC Model 1
1.1 Computation and Communication Model 1

1.2 Initial data distribution . 2

1.3 Commonly used subroutines 3

2 Matching 7
2.1 Matching using strongly superlinear memory 7

2.2 Matching using near linear memory 10

2.3 Matching using strongly sublinear memory 19

2.4 Approximation improvement via augmenting paths 26

3 Connected Components & MST 41
3.1 MST using near linear memory 43

3.2 Connectivity using near linear memory 44

3.3 Log diameter time connectivity using sublinear memory . . 51

3.4 Geometric MST using sublinear memory 56

4 Lower bounds & conditional hardness 63
4.1 Lower bounds . 63

4.2 Conditional hardness . 69

5 Dynamic Programming 73
5.1 Weighted Interval Selection 73

6 Submodular Maximization 81
6.1 A greedy sequential algorithm 82

6.2 Constant approximation in 2 MPC rounds 83

6.3 Optimal approximation via Sample-and-Prune 89

6.4 Optimal approximation in constant time 93

7 Data clustering 101
7.1 k-means . 101

7.2 k-means++: Initializing with guarantees 102

7.3 k-means‖: Parallelizing the initialization 103

8 Exact minimum cut in near linear memory 113

9 Vertex coloring 119
9.1 Warm up . 120

9.2 A structural decomposition 122

9.3 A three phase analysis . 125

Notation and useful inequalities

Commonly used notation

• WLOG: without loss of generality

• ind.: independent / independently

• w.p.: with probability

• w.h.p: with high probability
We say event X holds with high probability (w.h.p.) if

Pr[X] > 1−
1

poly(n)

say, Pr[X] > 1− 1
nc for some constant c > 2.

• Integer range [n] = {1, . . . ,n}

Useful inequalities

• For any x, (1− x) 6 e−x

• For x ∈ (0, 12), (1− x) > e
−x−x2

• For x ∈ [0, 12], 4
−x 6 1− x 6 e−x

• (nk)
k 6

(
n
k

)
6 (enk)

k

•
(
n
k

)
6 nk

• limn→∞(1− 1
n)
n = e−1

•
∑∞
i=1

1
i2

= π
6

• 1
1−x 6 1+ 2x for x 6 1

2

Theorem (Chernoff bound). For independent Bernoulli variables X1, . . . ,Xn,
let X =

∑n
i=1 Xi. Then,

Pr[X > (1+ ε) ·E(X)] 6 exp(
−ε2E(X)

3
) for 0 < ε

Pr[X 6 (1− ε) ·E(X)] 6 exp(
−ε2E(X)

2
) for 0 < ε < 1

By union bound, for 0 < ε < 1, we have

Pr[|X− E(X)| > ε ·E(X)] 6 2 exp(
−ε2E(X)

3
)

Remark 1 There is actually a tighter form of Chernoff bounds:

∀ε > 0, Pr[X > (1+ ε)E(X)] 6 (
eε

(1+ ε)1+ε
)E(X)

Remark 2 We usually apply Chernoff bound to show that the prob-
ability of bad approximation is low by picking parameters such that
2 exp(−ε

2E(X)
3) 6 δ, then negate to get Pr[|X− E(X)| 6 ε ·E(X)] > 1− δ.

Administrative matters

Purpose

Due to physical limitations, Moore’s law has been breaking down over the
past few years. The growth of memory and speed of individual computers
are being outpaced by the surge in amount of data that needs to be
processed. This calls for a new paradigm for computation.

Over the years, frameworks such as MapReduce [DG08], Hadoop
[Whi12], Dryad [IBY+

07], and Spark [ZCF+
10] have emerged as a way to

perform large scale computations across various machines. In this course,
we discuss the expanding body of work on the theoretical foundations of
modern parallel computation, and particularly the design of algorithms that
can be parallelized. The emphasis will be on the algorithmic tools and tech-
niques with provable guarantees, and not whether they can be implemented
with current technologies. The theoretical framework of interest is called
Massively Parallel Computation (MPC), first introduced in [KSV10] and
later refined in [ANOY14, BKS13, GSZ11].

Prerequisites

No prior knowledge in parallel algorithms/computing is assumed. The
only prerequisite is that one should be comfortable with randomized algo-
rithms. Having taken a course in Algorithms, Probability, and Computing1

or Randomized Algorithms and Probabilistic Methods2 would suffice. To
check your understanding, please attempt Problem Set 0. If you’re unsure
whether you’re ready for this class, please consult the instructor.

1https://www.ti.inf.ethz.ch/ew/courses/APC18/index.html
2https://www.cadmo.ethz.ch/education/lectures/HS18/RandAlg/index.html

http://people.csail.mit.edu/ghaffari/MPA19/Notes/E00%20-%20MPA.pdf
https://www.ti.inf.ethz.ch/ew/courses/APC18/index.html
https://www.cadmo.ethz.ch/education/lectures/HS18/RandAlg/index.html

Assessment format

The course takes a more research slant. There will be no examinations but
instead assessment will be a semester-long project with teams of 2.

Deadline Weightage

Proposal ∼ end March 20%
Presentation ∼ end May 20%

Report ∼ end May 60%

Content

As the field is relatively new, there are no existing courses and most ma-
terials will be from research papers over the past decade. The tentative
list of topics is as follows: sorting, maximum matching approximations,
maximal independent set, connected components, minimum spanning
tree, minimum cut, graph coloring, geometric problems, dynamic pro-
gramming, clustering, triangle counting, densest subgraph, and coreness
decomposition, composable coresets, impossibility results and conditional
lower bounds. Depending on the feedback and questions, there may be a
class on model discussion — PRAM, NC, BSP, and so on.

Chapter 1

The MPC Model

In this chapter, we introduce the Massively Parallel Computation (MPC)
model, discuss how data is initially distributed, and establish some com-
monly used subroutines in MPC algorithms.

1.1 Computation and Communication Model

Under the setting that the size of data outstrips the memory and com-
munication availability, it is natural to employ multiple machines for
computation. As such, a MPC model is often defined by three param-
eters — the input data size N, the number of machines M available for
computation, and the memory size per machine of S words1.

In practice, S is not chosen by us but dictated by the problem instances
and available computational resources / state-of-the-art hardware. Prob-
lems are easier to solve with larger S. In the extreme when S > N, one can
just put the entire input on a single machine and solve it locally. Typically,
S is polynomially smaller than N, e.g. S = Nc for some constant c < 1.

Computation is performed in synchronous rounds. In each round, every
machine locally performs some computation on the data that resides lo-
cally, then send/receive messages to any other machine. As an abstraction
of the communication model, one may think of each machine creating
message packages to load onto a routing network in each round. Hence,
the memory size S also implicitly captures the communication bottleneck
in the MPC model. Local computations frequently run in linear or near-
linear time, and are ignored in the analysis of MPC algorithms because
communication is the bottleneck.

1A word is represented with O(logN) bits.

1

2 CHAPTER 1. THE MPC MODEL

For graph problems with number of vertices n = |V | and number of
edges m = |E|, the input size N is the number of edges m. As the edges
are distributed across the machines initially, we require the number of
machines M to be in the order of Õ(NS) so that there are enough machines
to store the whole input2. Graph algorithms in MPC can be typically
classified based on three different regimes of memory sizes, each facing
very different technical difficulties faced in algorithm design:

Strongly superlinear memory Memory S = n1+ε, for some constant ε >
0.

Near linear memory Memory S ∈ Θ̃(n).

Strongly sublinear memory Memory S = nα, for some constant α ∈ (0, 1).

Unsurprisingly, problems are usually easiest to solve in setting with
strongly superlinear memory.

Remark on communication Communication is the largest bottleneck in
the MPC model as compared to other parallel computation models such
as PRAMs. Notice that the model described above assumes a pairwise
communication network that ignores asynchronous communication and
fault-tolerance. While these are practical and important concerns, we
ignore3 them to yield a cleaner algorithmic framework.

1.2 Initial data distribution

The whole input data is split across the M machines arbitrarily. For
example, each edge of a graph are stored arbitrarily on some machine.
Using universal hashing [CW79, WC81], one can “load balance” the initial
data across all machines in O(1) rounds.

A concern4 was raised in class about duplicates in initial data and how
to handle them. Consider the following: Suppose each of the N unique
data items has a Θ(logn)-bit (1 word) identifier in the range {1, . . . ,P},
for some constant P = nΘ(1). For a fixed S, suppose we have M = Θ(NS)

machines and every machine knows a O(logn)-wise independent hash
h : {1, . . . ,P}→ {1, . . . ,M}.

2Õ hides logarithmic factors. For example, O(n log1000 n) ⊆ Õ(n).
3There exists black-boxes to handle these issues in practice.
4Credit: Yuyi Wang

https://disco.ethz.ch/members/yuwang

1.3. COMMONLY USED SUBROUTINES 3

1. For each item identifier x on machine i, machine i sends x to machine
h(x). Observe that each machine sends out at most S identifiers.
Since h is O(logn)-wise independent, each machine receives O(NM)

identifiers with high probability, fitting the memory constraint of a
single machine.

2. For each item identifier x, reply “Keep x” to exactly one machine that
sent x, and “Discard x” to every other machine that sent x.

At the end of these 2 rounds, there is only one copy of every identifier
in the whole system. To generate the O(logn)-wise independent hash,
Θ(log2 n) bits of randomness needs to be fixed and given to each machine
[WC81]. Then, [SSS95, Theorem 5] tells us that Chernoff bounds apply
even in limited independence — in our case k = O(logn).

1.3 Commonly used subroutines

In this section, we will introduce some commonly used subroutines in
the MPC literature. In subsequent chapters, these will be used implicitly
without much emphasis so that focus can be placed on the ideas discussed.

1.3.1 Independent sampling and basic facts about it

Suppose there are n items and we sample each item independently with
probability p ∈ o(n). Let Xi be the indicator for the ith item to be sampled.
By construction, E[Xi] = Pr[Xi = 1] = p, for all i ∈ {1, . . . ,n}. Then,
X =

∑n
i=1 Xi is the number of items that are sampled. By linearity of

expectation,

E[X] = E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

p = np

Since each item is sampled independently, the Xi’s are independent. By
Chernoff bounds,

Pr
[
|X− E[X]| >

1

2
E[X]

]
6 2 exp(−

np

12
)

This implies that with high probability, the number of sampled items X is
not more than a factor of 2 away from its expectation E[X].

4 CHAPTER 1. THE MPC MODEL

1.3.2 Broadcast / Converge-cast trees

Recall that S restricts amount of communication between machines in a
single round. Consider the scenario where S = n1+ε and a single machine
(say machine 0) needs to convey n words to all M machines. When
nε < M, sending n words to all machines in a single round will exceed
the communication constraint of S. Under the assumption that S = n ·nε,
one can build a communication tree with branching factor nε among all
machines:

0

1

nε + 1

...

nε + 2

...

. . . 2nε

...

2

...
...

...

. . . nε

...
...

...

nε

nε

Observe that the height of the tree is O(1ε), which is a constant for a
constant ε. Using this tree, the root can broadcast a message of n words
to all other machines in constant rounds. Furthermore, all machines can
send the root (converge-cast) a union/intersection of n words using the
same tree. For instance, all machines can know the number of edges in
the graph in constant rounds.

Actual machine identifiers involved in the tree construction can be
worked out explicitly with known M, S, and n. In general, one builds such
a tree by setting the branching factor to be S divided by the size of the
message sent.

1.3.3 Computation output

Computational output are stored, possibly in a distributed fashion, amongst
the set of M machines. Here are some examples of problem output:

Sorting The machine holding item x knows the rank/position of x.

Matching The machine holding vertex v knows whether v is an endpoint
of a matched edge (and if so, what vertex is the other endpoint), or v
is not involved in the matching.

1.3. COMMONLY USED SUBROUTINES 5

Connectivity The machine holding vertex v knows the identifier of v’s
connected component.

In certain cases when memory S is sufficiently large, the entire output may
be stored on a single machine. For example, in the near-linear memory
regime, any matching can fit into a machine as there are at most n2 matched
edges. In any case, one may assume that the output can be queried in
constant time after computation.

6 CHAPTER 1. THE MPC MODEL

Chapter 2

Matching

Given a graph G = (V ,E), a matching M ⊆ E is a subset of edges such that
edges in M do not share an endpoint. An edge in M is called a matched
edge, and endpoints of any matched edge are matched vertices. Without
loss of generality, one may assume that there is no isolated vertex in G.

The problem of maximum matching is to find the matching with the
largest cardinality. A related concept is maximal matching — a matching
M is said to be maximal if every edge in E \M has an endpoint in M. It is
known that any maximal matching is a 2-approximation of the maximum
matching. That is, the size of any maximal matching is at least half the
size of the maximum matching.

In this chapter, we first look at an MPC algorithm for computing a
maximal matching. Then, we discuss how one can transform an O(1)-
approximation of maximum matching to (1+ ε)-approximation, for any
arbitrarily small constant ε > 0.

2.1 Matching using strongly superlinear mem-
ory

We now describe a Las Vegas randomized algorithm1 due to [LMSV11]
that solves maximal matching in constant rounds with S = n1+ε, for any
constant ε > 0. The technique is also called filtering.

1A Las Vegas algorithm is always correct and the randomness is over the runtime.

7

8 CHAPTER 2. MATCHING

2.1.1 Overview

At each round, we put a subset of edges E ′ ⊆ E into a single machine.
After finding a maximal matching, matched vertices are removed from
the graph (by dropping edges involving matched vertices across all M
machines). This iterative process continues until the number of remaining
edges can all fit into a single machine.

The subset E ′ is randomly selected such that |E ′| 6 S with high proba-
bility. By arguing that the number of edges decrease roughly by a factor
of nε in each round, one can show that there will only be O(1ε) rounds,
which is constant for a constant ε > 0. Correctness of the approach follows
from the fact that we only consider edges whose endpoints are not in the
current matching, and terminate when there are no more edges.

2.1.2 Algorithm

Suppose there is a machine 0 that is free, and all edges are distributed
amongst machines labelled 1 to M. Let Gr = (V ,Er) be the graph at round
r, for r ∈ {0, . . . ,R}, where G0 is the input graph G and GR is the empty
graph at the end of the algorithm. We say an edge is local, with respect
to a machine, if the edge resides on the machine. At round r < R, let m
denote the number of edges present in the current graph |Er|. Consider a
round of the algorithm:

1. For i ∈ {1, . . . ,M}, machine i marks each local edge independently
with probability p = n1+ε

2m .

2. For i ∈ {1, . . . ,M}, machine i sends the marked edges to machine 0.

3. Machine 0 computes a maximal matching Mr on the marked edges,
and announces marked vertices to machines 1 to M.

4. For i ∈ {1, . . . ,M}, machine i discards any local edge that has marked
vertices as endpoints.

We will show that there will be at most S = n1+ε edges left after R rounds
with high probability. In one final round, these remaining edges will be
put on a single machine to compute a maximal matching.

2.1.3 Analysis

Theorem 2.1. There exists an algorithm that computes a maximal matching in
the strongly superlinear memory regime in constant rounds.

2.1. MATCHING USING STRONGLY SUPERLINEAR MEMORY 9

The theorem follows from the lemmata below. For analysis, fix a round
of the algorithm and suppose there are m edges at the start of the round.

Lemma 2.2. With high probability, the number of marked edges fit into a single
machine.

Proof. Since each edge is sampled independently with probability p = n1+ε

2m ,
the expected number of marked edges is mp = n1+ε

2 . By Chernoff bounds,
there are at most S = n1+ε marked edges with high probability.

Lemma 2.3. With high probability, the number of remaining edges is at most
10m
nε .

Proof. Denote I as the set of unmarked vertices at end of the round. Ob-
serve that there is no marked edge between any pair of vertices in I — If
there is a marked edge {u, v}, then {u, v} will be sent to machine 0, thus at
least one of u or v will be a matched vertex and not appear in I.

Consider an arbitrary set of vertex J with > 10m
nε induced edges, where

an induced edge is an edge with both endpoints in J. Then, the probability
that there are no marked induced edges in J is

Pr[All edges unmarked] 6 (1− p)
10m
nε 6 exp(−p · 10m

nε
) = e−5n

Union bounding over all 2n potential sets of vertices2, the probability that
any set with > 10m

nε induced edges has no marked edges is 6 2n · e−5n,
which is exponentially small. Together with the observation above, there
are at most 10mnε remaining edges with high probability.

Lemma 2.4. The algorithm terminates in R = O(1ε) rounds.

Proof. There are at most n2 edges initially. After R 6 lognε(n
2) ∈ O(1ε)

applications of Lemma 2.3, there are at most S = n1+ε edges left.

2.1.4 Small details

We now address some details that one may be concerned about, many of
which involve a broadcast tree3:

22n is a gross over-estimation but it suffices.
3See Section 1.3.2 for a description of broadcast trees.

10 CHAPTER 2. MATCHING

Computing sampling probability Recall the sampling probability p =
n1+ε

2m . Since ε is a known constant to all machines, it suffices for each
machine to learn the current number of edges m = |Er|. This can be done
in constant rounds using a broadcast tree.

What if more than S edges are marked? Using a broadcast tree, we
can count the total number of marked edges. If there are more than S
marked edges, resample. As proven in Lemma 2.2, this happens with low
probability and is precisely the part of the algorithm which affects the Las
Vegas runtime.

Announcing marked vertices This can be done in constant rounds using
a broadcast tree.

Storing the maximal matching output See Section 1.3.3 for a discussion
on MPC output.

Exercises

Exercise 2.1. Sorting with strongly sublinear memory in constant time
Consider the problem of sorting N items. The desired output is to know the
ranking of each item at the end of the computation. For example, given elements
{1, 3, 4, 7}, the rank of 3 is 2.

(a) Devise an algorithm that sorts in constant time with M ∈ Õ(N0.4) ma-
chines, each with memory S = N0.6.

(b) Devise an algorithm that sorts in constant time with M ∈ Õ(NS) machines,
each with memory S = Nα, for a given constant α ∈ (0, 1).

Hint Emulate multi-pivot quicksort by selecting pivots independently with ap-
propriate probability. Using the broadcast tree, figure out how to partition the
problem and recurse.

2.2 Matching using near linear memory

In this section, we look at an algorithm due to Ghaffari et al. [GGK+
18]

that yields a constant approximation to maximum matching using Õ(n)

2.2. MATCHING USING NEAR LINEAR MEMORY 11

memory in O(log logn) rounds. Using round compression, a technique
first introduced in Czumaj et al. [CŁM+

18], Ghaffari et al. [GGK+
18]

emulates dual ascent (also known as water filling) in the MPC setting then
perform probabilistic rounding on the resultant fractional matching.

We first review fractional matching and describe a vertex-centric dual
ascent algorithm for obtaining an O(1)-approximation to maximum match-
ing. Then, we describe the round compression technique and how to
compute in near linear time with O(log logn) rounds.

Remark When we reference Ghaffari et al. [GGK+
18] in this section, we

mean the arVix version4 of the paper.

2.2.1 Fractional matching and randomized rounding

Relaxing an ILP to yield fractional matching

We write e 3 v if vertex v is an endpoint of edge e. Maximum matching
can be formulated as an integer linear program (ILP) as follows:

max
∑
e∈E

ye

s.t.
∑
e3v

ye 6 1 ∀v ∈ V

ye ∈ {0, 1} ∀e ∈ E

Each binary variable ye indicates whether edge e is in the matching.
One can relax the above ILP into a corresponding linear program (LP) by
replacing each binary variable ye ∈ {0, 1} by a real-valued variable xe ∈ [0, 1].
Solving the corresponding LP yields a fractional assignment x∗.

Randomized rounding to yield constant approximation

To obtain a matching from the fractional x∗e assignments, one can inde-
pendently set ye to 1 with probability x∗e. By linearity of expectation,
E(
∑
e∈E ye) =

∑
e∈E x

∗
e, where

∑
e∈E x

∗
e is the optimal objective value of the

LP5. We say that edge e is conflicting if ye = 1 and e has an adjacent edge
e ′ with ye ′ = 1. To ensure that

∑
e3v ye 6 1 for all vertices v, we set ye = 0

for any conflicting edge e.

4Available at: https://arxiv.org/abs/1802.08237
5That is, x∗ is an optimal fractional maximum matching.

https://arxiv.org/abs/1802.08237

12 CHAPTER 2. MATCHING

Observe that there is a problem of the size of the rounded matching
dropping as we ignore vertices with conflicting incident edges. To remedy
this, let us first divide each x∗e by 10 before rounding. While this reduces
the expected number of edges being rounded to 1, it is okay since we
only want an O(1)-approximation. By rounding x∗e

10 , a vertex will not have
any incident edge with ye = 1 with probability > 9

10 . Hence, we do not
expect many conflicting edges and there is a constant probability that we
obtain a rounded matching whose size is a constant factor of the maximum
matching. Running O(logn) independent runs in parallel and taking the
largest rounded matching, we will get maximal matching whose size is
a constant factor of the maximum matching with high probability. See
Section 5 of [GGK+

18] for a sharper, dependent rounding scheme.

2.2.2 Dual Ascent

Let ε > 0 be a small constant and R ∈ O(log∆), where ∆ is the maximum
degree of graph G. Consider a vertex-centric algorithm Vertex-Centric
that runs for R iterations:

1. Initialize all xe to 1
∆

2. For iteration t ∈ {1, . . . ,R}

(a) Freeze each vertex v, and all incident edges, if
∑
e3v xe > 1− 2ε

(b) For each unfrozen edge e, set xe to xe · (1+ ε)

We say (1− 2ε) is the freezing threshold of Vertex-Centric. Observe that
freezing is permanent: When an edge e is frozen, it stays frozen, and the
value of xe remains unchanged for the rest of the algorithm.

Why is it called “dual ascent”? Maximum matching is the dual of the
minimum vertex cover problem and Vertex-Centric “ascends” the value
of each xe.

Claim 2.5. The variables xe are always a valid fractional matching. That is,∑
e3v xe 6 1 for every vertex v ∈ V .

Proof. For unfrozen vertices v,
∑
e3v xe · (1+ ε) 6 (1− 2ε)(1+ ε) 6 1.

Claim 2.6. All edges are frozen at the end of R ∈ O(log∆) rounds.

Proof. After log1+ε∆ rounds, then xe = 1
∆ · (1+ ε)

log1+ε ∆ > 1− 2ε.

2.2. MATCHING USING NEAR LINEAR MEMORY 13

Claim 2.7. For ε 6 1
10 , ∑

e∈E
xe >

1

2+ 10ε
|M∗|

That is, the fractional matching of xe is a constant approximation of the maxi-
mum matching size |M∗|, where M∗ is a maximum matching.

Proof. We perform a charging argument at the end of the algorithm. Fix
a maximum matching M∗. Let us assign 1$ to each edge e ∈ M∗. By
Claim 2.6, we know that every edge is frozen. Since edges are frozen only
if at least one of the endpoints are frozen, we can pick a frozen endpoint v
for each edge e ∈M∗ and give v the 1$ to redistribute. In the case where
both endpoints are frozen, we pick one arbitrarily.

Since M∗ is a matching, every vertex only receives at most 1$ to dis-
tribute. Each vertex v with 1$ splits the 1$ to incident edges proportional to
their x values: Each edge e ′ incident to v receives xe ′∑

e ′3v xe ′
6 1

1−2εxe ′ from v.
The inequality holds because v being frozen implies that

∑
e ′3v xe ′ > 1− 2ε.

Therefore, each xe receives at most 2
1−2εxe from both endpoints.

Summing up over all edges, with ε 6 1
10 , we have

1 · |M∗| 6 2

1− 2ε

∑
e∈E

xe 6 (2+ 10ε)
∑
e∈E

xe

Remark By assigning fractional dollars to edges in M∗, the proof of
Claim 2.7 also works if M∗ is a fractional maximum matching.

2.2.3 Round compression

The goal of round compression is to simulate multiple rounds of an
iterative algorithm within a single MPC round6. To do so, “sufficient
information” needs to fit into single machine. For example, suppose
algorithm A requires the k-hop neighbourhood7 of a vertex v in the k-th
iteration. Then, if one can fit the entire k-hop neighbourhood of v into a
single machine, k iterations of A can be compressed to a single MPC round.
In the same spirit, we hope to do the following for Vertex-Centric:

6To keep notation consistent, we reserve the term “round” to refer to MPC rounds
and use “iteration” to describe a step of the iterative algorithm.

7The k-hop neighbourhood of vertex v is the set of vertices that have a path from v

involving at most k edges.

14 CHAPTER 2. MATCHING

1. Pick appropriate step size k and send subgraphs to machines

2. Each machine simulates k steps of Vertex-Centric locally on sub-
graphs

3. Each machine broadcasts8 which vertices are frozen, and the value of
xe’s. Each edge e updates xe to minimum 1

∆(1+ ε)
i from all machines.

4. Repeat (in few rounds) until R iterations occur in total

Ideally, we hope that our MPC execution properly emulates Vertex-Centric
running on a single machine. However, there is a serious risk of machines
freezing vertices at different iterations because not all incident edges of
every vertex may be in the same machine. This can potentially destroy the
property of

∑
e3v xe > 1− 2ε within a single MPC round. Moreover, we

may get a small
∑
e3v xe if a vertex is frozen earlier than it should.

Problem with naive round compression

Consider the graph of unfrozen vertices and unfrozen edges G ′ before the
start of an MPC round. Suppose xe > 1

d for every edge in G ′, then every
vertex in G ′ has at most d incident edges. Randomly partition vertices of G ′

into
√
d machines and send the corresponding induced graphs G ′1, . . . ,G

′√
d
.

That is, edge e = {u, v} will appear in machine i if both u and v are in
induced graph G ′i. Therefore, the probability of an edge appearing in any
machine is

√
d · 1√

d
· 1√

d
= 1√

d
. For a vertex v on machine i, denote

τv =
∑
e3v

xe and τ̃v =
√
d ·

∑
e3v;e∈G ′i

xe +
∑

e3v;e∈G\G ′
xe

τ̃v is a local estimate of τv, where
√
d normalizes the partitioning process

and G \G ′ captures the xe values of edges frozen in earlier iterations. Lo-
cally, each machine performs O(logd) iterations of Vertex-Centric, freez-
ing vertex v if τ̃v exceeds (1−2ε), the freezing threshold of Vertex-Centric.

Initially, τ̃v is a good estimate to τv because of the random partitioning
process. However, their behaviours diverge as we run iterations within a
MPC round. In an ideal situation where τv and τ̃v always fall on the “same
side” of the freezing threshold, then both Vertex-Centric and the MPC
simulation would treat v the same — either both freeze v, or not. In such

8For xe values, only the number i needs to be communicated since (1+ ε) is known.

2.2. MATCHING USING NEAR LINEAR MEMORY 15

a situation, τ̃v remains a good estimate to τv and the MPC simulation will
be a faithful reproduction of Vertex-Centric.

Let σ = |τ̃v − τv| denote the estimation difference. If τv is near the
threshold (1− 2ε), then the MPC simulation and Vertex-Centric could
still freeze v differently even for very small σ (See Fig. 2.1). However,
observe that if σ is small, then there is only a “small range” of values in
which MPC will freeze vertex v at a different iteration as Vertex-Centric.
This observation motivates the use of a randomized freezing threshold in
Vertex-Centric to reduce the probability of the MPC simulation and
Vertex-Centric making different decisions on a vertex v, assuming σ is
small (See Fig. 2.2).

0 1(1− 2ε)

τv τ̃v

σ

Figure 2.1: WLOG, τ̃v > τv. Even for small σ, the MPC simulation and
Vertex-Centric may still decide differently on the freezing of vertex v.

0 1

Random threshold

τv τ̃v

σ

Figure 2.2: WLOG, τ̃v > τv. With a random threshold, the probability of
the MPC simulation and Vertex-Centric deciding differently on vertex v
is σ divided by the range of possible threshold values.

Centric-Rand: Randomizing the freezing threshold

Consider the following algorithm Centric-Rand, a variant of Vertex-Centric
where the threshold for freezing a vertex is randomly chosen between
[1− 3ε, 1− ε]:

1. Initialize all xe to 1
∆

2. For iteration t ∈ {1, . . . ,R}

16 CHAPTER 2. MATCHING

(a) For each vertex v, pick a random threshold Tv,t ∈ [1− 3ε, 1− ε]

(b) Freeze each vertex v, and all incident edges, if
∑
e3v xe > Tv,t

(c) For each unfrozen edge e, set xe to xe · (1+ ε)

One can verify that Claim 2.5 and Claim 2.6 also hold for Centric-Rand,
and Claim 2.7 holds for ε 6 1

15 .

A proper round compression

Consider an MPC simulation that runs for O(log logn) rounds. We ini-
tialize all xe = 1

∆ . Suppose the current graph G(t) has maximum degree
d = ∆t at the start of round t, where G(1) is the input graph G and d = ∆

initially. Round t of the MPC simulation is as follows:

1. Randomly split the current vertex set into
√
d partitions V1, . . . ,V√d.

2. Send machine i the induced graph G(t)[Vi], for i ∈ {1, . . . ,
√
d}.

3. Each machine i locally performs the following:

• Pick random threshold Tv,t ∈ [1− 3ε, 1− ε] for each vertex v.

• Locally simulate O(logd) steps of Centric-Rand by using
τ̃v =

√
d ·
∑
e3v;e∈G(t)

i

xe +
∑
e3v;e∈G\G(t) xe as an estimate of τv.

If τ̃v > Tv,t, freeze v and incident edges (say, at iteration k).

4. Machines broadcast the statuses of the vertices they hold — whether
they are frozen, and the latest iteration k in which they were last
updated. If a vertex is not frozen, then k is the current simulated
iteration of Vertex-Centric. Otherwise, if a vertex is frozen within
a round, k refers to the iteration which it was frozen. An edge e then
updates xe to minimum of 1

∆(1+ ε)
k of its endpoints.

5. Update τv =
∑
e3v xe for all vertices v.

6. If τv > 1, remove v from the graph G(t).

7. If τv > 1− 2ε, freeze v and incident edges. Remove them from G(t).

2.2. MATCHING USING NEAR LINEAR MEMORY 17

Analysis

Recall from the earlier discussions that if τv and τ̃v always fall on the
“same side” of the freezing threshold, then both Vertex-Centric and the
MPC simulation would treat v the same. A vertex v is said to be bad if
Centric-Rand and the MPC simulation freeze v at different iterations. The
main goal of the analysis below is to argue that |τ̃v − τv| remains small for
most vertices and we have few bad vertices (See Claim 2.11). To build up
to the main claim, we first prove a few other claims.

Claim 2.8. If the maximum degree of graph G(t) is d, the induced graph G(t)[Vi]

fits into a single machine with high probability.

Proof. (Sketch) We expect O(n√
d
) vertices in partition Vi. The probability

of an edge appearing in any partition is 1√
d

. So, we expect any induced
graph to fit in memory. Apply Chernoff bounds.

Claim 2.9. If the maximum degree of graph G(t) is d, the maximum degree drops
to d0.9 after O(logd) iterations of Centric-Rand.

Proof. (Sketch) After O(logd) steps, weight of unfrozen edges xe increase
by (1+ ε)O(logd). Observe that frozen edges are removed from the graph
at the end of each round.

Claim 2.10. After O(log logn) rounds, the G(t) fits into a single machine.

Proof. (Sketch) By previous claim, after O(log logn) rounds, maximum
degree is ∆0.9O(log logn)

6 nO(logn) ∈ Õ(n) since ∆ 6 n.

Claim 2.11 (Main claim). Throughout the simulation, the estimation difference
|τ̃v − τv| remains small for most vertices and the total number of bad vertices is
at most a constant fraction of the size of a maximum matching.

Proof. See Sections 4.4.3 and 4.4.4 of Ghaffari et al. [GGK+
18].

Claim 2.12. The number of vertices are removed in step 6 is at most a constant
fraction of the size of a maximum matching.

Proof. See Page 20 of Ghaffari et al. [GGK+
18].

The above discussion briefly sketches the round compression approach
of Ghaffari et al. [GGK+

18]. Readers are encouraged to refer to Section 4.3
of Ghaffari et al. [GGK+

18] for details. Note that Ghaffari et al. [GGK+
18]

use different constants and terminology. For example, they use random
threshold range of [1− 4ε, 1− 2ε], and use terms “phase” and “round”
wherever we use “round” and “iteration”.

18 CHAPTER 2. MATCHING

Exercises

Exercise 2.2. Maximal Independent Set (MIS) in MPC
For a graph G = (V ,E), a Maximal Independent Set (MIS) is a subset I ⊆ V of
vertices such that (i) no two vertices in I share an endpoint, and (ii) I ∪ {v} for
any v ∈ V \ I violates the first property.

a c

b

d

e

Figure 2.3: Possible MISs include {a, e} and {b, c,d}.

(a) (Strongly superlinear regime, looser analysis) Using M ∈ Õ(NS) machines,
each with memory S = n1+ε, design an algorithm that computes an MIS
to an input graph in O(1ε) rounds.

(b) (Strongly superlinear regime, tighter analysis) Using M ∈ Õ(NS) ma-
chines, each with memory S = n1+ε, design an algorithm that computes an
MIS to an input graph in O(log(1ε)) rounds.

Remark Setting ε = 1
logn in (b) yields an O(log logn) round algorithm for

the near linear memory regime with S = n · poly(logn).

Hint Consider the following randomized greedy algorithm A that solves MIS
on a single machine: Pick a random permutation π, and greedily try to add
vertex π(i) to the MIS. To simulate A in MPC, consider first putting a chunk of
k vertices π(1),π(2), . . . ,π(k) onto a single machine and running A on them (in
a single MPC round). Argue that

• The induced graph involving the k vertices fit in memory, for appropriately
chosen k

• The maximum degree of any remaining vertex is sufficiently low

2.3. MATCHING USING STRONGLY SUBLINEAR MEMORY 19

• Recursing with the appropriate chunk sizes solves the problem in the re-
quired number of rounds

Part (a) uses a loose bound of n · k for the number of edges in the induced graph.
Part (b) tightens the analysis by only considering edges whose both endpoints
are in the same partition.

2.3 Matching using strongly sublinear memory

In this section, we wish to compute a constant approximation to maximum
matching using nα memory, for some constant α ∈ (0, 1). We will present
a method from Ghaffari and Uitto [GU19, Section 2] which computes
a constant approximation to maximum matching in Õ(

√
log∆) rounds,

where ∆ is the maximum degree of the input graph G.

Outline

Let R = O(log∆). An ideal outline would be to pick a suitable algorithm
in a LOCAL model that computes a constant approximation to maximum
matching in R LOCAL rounds, use graph exponentiation to learn about the
R-hop neighbourhood in O(logR) MPC rounds, and locally simulate the
entire algorithm in one final MPC round. Unfortunately, the current tech-
nique can only compress up to

√
R rounds before memory requirements

exceed S. The resultant outline is as follows:

• Consider a suitable R-round algorithm in the LOCAL model

• Sparsify the graph (by subsampling edges) such that
√
R-hop neigh-

bourhood of each vertex fits into memory S = nα, for α ∈ (0, 1)

• Use graph exponentiation so that every vertex learns the
√
R-hop neigh-

bourhood in O(log
√
R) MPC rounds

• Simulate O(
√
R) LOCAL rounds in one MPC round using knowledge

of the
√
R-hop neighbourhood

Putting together, the entire R-round LOCAL algorithm can be simulated
in
√
R ·O(log

√
R) = Õ(

√
R) MPC rounds. We discuss the LOCAL model

in Section 2.3.1, graph exponentiation in Section 2.3.2, a suitable R-round
LOCAL algorithm in Section 2.3.3, and how to use sparsification in Sec-
tion 2.3.4.

20 CHAPTER 2. MATCHING

Simplifying assumptions

To simplify exposition, we make the following assumptions:

1. We can store a vertex and its incident edges on one machine: ∆ 6 nα

2. We can assign a machine for each vertex: M ∈ O(n)

The first assumption can be removed by “load balancing” appropriate
across machines and using broadcast trees. The second assumption may
result in using a lot more total global memory than the input size N. To
remove the second assumption, one can modify the described algorithm to
work through log log(∆) successive iterations of polynomially decreasing
degree classes [∆1/2,∆], [∆1/4,∆1/2], [∆1/8,∆1/4], and so on. Doing so, the
total memory requirement will not exceed O(N) at each step. For details,
refer to Ghaffari and Uitto [GU19].

2.3.1 The LOCAL model

The LOCAL model was first formalized by Linial [Lin87, Lin92], intro-
ducing the notion of “thinking like a vertex”. Suppose each vertex v ∈ V
has a (very powerful) computer, and vertices communicate across edges
in synchronous rounds by sending one (potentially large) message to each
neighbour. The vertices do not know the structure of the graph G a priori.
However, the vertices may be aware of global parameters such as upper
bounds on the number of vertices or the maximum degree of the graph.
Vertex-Centric in Section 2.2.2 is an example of a LOCAL algorithm.

Lemma 2.13. Any R-round LOCAL algorithm can be simulated locally by each
vertex v in a single round if v knows the topology of its R-hop neighbourhood.
If the LOCAL algorithm is a randomized algorithm, also gather the random bits
used by each vertex in the R-hop neighbourhood.

Proof. Since each vertex can only communicate with their neighbours in the
LOCAL model, apply induction over the number of rounds R. If random
bits are known, the algorithm can be simulated deterministically.

The above lemma implies that any problem in input graph G can be
solved in O(diameter(G)) rounds under the LOCAL model.

2.3. MATCHING USING STRONGLY SUBLINEAR MEMORY 21

2.3.2 Graph exponentiation

The idea of graph exponentiation was first mentioned under the CONGESTED-
CLIQUE model by Lenzen and Wattenhofer [LW10]. In the CONGESTED-
CLIQUE model, a vertex can communicate to all other vertices under the
constraint that messages sent across an edge in a single round can have
size at most O(logn) bits. Recently, Ghaffari [Gha17, Lemma 2.14] used
graph exponentiation to obtain an improved MIS algorithm on congested
clique.

Lemma 2.14. With O(n) machines, each with memory to hold the k-hop neigh-
bourhood of each vertex, all vertices in graph G = (V ,E) can learn their k-hop
neighbourhood in at most log(k) MPC rounds.

Proof. For v ∈ V , assign a single machine Mv to be responsible it. Denote
Nr(v) as the r-hop neighbourhood of v at the beginning of the rth MPC
round, where edges between vertices inNr(v) are stored in theMv. Initially,
the machine holding v knows only edges incident to v and can compute the
1-hop neighbourhood N1(v) implicitly. For r = {2, . . . , dlogke}, Mv sends all
edges it holds to Mv ′ for v ′ ∈ Nr(v). By induction over r, each machine Mv

knows the 2r-hop neighbourhood of v at the end of the rth MPC round.

u v u v

Round r

u learns from v

2r−1 2r−1 2r

The lemma assumes that the number of edges in Nr(v) of any vertex
v ∈ V fits into the memory S of a single machine. Furthermore, it assumes
that we have at least |V | machines. In the case where a graph G is “sparse
enough”, we have the following corollary.

22 CHAPTER 2. MATCHING

Corollary 2.15. Consider a given graph G = (V ,E) with n = |V | under the
sublinear memory regime with memory S = nα, for some constant α ∈ (0, 1).
If there are O(n) machines and |NR(v)| 6 n

α
4 for all vertices v ∈ V , then one

can transform any R-round LOCAL algorithm into an O(logR)-round MPC
algorithm.

Proof. Since |NR(v)| 6 n
α
4 for all v ∈ V , there are at most n

α
2 6 S edges in

the R-hop neighbourhood of any vertex v. By Lemma 2.14, one can assign
a machine for each vertex and learn the R-hop neighbourhoods in O(logR)
MPC rounds. Then, Lemma 2.13 tells us that we can simulate the R-round
LOCAL algorithm in one MPC round.

Remark The technique is called graph exponentiation because one im-
plicitly builds the 2k-th power G2k of the input graph G in the kth iteration.
Here, we define the power graph9 Gx to be the graph obtained from G by
connecting every two nodes within distance x from each other, ignoring
edge weights.

2.3.3 A Θ(log∆)-round LOCAL algorithm

Algorithm

Consider the following O(log∆) algorithm Peeling-Matching-LOCAL:

1. For iteration i ∈ {0, 1, . . . , log∆}:

(a) Mark each edge independently with probability pi = 2i

4∆ .

(b) Let Mi be the set of isolated marked edges at iteration i. An edge
is in Mi if it is marked and has no adjacent marked edge.

(c) Denote Vi as the set of matched vertices with an endpoint in
Mi, and vertices with degree more than di = ∆

2i+1
.

(d) Add Mi to the matching and remove Vi from the graph.

Analysis

Peeling-Matching-LOCAL “peels” off high-degree vertices iteratively by
removing vertices with degree larger than ∆

2i+1
at the end of each iteration

i. The peeling process ensures an upper bound on the maximum degree

9See https://en.wikipedia.org/wiki/Graph_power on graph power.

https://en.wikipedia.org/wiki/Graph_power

2.3. MATCHING USING STRONGLY SUBLINEAR MEMORY 23

of the graph, allowing the sampling probability pi = 2i

4∆ to extract a
suitable number of isolated marked edges such that |Vi|

|Mi|
∈ Θ(1) with high

probability. Hence, Peeling-Matching-LOCAL returns a matching which is
a constant approximation to maximum matching10.

Lemma 2.16. At the start of each iteration i, all vertices have degree at most ∆
2i

.

Proof. When i = 0, all vertices have degree at most ∆. Subsequently, this
property is ensured by the removal of Vi in each step.

Lemma 2.17. Suppose there are k high-degree vertices at iteration i, then

Pr[
|Vi|

|Mi|
∈ Θ(1)] > 1− e−Θ(k)

Proof. (Sketch) Removed vertices Vi consists of matched vertices and high-
degree vertices. We will show that the number of matched high-degree
vertices is Θ(k) with high probability, which then implies the result.

Consider an arbitrary high-degree vertex v with degree more than
di = ∆

2i+1
. Since each edge is marked independently with probability

pi =
2i

4∆ , the probability that v is not incident to any marked edge is less
than (1− pi)

di 6 e−
1
8 6 0.9. That is, v is incident to some marked edge

with probability > 0.1. For any edge x incident to v, x has no marked
neighbours with probability larger than (1 − pi)

2di−2 > 4−
1
4−2pi > 0.04.

Hence, v is matched with probability Ω(1). As this holds for any high-
degree vertex, one expects Ω(k) high-degree vertices to be matched.

By Lemma 2.16, all vertices have degree at most ∆
2i

. So, changing the
marking outcome of a single edge only affects the matching status at most
2 · ∆

2i
vertices. One can then show appropriate concentration bounds.

2.3.4 An Õ(
√

log∆)-round MPC algorithm

Using graph exponentiation, one hopes to compress multiple LOCAL
rounds of Peeling-Matching-LOCAL using fewer MPC rounds . However,
it is currently unknown how to compress all log(∆) LOCAL rounds. Here,
we present a method to compress R = 1

2

√
log∆ LOCAL rounds into one

MPC phase, consisting of log(R) MPC rounds. Hence, the Θ(log∆)-round
Peeling-Matching-LOCAL can be simulated in Õ(

√
log∆) MPC rounds.

10Recall that the maximum matching size is at most |V |/2 and V = V0 ∪V1 ∪ · · · ∪Vlog∆.

24 CHAPTER 2. MATCHING

Algorithm

To ensure that Corollary 2.15 applies, we first sparsify the graph so that
the number of edges in the R-hop neighbourhood fits into memory, then
run a modified version of Peeling-Matching-LOCAL. The entire process
Peeling-Matching-MPC is as follows:

1. Define parameters K = c log∆ and R = 1
2

√
log∆, for some constant c

2. Denote variables dj,i = ∆
2i+1
· 1
2Rj

, pj,i = 2i

4∆ ·
1
2Rj

and p ′j,i = min{1,K · pi}

3. For j ∈ {0, . . . , 2
√

log∆− 1} phases:

(a) For i ∈ {1, . . . ,R}, form subgraph Hi by sampling each edge of G
independently with probability p ′i

(b) Let H = ∪Ri=1Hi be the sparsified graph of G.

(c) Use graph exponentiation on H, learn the R-hop neighbourhood
for each vertex in O(logR) MPC rounds.

(d) Locally, in one MPC round, simulate iterations i ∈ {1, . . . ,R}:

i. Mark each edge of Hi independently w.p. pj,i
/
p ′j,i 6

1
K .

ii. Let Mi be the set of isolated marked edges at iteration i.
iii. Denote Vi as the set of matched vertices with an endpoint

in Mi, and vertices with degree more than di · p ′j,i >
K
8 in Hi.

iv. Add Mi to the matching and remove Vi from Hi+1, . . . ,HR.

(e) Remove from G any vertex with degree more than dj,R in G.

Since edges are sampled independently, the degree of each vertex in
each Hi is an unbiased estimate of their actual degree in G. That is, a
vertex with degree d in G is expected to have d · p ′i edges in Hi. The factor
K is a sampling overhead for concentration bounds purposes. Observe
that all vertices have degree 6 ∆

2Rj
in G at the start of phase j as vertices

with degree > dj,R in G are removed at the end of each phase.

Analysis

We analyze the first phase of Peeling-Matching-MPC where j = 0. For
notational cleanliness, we drop the subscript j in the analysis to mean
j = 0 and write p ′0,i = p

′
i = K · pi. The proofs also work for the subsequent

phases since we scale the upper bound on the maximum degree by 2R

via the factor 1
2Rj

. Using concentration bounds, we will upper bound the

2.3. MATCHING USING STRONGLY SUBLINEAR MEMORY 25

probability of “failure” by e−K. For easier concentration bounds, one may
treat K = Θ(logn), instead of the actual K = Θ(log∆), so that e−K = 1

poly(n)
in the proof sketches below. For details on analyzing K = Θ(log∆) where
e−K = 1

poly(∆) , refer to Ghaffari and Uitto [GU19].

Lemma 2.18. W.h.p., sparsified graph H has maximum degree 6 K · 2
1
2

√
log∆.

Proof. Since p ′i = K ·
2i

4∆ , a vertex v with degree ∆ in G is expected to have a
degree K · 2i4 in Hi. Taking the union over all Hi, v is expected to have a
degree of 6

∑R
i=1 K · 2

i

4 6 1
2 · (K · 2

1
2

√
log∆). Apply Chernoff bounds.

Lemma 2.19. W.h.p., R-hop neighbourhoods in H have 6 ∆0.5 edges.

Proof. By Lemma 2.18, H has maximum degree at most K · 2
1
2

√
log∆ w.h.p.

So, the number of edges in the R-hop neighbourhood of any vertex is at

most (K · 2
√

log∆
2)R 6 ∆0.5, for appropriate constant factor of K.

Lemma 2.20. After iteration i, Pr[degG(v) > 2di] 6 e−K, for all v ∈ H.

Proof. For a vertex with degree > 2di in G, we expect to see > 2dip ′i edges
in H. Recall that Step 3(d)(iii) removes all vertices in H with degree > dip ′i
in H. Apply Chernoff bounds.

Lemma 2.21. Suppose there are k high-degree vertices at iteration i, then

Pr[
|Vi|

|Mi|
∈ Θ(1)] > 1− e−Θ(k)

Proof. (Sketch) Similar to Lemma 2.17 except one has to account for sparsi-
fication of G via p ′i. See Ghaffari and Uitto [GU19] for details.

Exercises

Exercise 2.3. Orienting edges with strongly sublinear memory
For a graph G = (V ,E), the arborcity λ of G is defined as λ = maxS⊆V

E(S)
|S|−1 . For

example, trees have arborcity 1. For constants α ∈ (0, 1) and ε > 0, devise an
algorithm that uses M ∈ Õ(NS) machines, each with memory S = nα, to orient
the edges of a graph with arborcity λ in Õ(

√
logn) MPC rounds such that each

vertex has out-degree of at most (2+ ε) · λ.

26 CHAPTER 2. MATCHING

Remark Nash-Williams [NW64] tells us that arborcity λ can also be defined
as the minimum number of forests which we can partition graph edges into.

Hint Since G has arborcity λ, the average degree is at most 2λ. One can show
that there are at most (1 − ε

2+ε) · n vertices with degree larger than (2 + ε)λ.
Consider the following O(logn)-round LOCAL algorithm: At each iteration, all
vertices with degrees at most (2+ ε)λ orient incident edges outwards.

• Argue that by removing oriented vertices and edges from the graph, the
process ends in O(logn) LOCAL rounds.

• Compress R = O(
√

logn) LOCAL rounds into one phase of O(log logn)
MPC rounds via graph exponentiation, while not peeling vertices with
degree larger than 2

√
logn · 2λ in G at the end of each phase. Let Li be the

set of vertices with degree larger than 2
√

logn · 2λ in G that are not peeled at
phase i. Argue that |Li| is “small”. Sparsify the graph G by sampling edges
with probability Θ(logn

λε2
) so that R-hop neighbourhoods fit in memory.

Exercise 2.4. Constant tree coloring with strongly sublinear memory
Devise an algorithm that computes an O(1) coloring of any given n-node tree in
Õ(
√

logn) rounds under the strongly sublinear memory regime.

Hint Use Exercise 2.3 with a LOCAL tree coloring algorithm.

2.4 Approximation improvement via augmenting
paths

In the earlier sections, we showed how to obtain constant approximations
to maximum matching under the three different memory regimes. The
goal of this section is to show that one can transform any algorithm for
O(1)-approximation of maximum matching to an algorithm for (1+ ε)-
approximation, for any constant ε > 0.

We first introduce augmenting paths and some related facts. Then,
we describe an O(m

√
n) centralized algorithm for maximum matching on

bipartite graphs due to Hopcroft and Karp [HK73]. Building on similar
ideas, McGregor [McG05] gives an (1+ ε)-approximation algorithm in the
streaming model. Finally, we explain how to use McGregor’s idea in MPC.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 27

Remark In the following exposition, we consider unweighted and undi-
rected graphs. For (1+ ε)-approximations in weighted graphs, see Duan
and Pettie [DP10] for the sequential setting and Gamlath et al. [GKMS18]
for the MPC setting.

2.4.1 Augmenting paths and related facts

Before we begin, let us state some definitions following notation of
Hopcroft and Karp [HK73]. A subset of edges M ⊆ E is a matching
if no two edges in M share an endpoint. With respect to a matching M, a
vertex v ∈ V is free if it is not incident to any edge in M, and is matched oth-
erwise. A path, without repeated vertices, P = {v1, v2}{v2, v3} . . . {v2k−1, v2k}
is called an augmenting path relative to M if its endpoints v1 and v2k are
free, and its edges are alternatively in E \M and M. That is, {v2, v3}, {v4, v5},
. . . , {v2k−2, v2k−1} ∈ M while the other edges in P are in E \M. When no
ambiguity is possible, we use P to refer to both the set and sequence of
edges in the augmenting path. If S and T are sets, then |S| refers to the
cardinality of S, and S⊕ T refers to their symmetric difference of S and T .

Lemma 2.22. If M is a matching and P is an augmenting path relative to M,
then M⊕ P is a matching and |M⊕ P| = |M|+ 1.

Proof. By definition of augmenting paths.

Theorem 2.23. Let M∗ be a maximum matching and M be a matching. If
|M∗| = s and |M| = r < s, then there is an augmenting path relative to M of
length at most 2b r

s−rc+ 1.

Proof. Consider the graph G ′ = (V ,M⊕M∗). Since M and M∗ are match-
ings, each vertex v in G ′ has degree at most 2. That means every vertex
is either isolated or lies in a cycle/path with edges alternating between
M and M∗. If v is isolated or lies in a cycle, the number involved edges
from M and M∗ are equal. If v lies on a path, then there is one more
edge from M∗ involved than M because M∗ is a maximum matching. We
see that all such paths are augmenting paths relative to M and there are
|M∗|− |M| = s− r augmenting paths relative to M.

If there is an augmenting path that does not involve any edge from M,
we have found an augmenting path of length 1. Otherwise, by averaging
argument, there is an augmenting path P with k 6 r

s−r edges from M.
Then, since every augmenting path has one more edge from M∗ than M,
we see that |P| = 2k+ 1 as desired.

28 CHAPTER 2. MATCHING

Corollary 2.24. If there is no augmenting path of length k relative to a matching
M, then M is a (1+O(1k))-approximate maximum matching.

Corollary 2.24 will be useful later when we wish to compute a (1+ ε)-
approximation using constant approximations to maximum matching.

Corollary 2.25 (Berge [Ber57]). A matching M is a maximum matching if and
only if there are no augmenting paths relative to M.

Theorem 2.26. Let P be the shortest augmenting path relative to M. Let P ′ be
any augmenting path relative to M⊕ P. Then, |P ′| > |P|+ |P ∩ P ′|.

Proof. If P ∩ P ′ = ∅, then |P ′| > |P| = |P|+ |P ∩ P ′| since P be the shortest
augmenting path relative to M.

Denote N = (M⊕ P)⊕ P ′. Then, N is a matching of size |M|+ 2 and
N⊕M has has two vertex-disjoint augmenting paths P1 and P2 relative to
M. See Fig. 2.4 for an illustration.

Since N⊕M = P⊕ P ′, |P⊕ P ′| = |N⊕M| > |P1|+ |P2|. Then, since P was
the shortest augmenting path relative to M, |P| 6 |P1| and |P| 6 |P2|. Thus,

2 · |P| 6 |P1|+ |P2|

6 |P⊕ P ′|
= |P|+ |P ′|− |P ∩ P ′|

Rearranging, we have |P ′| > |P|+ |P ∩ P ′|.

Consider the following scheme Iterative-Augmentation for comput-
ing a maximum matching:

1. Set initial matching M0 as ∅

2. For i ∈ {0, 1, 2, . . . }

(a) If there is no augmenting paths relative to Mi, return Mi as the
maximum matching

(b) Otherwise, let Pi be the shortest augmenting path relative to Mi

and define Mi+1 =Mi ⊕ Pi.

Corollary 2.25 tells us that Iterative-Augmentation produces a maximum
matching while Theorem 2.26 tells us that |Pi| 6 |Pi+1| for any step i and
the following corollary.

Corollary 2.27. In Iterative-Augmentation, if i 6= j and |Pi| = |Pj|, then Pi
and Pj are vertex-disjoint.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 29

Proof. Suppose, for a contradiction, that there are two augmenting paths
Pi and Pj such that |Pi| = |Pj| and are not vertex-disjoint. Then, application
of Theorem 2.26 tells us that either |Pi| 6= |Pj| or |Pi ∩ Pj| = 0. See Hopcroft
and Karp [HK73, Corollary 4] for details.

Theorem 2.28. Excluding the last
√
n augmenting paths, all other augmenting

paths have length at most 3
√
n in Iterative-Augmentation.

Proof. By Theorem 2.23, any augmenting path relative to a matching Mi

has length at most 2b r
s−rc+ 1, where s is the size of the maximum matching

and |Mi| = r 6 s 6 n. Excluding for the last
√
n steps, r 6 s−

√
n. Thus,

2b r

s− r
c+ 1 6 2b n√

n
c+ 1 6 3

√
n

Remark Theorem 2.23 is a combination of Theorem 1 and Corollary 2

from Hopcroft and Karp [HK73]. In the paper, Theorem 1 was a more
general statement about any two matchings of sizes s and r. Theorem 2.28

is a variant of Theorem 3 from Hopcroft and Karp [HK73].

2.4.2 An O(m
√
n) centralized algorithm for maximum match-

ing on bipartite graphs

We now present an O(m
√
n) centralized algorithm for maximum matching

on bipartite graphs due to Hopcroft and Karp [HK73, Section 3]. Micali
and Vazirani [MV80] have an O(m

√
n) algorithm on general graphs but it

is beyond the scope of this section.

Algorithm

The idea is to perform multiple steps of Iterative-Augmentation in a
single phase. In each phase, we extract a maximal set of vertex-disjoint
shortest augmenting paths relative to the current matching, and augment
all these paths simultaneously. For example, suppose |P0| = |P1| = |P2| < |P3|

in a run of Iterative-Augmentation. By Corollary 2.27, paths P0, P1 and
P2 are all vertex-disjoint, thus we can augment all three paths in a single
phase. Theorem 2.28 tells us that there will be O(

√
n) such phases.

Consider the following algorithm Phase-Augmentation. For a graph
G = (V ,E) with vertex bipartitions A and B, set initial matching M0 as ∅
and run for O(

√
n) phases, for i ∈ {0, 1, 2, . . . , 4

√
n}:

30 CHAPTER 2. MATCHING

1. Consider a directed graph G ′ = (V ,E ′) derived from G and Mi. For
edge {u, v} with u ∈ A and v ∈ B, direct u to v if {u, v} ∈Mi, and direct
v to u if {u, v} 6∈ Mi. Create auxiliary target vertex t and auxiliary
edges {u, t} for every free vertex u ∈ A. Starting from t, run Breadth-
First Search (BFS) on G ′ using the reversed edge directions of E ′ and
alternate usage of edges in Mi and E \Mi.

2. If BFS completes before a free vertex v ∈ B is found, return Mi as the
maximum matching.

3. Otherwise, let d be the earliest BFS depth with a free vertex v ∈ B.
Create auxiliary source vertex s and auxiliary edges {s, v} for every
free v ∈ B at depth d. Extract a s-t path P1 by running Depth-First
Search (DFS). Remove P1 from G ′ and iterate the process of extracting
s-t paths, backtracking if needed whenever the DFS reaches a “dead-
end” due to earlier removed paths. Suppose the iterative process
extracted vertex-disjoint augmenting paths P1, . . . ,Pj relative to Mi.
Set Mi+1 =Mi ⊕ P1 ⊕ · · · ⊕ Pj by augmenting extracted paths.

By stopped the BFS when we first encounter a free vertex from B, any
augmenting path extracted from G ′ will be of shortest length relative
to M. The iterative DFS process ensures we extract vertex-disjoint paths
while visiting each edge in G ′ once — a visited edge becomes part of an
augmenting path, or is backtracked and ignored in subsequent iterations.

Example

Consider the bipartite graph G in Fig. 2.5a with 13 vertices with a matching
M. Vertices {a,b, c,d, e, f,g} are in partition A and vertices {h, i, j,k, l,m}

are in partition B. For phase i = 3, Fig. 2.5b shows the BFS output of Step
1 of Phase-Augmentation. Two possible length 3 augmenting paths that
can be extracted in Step 3 of Phase-Augmentation are highlighted in red.

Analysis

Claim 2.29. There are at most 4
√
n phases.

Proof. By Theorem 2.28, there are at most 3
√
n different augmenting path

lengths before the last
√
n iterations of Iterative-Augmentation. The last√

n iterations can have at most
√
n different augmenting path lengths.

Claim 2.30. Step 1 of Phase-Augmentation takes O(m) time.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 31

Proof. Ignoring isolated vertices in G, BFS takes O(m) time.

Claim 2.31. Step 3 of Phase-Augmentation takes O(m) time.

Proof. Ignoring isolated vertices in G, DFS takes O(m) time.

Claim 2.32. Phase-Augmentation takes O(m
√
n) time and returns a maxi-

mum matching.

Proof. There are at most 4
√
n phases, each taking O(m) time. Correctness

of output follows from Corollary 2.25.

2.4.3 Approximation improvement in MPC

In earlier sections (Section 2.1, Section 2.2, and Section 2.3), we saw how to
compute constant approximations of maximum matching in MPC under
various memory regimes. Here, we describe a streaming algorithm due
to McGregor [McG05] that computes a (1 + ε) approximation to maxi-
mum matching in general graphs. Then, we will show how to adapt his
ideas to use our constant approximations in MPC to compute (1 + ε)-
approximations to maximum matching in Oε(1) MPC rounds, where the
constant factor Oε(1) depends on ε.

Augmenting paths in general graphs are not as “well behaved” as
those in bipartite graphs. This motivates the construction of a layer graph
(which we define later) so that any extracted path from the layer graph is
a valid augmenting path, and subpaths between layers can be extracted
independently of other layers. Below, we give an overview of McGregor’s
approach, then describe the following two key ideas: (1) Construction of
layer graphs, and (2) how to extract augmenting paths from layer graphs.
An example will be given to illustrate the ideas and we wrap up by
explaining how to adapt McGregor’s approach to the MPC setting.

Overview of approach

In similar spirit to Corollary 2.24, McGregor [McG05, Lemma 1] informally
states: If there are few augmenting paths relative to M, then M is a good
approximation to the maximum matching. This tells us that finding
sufficiently many augmenting paths suffice to compute an approximate
maximum matching.

The algorithm of McGregor [McG05] works in the streaming model
and has a similar flavor to Phase-Augmentation. Instead of a BFS, for

32 CHAPTER 2. MATCHING

i = {1, 2, . . . }, McGregor constructs a layer graph with i+ 1 layers, then
searches in the layer graph for poly(ε) · |M| augmenting paths of length
2i+ 1 to augment the current matching M. For the full algorithm and
analysis, see McGregor [McG05].

Idea 1: Random projection to layer graphs

For a constant i, matched edges e ∈ M are treated as nodes in a layer
graph G ′ and distributed across i layers. Edges exist between nodes in the
layer graph G ′ if there are corresponding edges in G. Any extracted path
from G ′ will be an augmenting path of length 2i+ 1 relative to M in G.
Furthermore, edges between layers can be chosen independently.

Definition Given a matching M in phase i, a layer graph is made up of
layers L0,L1, . . . ,Li+1 of nodes. Layers L0 and Li+1 consist of free vertices
while internal layers represent matched edges in M. For each node, we
use a superscript to denote the layer level, and a subscript to denote its
label. For example, xiu,v is a projected node at level i for the edge {u, v} ∈ E.
For path building purposes, it is important to distinguish xiu,v from xiv,u.
We denote the projection of a matched edge e ∈M in the layer graph by
proj(e) = xiu,v, and write level(xiu,v) = i to indicate the level of the node.

Construction The layer graph is built as follows:

• For a free node u ∈ V , project to x0u,u or xi+1u,u uniformly at random.

• For an edge {u, v} ∈ M, pick a random level uniformly at random
from j ∈ {1, . . . ,L}, and project to xju,v or xjv,u uniformly at random.

For nodes xia,b and xjc,d in the constructed graph, add an edge between them
if the nodes are in adjacent levels (i.e. |i− j| = 1) and if the corresponding
edge exists in G (i.e. b = c and {b, c} ∈ E).

Observations Consider an augmenting path P = e1, e2, . . . , e2i+1 of length
2i+ 1 with e2, e4, . . . , e2i ∈ M. Augmenting path P appears in the layer
graph if endpoints are in L0 and Li+1, and sequence of edges appear in
order, including the order of xu,v or xv,u. Since each free vertices and

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 33

matched edges are projected independently,

Pr[P appears] = 2 · (level(proj(e1)) = 0∧ level(proj(e2)) = 1∧
level(proj(e4)) = 2∧ · · ·∧
level(proj(e2i)) = i∧ level(proj(e2i+1)) = i+ 1)

= 2 · (1
2
· 1
2i
· · · · · 1

2i
· 1
2
)

=
1

2(2i)i

Since we randomly project edges and appearance of paths are independent
given edge appearances, every augmenting path of length 2i+ 1 appears
independently in G ′. As 1

2(2i)i
is a constant, we expect a constant fraction

of augmenting paths of length 2i+ 1 to appear in G ′.

Idea 2: Approximate layer matching via layered DFS

Recall that Phase-Augmentation uses DFS to extract vertex-disjoint paths.
DFS is undesirable in the streaming model as it would necessitate too
many passes of the data in the streaming model. Furthermore, it will take
too many rounds in the MPC model. Using the layer graph from Idea 1,
McGregor [McG05, See Find-Layer-Paths] extracts vertex-disjoint paths
by simulating DFS in a layered fashion.

In the forward pass, we compute and propose a O(1)-approximation
of maximum matching between each pairs of layers. In the backward
pass, approved matchings are fixed11 and we try to find another maximal
matching (ignoring fixed matches in that layer) via another forward pass.

Forward pass attempts are stopped if the latest matching size found is
smaller than a threshold fraction of the number of nodes in the next layer.
The threshold is a small constant chosen based on ε and the approximation
guarantee of the algorithm. A high threshold would result in insufficient
number of extracted paths (because we stop too prematurely) while a low
threshold is needed to ensure good runtime.

Remark McGregor [McG05] computes maximal matchings between lay-
ers but one can show that it suffices to use constant approximations.

11Find-Layer-Paths assigns tags to nodes in G ′).

34 CHAPTER 2. MATCHING

Example

Fig. 2.6 shows a graph with 26 vertices with a matching M. For i = 2,
Fig. 2.7 shows a possible layer graph projection (Idea 1) and Fig. 2.8
highlights a possible approximate layer matching (Idea 2). See figure
captions for explanation.

Adapting to MPC

Projection to the layer graph is done independently on the edges so it
can be determined in one round of local randomness and communicated
using broadcast trees.

At each step of the layered DFS, we run the approximate matching
algorithm described in earlier sections depending on the memory regime.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 35

P

(a) Matching M with a shortest aug-
menting path P

P ′

(b) Matching M ⊕ P with an aug-
menting path P ′

(c) Matching N =M⊕ P⊕ P ′

P1

P2

(d) N⊕M = P ⊕ P ′ has two vertex-
disjoint paths P1 and P2

Figure 2.4: Graph G with 12 vertices. All lines (both solid and dashed) are
the edges of G. Solid lines represent matchings in (a), (b) and (c).

36 CHAPTER 2. MATCHING

a b c d e f g

h i j k l m

A

B

(a) Matching M with free vertices {a,b, c, l,m}. Vertices {a,b, c,d, e, f,g} are in
partition A and vertices {h, i, j,k, l,m} are in partition B.

a

b

c

h

i

j

k

d

e

f

g

j

l

m

t s

L0 L1 L2 L3

(b) Directed graph G ′ constructed using BFS from {a,b, c} and ending at L3 when
{l,m} are reached. Two augmenting paths of length 3 are highlighted in red.

Figure 2.5: A bipartite graph G with 13 vertices. All lines (both solid and
dashed) are the edges of G. Solid lines represent edges in matching M.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 37

a

b

c

e

d

f

g

h

j

i

k

l

m

o

n

p

q

r

t

s

u

v

w

x

y

z

Figure 2.6: Graph G with 26 vertices. Solid lines are edges in M. The only
free vertices are {a,b, c, x,y, z}, all other vertices are matched. There are
three augmenting paths “adinsx”, “bfkpuy” and “chmrwz” of length 5.

38 CHAPTER 2. MATCHING

x0aa

x0bb

x0cc

x1je

x1id

x1kf

x1lg

x1mh

x2to

x2sn

x2up

x2vq

x2wr

x3xx

x3yy

x3zz

L1L0 L2 L3

Figure 2.7: A possible layer graph G ′ of G Fig. 2.6 with i = 2. Free vertices
are randomly assigned to layers L0 or L3. Matched edges are randomly
assigned to internal layers L1 or L2 with a random subscript ordering of
endpoints. Edges in G ′ correspond to edges in E \M in G. An edge is
in G ′ only if an “applicable” edge is in G. For example, {x0aa, x1id} ∈ G ′
because {a,d} ∈ G. Edges {d,o} and {p, x} are not represented in G ′ because
the subscript orderings. Edge {y, z} is not represented in G ′ because it is
not adjacent to a matched edge in G.

2.4. APPROXIMATION IMPROVEMENT VIA AUGMENTING PATHS 39

x0aa

x0bb

x0cc

x1je

x1id

x1kf

x1lg

x1mh

x2to

x2sn

x2up

x2vq

x2wr

x3xx

x3yy

x3zz

L1L0 L2 L3

Figure 2.8: First pass from L3 to L0. Maximal matching between each
pair of layers are in red, involved vertices are boxed up, and “accepted”
matchings are bolded. For example, while finding the maximal matching
between layers L1 and L2, only x1id, x1mh, x2sn, x2vq and x2wr are involved and
the edges {x1id, x2sn} and {x1mh, x2wr} were selected. Since x2vq was unable to
be matched between layers L1 and L2, it is marked “Dead”. We backtrack
and try to match towards L0 with the remaining “unaccepted” vertices
until the size of the subsequent matching found between layers Li and
Li−1 is smaller δ · |Li−1| for a threshold δ ∈ poly(ε). In McGregor’s notation
[McG05], S = {x2sn, x2vq, x2wr} and S ′ = {x1id, x1mh} in the recursive call of
Find-Layer-Paths(G ′,S, δ, 2).

40 CHAPTER 2. MATCHING

Chapter 3

Connected Components and
Minimum Spanning Tree

In this chapter, we look at the problem of computing connected compo-
nents and minimum spanning trees. It is relatively easy to find solve them
in strongly superlinear and strongly sublinear memory regimes. In the
first two sections of the chapter, we focus our efforts on solving MST in
near linear memory regime. Next, we discuss a connectivity algorithm
due to Andoni et al. [ASS+

18] that yields a round complexity depend-
ing on the diameter of the graph, under the strongly sublinear memory
regime. Finally, we discuss a constant round algorithm due to Andoni et
al. [ANOY14] to compute geometric minimum spanning trees under the
strongly sublinear memory regime.

Problem definitions Given an undirected graph G = (V ,E), a connected
component is a subgraph in which any two vertices are connected by a
path. There are two typical ways to represent connected components on a
graph:

1. Every vertex v stores a label l(v) such that l(u) = l(v) if and only if
vertices u and v are in the same connected component.

2. Explicitly build a tree for each connected component, yielding a
maximal forest of the graph.

A related graph problem is computing the minimum spanning tree
(MST) on connected weighted graphs. The goal of MST is to find a subset
T of edges such that the sum of edge weights in T are minimized. In
general, where the graph may not be connected, the MST problem is also

41

42 CHAPTER 3. CONNECTED COMPONENTS & MST

called the minimum spanning forest (MSF) problem. On graphs with
identical edge weights, we see that computing a minimum spanning forest
is equivalent to computing connected components.

The three memory regimes One can compute MST in O(1) rounds under
the strongly superlinear memory regime using the filtering technique of
Lattanzi et al. [LMSV11]. As the idea is similar to Section 2.1, we leave the
details as an exercise.

Exercise 3.1. MST with strongly superlinear memory in O(1) rounds
Devise an algorithm that computes the minimum spanning tree of a given graph
G = (V ,E) with |V | = n in O(1ε) rounds using O(n1+ε) memory per machine,
for some constant ε > 0.

On the other extreme, MST can be computed in O(logn) rounds with
strongly sublinear memory by carefully simulating Borůvka1. Note that
a long chain of proposed edges may occur while simulating Borůvka,
where merging them could take many rounds. This issue can be resolved
by using randomness to drop a constant fraction of proposed edges, in
a manner that remaining edges do not form long chains. We leave the
details as an exercise.

Exercise 3.2. MST with strongly sublinear memory in O(logn) rounds
Devise an algorithm that computes the minimum spanning tree of a given graph
G = (V ,E) with |V | = n in O(1ε) rounds using O(nα) memory per machine, for
some constant α ∈ (0, 1). You may assume that edge weights are unique.

In Section 3.1, we see an algorithm for computing minimum spanning
trees in O(1) rounds in the near linear memory regime, where each ma-
chine has S = Õ(n) memory. It assumes the existence of an algorithm
connected-components which computes connected components in O(1)

rounds in the near linear memory regime. In Section 3.2, we construct
such an algorithm connected-components using graph sketching.

Known lower bounds It remains a major open question whether there
exist connectivity MPC algorithms with sub-logarithmic time. There
are strong indications that such algorithms do not exist: Beame et al.
[BKS13] show logarithmic lower bounds for restricted algorithms, and no
known algorithm can distinguish a n-node cycle from two n

2 -node cycles

1See https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

3.1. MST USING NEAR LINEAR MEMORY 43

in o(logn) rounds. Furthermore, Roughgarden et al. [RVW18, Theorem
6.1] showed that an unconditional lower bound would imply stronger
circuit lower bounds.

Recently, there has been some work using parameters of the input
graph such as diameter D of the graph: Andoni et al. [ASS+

18] gave
an algorithm in the strongly sublinear memory regime that uses Θ(m)

total memory to compute connected components in O(logD · log logm
n
n)

rounds.

3.1 MST using near linear memory

Recall from Exercise 2.1 that sorting can be done in O(1) rounds with
strongly sublinear memory. Hence, we can sort edges in ascending weight
ordering in O(1) rounds and label the edges e1, e2, . . . , em such that w(e1) 6
w(e2) 6 · · · 6 w(em). In the sequential setting, Kruskal’s algorithm2

iterates through such a sorted edge list to decide whether an edge is in
the MST. This gives the following observation, which we shall exploit.

Observation Edge ei is in the MST if and only if its endpoints are not
in the same connected components in the graph with edge set {e1, . . . , ei−1}.

Using the observation directly to determine whether all edges are in
the MST would require O(m) calls to connected-components. To speed
things up in MPC, we group edges into chunks of n edges. In the near
linear memory regime, each chunk can fit into a single machine and all
chunks can be processed simultaneously. For i = {1, . . . , mn }, denote

• Ei = {e(i−1)n+1, . . . , ein} as the ith chunk of n edges

• E ′i = ∪ij=1Ej as the union of edge sets E1 to Ei

• F ′i as the maximal forest computed from each set of edges E ′i

Denote F ′0 as the graph without edges (i.e. all vertices are isolated). By
the above observation, we know that any edge in {u, v} ∈ Ei is in the MST
only if the components of u and v in F ′i−1 differ. Since both |Ei| ∈ O(n) and
|F ′i−1| ∈ O(n), a single machine can simultaneously hold Ei and F ′i−1.

Assuming that there exists an algorithm connected-components which
computes connected components in O(1) rounds in near linear memory

2See https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

44 CHAPTER 3. CONNECTED COMPONENTS & MST

regime, then all maximal forests F ′i can be computed in O(1) rounds in
parallel. Then, by putting Ei and F ′i−1 into machine i, all MST edges can
be determined in a one further MPC round. In Section 3.2, we construct
such an algorithm connected-components using graph sketching.

3.2 Connectivity using near linear memory

We first describe the technique of graph sketching then explain how to use
it in MPC to compute connected components in O(1) rounds with near
linear memory.

3.2.1 Graph sketching

Graph sketching is a technique first developed in the context of streaming
algorithms. In streaming problems, updates appear one-by-one, and
one has maintain/compute certain properties or data structures under
limited memory. That is, one cannot store entire stream and compute
offline. The length of the stream may also be unknown. For the connected
components problem, edges can be added or deleted in the stream. Below,
we show a randomized algorithm for computing a maximal forest with
high success probability. For the streaming setting, it uses a data structure
with O(n log4 n) memory. In the near linear memory regime, this will fit
into a single machine.

Coordinator model For a change in perspective3, consider the following
computation model where each vertex acts independently from each other.
Then, upon request of connected components, each vertex sends some
information to a centralized coordinator to perform computation and
outputs the maximal forest.

The coordinator model will be helpful in our analysis of the algorithm
later as each vertex will send O(log4 n) amount of data (a local sketch of
the graph) to the coordinator, totalling O(n log4 n) memory as required.
This conceptual model also suggests how to perform graph sketch in MPC.

Two warm ups Before we give the full construction, we first look at two
warm up problems. Fix a subset A ⊆ V and look at the cut C between A

3In reality, the algorithm simulates all the vertices’ actions so it is not a real multi-party
computation setup.

3.2. CONNECTIVITY USING NEAR LINEAR MEMORY 45

and V \A. In the first warm up, we assume there is only one cut edge
across C, and wish to find it using O(logn) bits of memory. Building upon
the previous warm up, the second warm up wishes to find any cut edge
across the cut C when there are k > 1 cut edges.

Warm up 1: Finding the single cut edge

Definition 3.1 (The single cut problem). Fix an arbitrary subset A ⊆ V .
Suppose there is exactly 1 cut edge {u, v} between A and V \ A. How do we
output the cut edge {u, v} using O(logn) bits of memory?

Without loss of generality, assume u ∈ A and v ∈ V \A. Note that this
is not a trivial problem on first glance since it already takes O(n) bits for
any vertex to enumerate all adjacent edges. To solve the problem, we use a
bit trick which exploits the fact that any edge {a,b} ∈ A will be considered
twice by vertices in A. Since one can uniquely identify each vertex with
O(logn) bits, consider the following:

• Identify an edge by the concatenation the identifiers of its endpoints.
Say, id({u, v}) = u ◦ v if id(u) < id(v).

• Locally, each vertex u computes XORu = ⊕e∈E,e3uid(e).

• Vertices send the coordinator their XOR sum.

• Coordinator computes XORA = ⊕u∈AXORu.

Example Suppose V = {v1, v2, v3, v4, v5} where id(v1) = 000, id(v2) = 001,
id(v3) = 010, id(v4) = 011, and id(v5) = 100. Then,

id({v1, v3}) = id(v1) ◦ id(v3) = 000010

and so on. Suppose we query for the cut edge {v2, v5} with A = {v1, v2, v3}.

v1

v2

v3

v4

v5

A

46 CHAPTER 3. CONNECTED COMPONENTS & MST

Then,

XOR1 = 000010 = id({v1, v3}) = 000010

XOR2 = 000110 = id({v2, v3})⊕ id({v2, v5}) = 001010⊕ 001100
XOR3 = 001000 = id({v2, v3})⊕ id({v1, v3}) = 001010⊕ 000010
XOR4 = 011100 = id({v4, v5}) = 011100

XOR5 = 010000 = id({v4, v5})⊕ id({v2, v5}) = 011100⊕ 001100

Thus, XORA = XOR1 ⊕ XOR2 ⊕ XOR3 = 000010 ⊕ 000110 ⊕ 001000 =

001100 = id({v2, v5}) as expected. Notice that every edge in A contributes
an even number of times to the coordinator’s XOR sum.

Claim 3.2. XORA = ⊕u∈AXORu is the identifier of the cut edge.

Proof. For any edge {a,b} such that a,b ∈ A, id({a,b}) is in both XORa
and XORb. So, XORa ⊕XORb will cancel out the contribution of id({a,b}).
Hence, the only remaining value in XORA = ⊕u∈AXORu will be the cut
edge since only one endpoint lies in A.

Remark Similar ideas are often used in the random linear network cod-
ing literature (e.g. Ho et al. [HMK+

06]).

Warm up 2: Finding one out of k > 1 cut edges

Definition 3.3 (The k-cut problem). Fix an arbitrary subset A ⊆ V . Suppose
there are exactly k cut edges (u, v) between A and V \A, and we are given an
estimate k̂ such that k̂

2 6 k 6 k̂. How do we output a cut edge {u, v} using
O(logn) bits of memory, with high probability?

A straight-forward idea is to independently mark each edge, each with
probability 1/k̂. In expectation, we expect one edge to be marked. Since
edges are marked independently with probability 1/k̂, the probability
that a fixed cut edge {u, v} is marked while no other edges are marked is
(1/k̂)(1− (1/k̂))k−1. Denote the marked cut edges by E ′, then

Pr[|E ′| = 1] = k · (1/k̂)(1− (1/k̂))k−1 There are k cut edges

> (k̂/2)(1/k̂)(1− (1/k̂))k̂ Since
k̂

2
6 k 6 k̂

> (1/2) · 4−1 Since 1− x > 4−x for x 6 1/2

>
1

10

3.2. CONNECTIVITY USING NEAR LINEAR MEMORY 47

Remark The above analysis assumes that vertices can locally mark the
edges in a consistent manner (i.e. both endpoints of any edge make the
same decision whether to mark the edge or not). This can be done with a
sufficiently large string of shared randomness. We discuss this later.

From above, we know that Pr[|E ′| = 1] > 1/10. If |E ′| = 1, we can
re-use the idea from the case when k = 1. However, if |E ′| 6= 1, then XORA
may correspond erroneously to another edge in the graph. In the above
example, id({v1, v2})⊕ id({v2, v4}) = 000001⊕ 001011 = 001010 = id({v2, v3}).

To fix this, we use random bits as edge IDs instead of simply concatenat-
ing vertex IDs: Randomly assign (in a consistent manner) each edge with
a random ID of k = 20 logn bits. Since the XOR of random bits is random,
for any edge e, Pr[XORA = id(e) | |E ′| 6= 1] = (12)

k = (12)
20 logn. Hence,

Pr[XORA = id(e) for some edge e | |E ′| 6= 1]

6
∑
e∈(V2)

Pr[XORA = id(e) | |E ′| 6= 1] Union bound over all edges

=

(
n

2

)
· (1
2
)20 logn There are

(
n

2

)
possible edges

= 2−18 logn Since
(
n

2

)
6 n2 = 22 logn

=
1

n18
Rewriting

Thus, with high probability, we can correctly distinguish |E ′| = 1 from
|E ′| 6= 1. Furthermore, Pr[|E ′| = 1] > 1

10 . For any given ε > 0, there exists a
constant C(ε) such that if we repeat t = C(ε) logn times, the probability
that all t tries fail to extract a single cut is (1− 1

10)
t 6 1

poly(n) .

Maximal forest with O(n log4 n) memory

Recall that Borůvka’s algorithm builds a minimum spanning tree by itera-
tively finding the cheapest edge leaving connected components and adding
them into the MST. The number of connected components decreases by at
least half per iteration, so it converges in O(logn) iterations.

Any arbitrary cut has cut size k ∈ [0,n]. Using O(logn) guesses for
k̂ = 20, 21, . . . , 2dlogne, we can use the approach to the k-cut problem to find
a single cut edge:

• If k̂� k, the marking probability will select nothing (in expectation).

• If k̂ ≈ k, then we expect to find a valid edge ID.

48 CHAPTER 3. CONNECTED COMPONENTS & MST

• If k̂� k, more than one edge will get marked, which we will then
detect (and ignore) since XORA will likely not be a valid edge ID.

Using shared randomness, vertices compute O(logn) sketches. Each sketch
has size O(log3 n) and is computed using random (but consistent) edge
IDs and marking probabilities:

• For each vertex v, XORv takes O(logn) bits to represent

• Make O(logn) guesses of cut size k

• Repeat O(logn) times independently to amplify success probability

One round of Borůvka can be simulated by using a unused sketch:

• Find an out-going edge from each connected component using the
approach to the k-cut problem

• Join connected components by adding edges to graph

O(logn)-bit representing XORv
...

...

...

Independent
O(logn)
blocks

O(logn)
guesses
for k

O(logn)
sketches

Figure 3.1: A pictorial representation of the O(logn) sketches for vertex v
that is sent to the coordinator. A sketch takes O(log3 n) bits. Each row is a
XOR of adjacent edge IDs, subject to edge sampling probability k̂.

3.2. CONNECTIVITY USING NEAR LINEAR MEMORY 49

Each sketch uses O(log3 n) memory and O(logn) sketches can simulate
Borůvka, so a total of O(n log4 n) memory suffices. With t = C(ε) logn
tries at each step, we fail to find one cut edge leaving a connected com-
ponent with probability 6 (1− 1

10)
t. For a sufficiently large constant C, an

application of union bound tells us that we succeed with high probability.

Remark One can drop the memory requirement per vertex from O(log4 n)
to O(log3 n) by using a constant t instead of t ∈ O(logn) such that the
success probability is a constant larger than 1/2. Then, simulate Borůvka
for d2 logne steps. See Ahn, Guha and McGregor [AGM12] for details.
Note that they use a slightly different sketch.

Theorem 3.4. Any randomized distributed sketching protocol for computing
spanning forest with success probability ε > 0 must have expected average sketch
size Ω(log3n), for any constant ε > 0.

Proof. See Nelson and Yu [NY18] for details.

Constructing random edge IDs using ε-bias sample spaces

We can use ε-bias sample spaces to obtain the random edge IDs dis-
cussed earlier. Since each bit of ID’s operates independently, we focus on
constructing 1-bit ID’s first. Let N =

(
n
2

)
.

Claim 3.5. There exists a collection B of functions b : [N]→ {0, 1} such that:

1. For any E ′ ⊆ [N] such that |E ′| > 1,

Pr
b∈B

[(
⊕
e∈E ′

b(e)) = 0] ∈ [
1

2
− ε,

1

2
+ ε]

2. |B| = O(N
ε2
)

Proof. Fix any arbitrary subset E ′ of [N]. Observe that for b ∈u.a.r. {0, 1}N,
we have Pr[

⊕
e∈E ′ b(e) = 0] =

1
2 . Fix k = cN

ε2
for some large constant c. Pick

B of size k uniformly from {0, 1}N. In expectation, half of the b ∈ B satisfy
the condition

⊕
e∈E ′ b(e) = 0. By Chernoff bound, the probability that

number of such b is not in [(12 − ε)k, (12 + ε)k] is at most 2e−
ε2k
2 � 2−N. By

taking union bound over all 2N choices of E ′, the probabilistic method tells
us that such a collection exists.

50 CHAPTER 3. CONNECTED COMPONENTS & MST

To store edge IDs, it suffices to store which functions from B are used.
Suppose we use IDs of length l = C · logn for some constant C. Then, only
l · log |B| ∈ O(log2 n) bits of information need to be stored. Additionally,
since each bit of ID is selected independently, the probability of a collision
from XOR’s is upper bounded by (12 +ε)

l. By selecting C to be large enough
constant, the collision probabilities can be made to be exponentially small.
Fast constructions of such B’s exist but are out of the scope of the course.

3.2.2 Simulating in MPC

In the near linear memory regime, each machine has S = Õ(n) memory.
To compute a sketch for a vertex, we first need to put all edges incident
to a vertex onto a single machine. This can be done in O(1) rounds
(See Exercise 3.3). After distribution edges, sketches can be computed
independently in a single MPC round. Since each vertex produces sketches
of size O(log4 n), the sketches for all n vertices fit into the memory of a
single machine. Thus, the connected component can be successfully
computed in one further MPC round, with high probability. As we can
see, this entire process takes O(1) rounds in near linear memory regime.

Recall in Section 3.1 that we use connected components as a subroutine
to solve MST. To be precise, we solve m

n copies of connected component
problem in parallel, in a single MPC round. This is doable because the
required sketches fit into a single machine and we have O(mn) machines.

Exercises

Exercise 3.3. Edge distribution
Given an arbitrary initial distribution of edges, devise an algorithm that puts
edges incident to the same node into a single machine in O(1) rounds with Õ(n)

memory per machine.
For example, suppose E = {{a,b}, {a, c}, {b,d}}. We wish to put {a,b} and

{a, c} into the same machine so that all endpoints of a are in the same machine.
Similarly, we wish to put {a,b} and {b,d} onto the same machine, possibly in
a different machine as before. Note that the edge {a,b} is duplicated and stored
twice, once for a and once for b.

Hint Sort the edges.

3.3. LOG DIAMETER TIME CONNECTIVITY USING SUBLINEAR MEMORY51

Exercise 3.4. Approximate minimum cut in near linear memory
Given a graph G = (V ,E), denote λ as the minimum cut size of G.

1. Assume that the minimum cut size λ 6 logn. Devise an algorithm that
computes a cut — i.e., identifies the vertices on the two sides of the cut —
of size λ in O(1) rounds with S = Õ(n) memory per machine.

2. Devise an algorithm that computes a cut with size λ ′ such that λ ′ ∈ (1± ε)λ
in O(1) rounds with S = Õ(n) memory per machine.

Hint Use multiple sketches to find maximal spanning forests.

Exercise 3.5. (1+ ε) ·∆ edge-coloring with near linear memory in
constant rounds
Given a graphG = (V ,E), an edge-coloring with k colors is a function c : E→ {1, . . . ,k}
such that adjacent edges do not share the same color. That is, for ei, ej ∈ E shar-
ing an endpoint, we must have c(ei) 6= c(ej). By Vizing’s theorem, we know that
any graph can be edge colored by ∆+ 1 colors, where ∆ is the maximum degree
of the graph. Devise an algorithm that computes a (1+ ε) ·∆ edge-coloring with
S = Õ(n) memory per machine in O(1) rounds.

Hint A single round suffices.

3.3 Log diameter time connectivity using sublin-
ear memory

As MST solves the problem of connectivity, we know that O(logn) rounds
suffice under the strongly sublinear memory regime (See Exercise 3.2).
In this section, we discuss a connectivity algorithm due to Andoni et
al. [ASS+

18] whose round complexity is a function of the diameter of
the input graph G. Their algorithm uses Θ(m) total memory to compute
connected components in O(logD · log logm

n
n) rounds under the strongly

sublinear memory regime, where each machine has memory S = nα for
some constant α ∈ (0, 1).

For ease of exposition, we first discuss the ideas assuming each vertex
has access to memory of size nα. Note that this violates the global memory
constraint of Θ(m), which we resolve later. As we shall see, connected
components will be treated in a disjoint fashion in the algorithm. So,
it is easier to understand and analyze the behavior of the algorithm by

52 CHAPTER 3. CONNECTED COMPONENTS & MST

mentally assuming that the input graph is a single connected component
with n distinct labels, and we wish to reduce the number of labels to 1, i.e.
realize that the graph is connected.

To solve connectivity, Andoni et al. [ASS+
18] use graph exponentiation

and label contraction4. We discuss these techniques in Section 3.3.1 and
Section 3.3.2 respectively. In Section 3.3.3, we show how to combine the
two to yield an algorithm that runs in O(logD) MPC rounds. To resolve
the concern of global memory, Andoni et al. [ASS+

18] use a technique they
call “double exponential speed problem size reduction” (See Section 3.3.4).
This introduces an O(log logm

n
n) factor overhead in the MPC runtime,

hence the total algorithm runs in O(logD · log logm
n
n) rounds under the

strongly sublinear memory regime.

3.3.1 Handling sparse graphs: Graph exponentiation

Recall the technique of graph exponentiation from Section 2.3.2 [LW10,
Gha17]. Consider a graph which consists of n

D paths of length D where
D 6 nα. Within O(logD) MPC rounds, every vertex can gather the entire
neighborhood using graph exponentiation, then compute connectivity of
the collected subgraph in a single MPC round. Note that this will require
a global memory of O(nD).

If the D-hop neighborhood of a vertex fits into memory, then one can
gather the entire neighborhood in O(logD) MPC rounds. However, for
general graphs, one cannot hope to collect the entire D-hop neighborhood
of a vertex into a single machine.

3.3.2 Handling dense graphs: Label contraction

Consider a connected graph with unique label IDs assigned to each vertex
initially. The basic idea of label contraction (See Fig. 3.2) is as follows:

• Mark each vertex independently with probability p = 1
2 .

• For each unmarked vertex with a marked neighbor, relabel itself to
one of the marked neighbor’s label

By treating vertices with the same label as a supernode, we see that label
contraction essentially contracts vertices in each round via relabelling.

4In the paper, graph exponentiation is called “neighbor increment operation” while
label contraction is called “random leader selection”.

3.3. LOG DIAMETER CONNECTIVITY 53

1 2

3

4

5

6

7

8

(a) Vertices marked independently. Marked vertices are in red.

2 2

2

4

2

6

6

8

(b) Marked vertices are in red. Unmarked vertices with adjacent marked neighbors
relabel themselves. Arrow indicates choice of marked neighbor.

Figure 3.2: The label contraction process with numbers as vertex labels.

Claim 3.6. In expectation, at most 3
4 fraction of existing labels remain after an

iteration of label contraction.

Proof. After each iteration of label contraction, the only remaining labels
are those of marked vertices, and unmarked vertices without marked
neighbors. By construction, each vertex is marked independently with
probability p = 1

2 . For an unmarked vertex v, the probability that it does
not have a marked neighbor is (12)

deg(v) 6 1
2 . So, the probability that a

54 CHAPTER 3. CONNECTED COMPONENTS & MST

vertex is unmarked and has no marked neighbor is at most 14 . Thus,

Pr[Vertex v’s label remains]
= Pr[v is marked, or v is unmarked without a marked neighbor]
6 Pr[v is marked] + Pr[v is unmarked without a marked neighbor]

6
1

2
+
1

4
=
3

4

Summing over all vertices, we have the result.

By Claim 3.6, with high probability, label contraction runs for at most
O(logn) rounds before all endpoints of any given edge share the same
label. Observe that if we knew all vertices have high degree, we could
mark vertices with a lower marking probability p, and hence gain a more
significant reduction in number of labels per iteration of label contraction.

3.3.3 Putting them together

In general graphs, one cannot hope to collect the entire D-hop neighbor-
hood in a single machine. As such, in the “neighbor increment operation”
of Andoni et al. [ASS+

18], they stop the graph exponentiation process
when the neighborhood is sufficiently large. On the other hand, label
contraction works well when vertices have high degrees. Consider the
following scheme which combines graph exponentiation and label con-
traction in an iterative manner:

• In a phase, do the following:

1. From each node, perform graph exponentiation until the num-
ber of edges leaving the collected set of vertices exceeds nα/2.
Collapse the collected vertices into a supernode.

2. Perform label contraction by marking vertices independently
with probability p =

logn
nα/2

.

Observe that vertices from different connected components do not affect
each other in the algorithm above. The parameter nα/2 is defined with
respect to the number of vertices in the original graph. To be precise, it
was chosen to be

√
S, where S is the amount of memory per machine.

Claim 3.7. In every phase, step 1 takes O(logD) rounds.

3.3. LOG DIAMETER CONNECTIVITY 55

Proof. Since we assume that the graph has diameter D, graph exponentia-
tion runs for at most O(logD) rounds before the entire graph resides in a
single machine. Furthermore, diameter of a graph can only decrease when
we contract vertices, hence the bound holds for every phase.

Claim 3.8. There are O(1α) phases.

Proof. We generalize the proof of Claim 3.6. When step 1 ends, all ver-
tices have degrees at least nα/2. By marking vertices independently with
probability p =

logn
nα/2

, a vertex label is not removed with probability at most

p+ (1− p) · (1− p)nα/2 6 p+ (1− p) · 1n ∈ O(p). So, with high probability,
the number of labels drop by a factor of O(nα/2) after one phase. Thus, the
process terminates in O(1α) phases.

Since α is a constant, by the above two claims, the algorithm solves the
connectivity problem in O(logD) rounds with sublinear memory. Note
that we assumed a total memory of n ·nα in the above description. This
could be more than input size of the problem — the number of edges m.

3.3.4 Fitting into global memory

The algorithm in Section 3.3.3 assumes a total memory of n · nα, which
could be more than the number of edges m of the original graph. In phase
i, suppose there are ni vertices and we perform graph exponentiation as
long as the degree is at most di. Consider a stricter termination condition
that restricts di = min(nα/2,

√
m
ni
). As there are at most d2i edges amongst

di vertices, this ensures that the total memory needed is ni · d2i 6 Θ(m).
We also modify the marking probability of label contraction appropriately
to p =

logn
di

. Under these modifications, a phase does the following:

1. From each node, perform graph exponentiation until the number of
edges leaving the collected set of vertices exceeds di = min(nα/2,

√
m
ni
).

Collapse the collected vertices into a supernode.

2. Perform label contraction by marking vertices independently with
probability p =

logn
di

.

Claim 3.9. There are O(log logm
n
n) phases.

Proof. We generalize the proof of Claim 3.8. A vertex label remains with
probability at most O(p). If we start phase i with ni 6 n labels, then there

56 CHAPTER 3. CONNECTED COMPONENTS & MST

will be Õ(ni · (nim)
1
2) labels after phase i, with high probability. Starting

with n labels, there will be at most Õ(n · (nm)) after phase 0. By recursion,
we can show that after phase r, there are at most Õ(n · (nm)(1.5)

r
) labels left.

After r = O(log logm
n
n) phases, there will be a unique label left.

Since each phase still takes O(logD) rounds, the whole algorithm runs
in O(logD · log logm

n
n) rounds using total memory of Θ(m).

3.3.5 Guessing the diameter D of the graph

We see that the algorithm of Section 3.3.4 can operate without explicitly
knowing D. The diameter D only shows up in the analysis. If one wishes
to know the diameter, one could do the following: For i = {0, 1, 2, . . . },

• Use D̂ = 22
i as a guess for D.

• Run the algorithm discussed in Section 3.3.4 with O(log D̂) rounds
of graph exponentiation per phase.

• If there exists an edge e = {u, v} such that u and v have different
labels, we have underestimated D. Try again with a larger guess.

• Otherwise, endpoints of all edges have the same label. Thus, the
connectivity algorithm has completed and we can terminate.

One can check that the total number of rounds is dominated by the final
guess of D, which results in the same number of rounds asymptotically.

Roughly speaking, the above method can be generalized to guess
parameters of the input graph for MPC algorithms which are “safe” and
“checkable”. By “safe”, we mean that running with an underestimate will
not violate MPC constraints. Meanwhile, we could “check” whether we
have solved the problem after executing the algorithm with a guess, i.e.
check the correctness of the output.

3.4 Geometric MST using sublinear memory

Problem definition (Euclidean MST) Consider a Euclidean space Rd

of d dimensions. Given a set n points, each with integer coordinates in
[0,∆]d for some ∆ = poly(n), we wish to compute an (1+ ε)-approximate
minimum spanning tree T , for some ε > 0. That is, we want the cost of
the computed tree T to be no more than an (1+ ε) factor away from the

3.4. GEOMETRIC MST USING SUBLINEAR MEMORY 57

true cost of the minimum spanning tree T∗. In the geometric setting, there
are

(
n
2

)
implicit edges between all pairs of points. However, the problem

input only involves the n points, along with parameters such as d, ∆ and
ε. This is because the distance between points u and v can be computed
“on-the-fly” using a distance function ρ(u, v) such as Euclidean norm.

We know from before that O(logn) rounds suffice to compute a MST
under the strongly sublinear memory regime (See Exercise 3.2). In this
section, we look at a constant round algorithm by Andoni et al. [ANOY14]
for computing a (1+ ε)-approximate minimum spanning tree T under the
sublinear memory regime with S = nα memory per machine, for some
constants ε > 0 and α ∈ (0, 1). There are four main ideas:

Idea 1 Exploit the geometric structure of the problem by building a S-ary
tree that partitions the space. The partitioning is randomly shifted
so that “close points are likely to be in the same partition”.

Idea 2 Ideally, one wishes to solve MST locally in each partition and
combine the solutions. However, this can be bad as short edges
could be crossing partitions. Hence, we build a minimum spanning
forest locally only using “sufficiently short edges”.

Idea 3 To avoid violating memory constraints when combining solutions
across partitions, we pick representatives to form a sketch.

Idea 4 To analyze the approximation overhead of our constructed T com-
pared to the true cost of MST T∗, we define an auxiliary graph G ′

which overestimates the true edge costs, then compare Kruskal’s
edge selection on G ′ against our selected edges.

We present the ideas in Section 3.4.1, Section 3.4.2, Section 3.4.3, and
Section 3.4.5 respectively. In the following exposition, we often discuss in
2-dimensions (d = 2) to better visualize and get intuition.

Remark In the paper, Andoni et al. [ANOY14] also used similar ideas to
tackle the problem of Earth-Mover Distance. In the Earth-Mover Distance
problem, points are split into red and blue points, and the goal is to find
the minimum cost red-blue matching.

3.4.1 Idea 1: Hierarchical partitioning with random shift

In Euclidean space, an edge between close points are more likely to be
an MST edge. To exploit the geometric structure of the problem, one can

58 CHAPTER 3. CONNECTED COMPONENTS & MST

partition the input space to ignore pairs of points which are far apart. To
this end, consider the following hierarchical partitioning process where
we denote Pi as the ith level of partitioning:

• Randomly pick an offset vector v = (v1, . . . , vd) ∈ (−∆, 0]d to de-
fine a bounding box [v1 +∆]× [v2 +∆]× · · · × [vd +∆] on all inputs
points. This bounding box is the single cell of the highest level of the
partitioning PL.

• As long as there is a cell in Pi with more than one point, partition
all cells in Pi into S smaller cells of dimension S

1
d × S 1d × · · · × S 1d to

yield partition level Pi−1.

The partitioning level which contains cells with at most one point is
denoted as P0. As points have integer coordinates in [0,∆]d, the partitioning
process stops after L = O(logS(n)) = O(1α) levels. Since α is a constant, we
have constant levels of partitioning. Fig. 3.3 illustrates an example.

For any fixed partitioning, there are input points such that very close
points are split into different partitions very early on. This will create
many short edges across partitions. By picking a random shift of v, one
can show a desirable property that close points remain in same cells until
the cells become small. Let us be more precise. Denote ∆i as the maximum
distance between any two points in a cell at level i, and Ci(x) as the cell
which point x reside in at level i. In 2-dimensions, ∆i is the diagonal
distance between corners in a cell at level i. One can show the following:

Claim 3.10. Pr[Ci(x) 6= Ci(y)] 6 O(
ρ(x,y)
∆i

), where ρ is the distance function and
the constant factor in O depends on the dimension d.

Remark Hierarchical partitioning is similar in spirit to the technique of
ball carving for probabilistic tree embeddings5 by Fakcharoenphol, Rao,
and Talwar [FRT03]. In ball carving, n vertices in a metric space are
picked in random order, then the picked vertex and all vertices within a
radius r of the picked vertex are removed. One can then show that the
probability that vertices x and y are not removed at the same time is at most
O(logn) · ρ(x,y)

r . That is, close vertices are likely to be removed at the same
time. By appealing to the Johnson-Lindenstrauss Lemma6, hierarchical
partitioning can be seen as an alternate way to perform ball carving.

5For details on ball carving and probabilistic tree embeddings, one can look at Section
5.1 of http://people.csail.mit.edu/ghaffari/AA18/Notes/AAscript.pdf.

6For details on the Johnson-Lindenstrauss Lemma, one can look at the technical report
of Dasgupta and Gupta [DG99].

http://people.csail.mit.edu/ghaffari/AA18/Notes/AAscript.pdf

3.4. GEOMETRIC MST USING SUBLINEAR MEMORY 59

v = (v1, v2)

v1 +∆

v2 +∆

Figure 3.3: Example on 15 points in 2-dimensions: A randomly chosen
v ∈ (−∆, 0]2 defines a shifted bounding box. Recursive partitioning into S
smaller cells stop when every cell only has at most one point.

3.4.2 Idea 2: Local Kruskal with early termination

Consider the recursive step where we want to solve a minimum spanning
forest on the points in a given cell. Ideally, one wishes to solve MST locally
in each partition and combine the solutions. However, this can be bad as
short edges could be crossing partitions and we incur excessive overhead
in the edge weights when we combine solutions. The remedy is to build
a minimum spanning forest locally only using “sufficiently short edges”
and pass up the partial solution to future partition levels. To be precise,
at level i, we run Kruskal’s algorithm as long as the minimum distance
between two connected components as at most ε∆i.

While we are not particularly concerned about runtime complexity
within a machine, Andoni et al. [ANOY14] showed that it is possible
to efficiently find points u and v from different connected components
such that ρ(u, v) 6 (1+ ε)τ, where τ is the minimum pairwise distance

60 CHAPTER 3. CONNECTED COMPONENTS & MST

between different connected components. This is done by finding an
ε-chromatic closest pair (ε-CCP), where colors represent connected com-
ponents. Eppstein [Epp95] gave a reduction from the ε-CCP problem to
the ε-approximate nearest neighbour search (ε-ANNS) problem, and Arya
et al. [AMN+

98] and Eppstein et al. [EGS08] showed the existence of
efficient solutions to the ε-ANNS problem.

3.4.3 Idea 3: Sketching to reduce memory footprint

After computing an approximate minimum spanning forest, we want
to avoid violating memory constraints when combining solutions across
partitions. To do so, we pick representatives to form a sketch. We first
define δ-nets, then explain how it gives us an appropriate sketch.

A δ-net is a subset of points such that any two chosen points have
distance at least δ while any unchosen point is at most distance δ from
some chosen point. An appropriate sketch at level i is an ε2∆i-net of
points from the current cell, along with the partitioning (i.e. which points
belong to which connected component). An ε2∆i-net can be obtained by
partitioning the cell into ε−d grids, each of width ε2∆i · 1√d , then selecting
an arbitrary point as a representative from each grid. There are three
desirable properties of such a construction:

1. There are ε−d grids, so there will be at most ε−d representatives.
Thus, each cell produces a sketch of a constant number of points.

2. As Kruskal terminates only when the distances exceed ε∆i, all points
in the same grid belong to the same connected component.

3. By triangle inequality, connecting a point outside of a grid to the
representative incurs an additional cost of at most ε2∆i. See Fig. 3.4.

3.4.4 Algorithm

Putting together, we get a recursive Solve-and-Sketch algorithm for com-
puting an approximate MST given n points in Euclidean space:

1. Build an S-ary tree with height O(1α) using hierarchical partitioning.

2. Recursively compute minimum spanning forests from smaller cells

(a) At level i, run Kruskal’s until the weight of the minimum cost
edge (without forming a cycle) in the cell exceeds ε∆i.

3.4. GEOMETRIC MST USING SUBLINEAR MEMORY 61

v
Shortest

Available
6 ε2∆i

ε∆i/
√
2

ε∆i/
√
2

Figure 3.4: Overhead in distance due to the sketch illustrated in 2 dimen-
sions. Red point is the chosen representative and the white point v lies
outside the ε2∆i-net. The red line indicates the available edge between v
to any point in the sketch while the blue line is the shortest possible edge.

(b) Compute a sketch involving at most ε−d representative points.

(c) Send representative points to larger cell containing current cell.

Each level of the partitioning can run simultaneously as each cell contains
at most O(S) points. Thus, Solve-and-Sketch computes a spanning tree
T in constant rounds under the sublinear memory regime where each
machine has space S = nα. It remains to argue that the cost of T is at most
(1+ ε) factor away from the cost of the true minimum spanning tree T∗.

3.4.5 Idea 4: Bounding the approximation factor

Since we run a modified Kruskal’s algorithm in each of our recursive step,
it is natural to attempt to bound the approximation factor by comparing
the produced tree against Kruskal’s output. Suppose Solve-and-Sketch
chooses edges e1, . . . , en−1 chronologically and Kruskal chooses e∗1, . . . , e

∗
n−1

when building the MST on the n input points. If one can show that
w(ei) 6 (1+ ε) ·w(e∗i) for i ∈ {1, 2, . . . ,n− 1}, then the produced MST is an
(1+ ε)-approximation MST (See Exercise 3.6).

Unfortunately we cannot directly apply the above analysis because it is

62 CHAPTER 3. CONNECTED COMPONENTS & MST

hard to account for the fact that the recursive step ignores edges crossing
between cells. In order to proceed, we first define an auxiliary weighted
graph G ′ which overestimates the true edge costs. Let T = (e1, e2, . . . , en−1)
be the MST computed by Solve-and-Sketch on the n input points, and
T ′ = (e ′1, e

′
2, . . . , e

′
n−1) be the tree computed by running Kruskal on G ′.

If one shows that w(ei) 6 w(e ′i) for i ∈ {1, 2, . . . ,n− 1}, then T is an an
(1+ ε)-approximation MST of the n input points by the above argument.

Consider the following weighted graph G ′ = (V ,E) where V is the set
of n input points and E is the set of possible edges between any two points
x,y ∈ V . In Solve-and-Sketch, we continuously partition cells until every
cell has at most one point. Hence, for any pair of points x and y, there is a
crossing level lc such that x and y are not in the same cell for the first time.
To be precise, crossing level lc = min{i ∈ {1, 2, . . . , logS(n)} : Ci(x) 6= Ci(y)}.
Intuitively, the crossing level lc will be small if x and y are far apart.
Define the weight of edge e = {x,y} by w(e) = ρ(x,y) + ε∆lc(x,y), where
ρ(x,y) is the distance between points x and y in the Euclidean space, lc
is the crossing level of points x and y, and ∆i is the maximum distance
between any two points in a cell at level i. By construction, w({x,y}) is
an overestimate of the true distance ρ(x,y). However, it is not by too
much: using Claim 3.10, one can show [ANOY14, Lemma 3.10] that
E[w({x,y})] = (1+O(ε)) · ρ(x,y).

Define intercluster edges as edges between connected components while
constructing T . Let e+i be the minimum cost intercluster edge with respect
to the weight function w, at the point where ei was chosen to be included
into T . One can show [ANOY14, Proposition 3.20] that w(e+i) 6 w(e ′i),
then use case analysis [ANOY14, Page 13-14] to argue that for every i,
ρ(ei) 6 (1+O(ε)) ·w(e+i). Thus, ρ(ei) 6 (1+O(ε)) ·w(e ′i), completing the
argument.

Exercise 3.6. Approximate MST with approximate Kruskal’s
Consider the modified process of Kruskal’s algorithm. At each iteration, let Ei be
the set of remaining edges that do not form cycles. Add edge e to the MST, where
w(e) 6 (1+ ε) ·mine ′∈E ′ w(e ′). Argue that the tree produced by this modified
process is an (1+ ε)-approximation to the MST of the original graph.

Hint For each iteration, compare the weight of the chosen edge against Kruskal’s.

Chapter 4

Lower bounds and conditional
hardness results

In this chapter, we introduce lower bound results and a general conditional
hardness reduction. We first discuss a lower bound result of Roughgarden
et al. [RVW18] in Section 4.1 that undirected graph connectivity requires
Ω(logS n) rounds in MPC with machines memory S. In Section 4.2, we
introduce Conjecture 4.5 and the notion of conditional lower bounds. Then,
we briefly discuss how to construct a conditional lower bound for constant
approximation maximum matching in MPC. The construction described
can be generalized to transform lower bounds in the LOCAL model to
lower bounds in MPC for other problem classes. Interested readers are
invited to check out the manuscript of Ghaffari et al. [GKU19].

4.1 Lower bounds for connectivity and other prob-
lems

Roughgarden et al. [RVW18] showed that connectivity requires Ω(logS n)
rounds in MPC with machines memory S. Before diving into the construc-
tion, Section 4.1.1 first motivates why showing Ω(logS n) number of MPC
rounds is a reasonable target lower bound. Then, Section 4.1.2 gives an out-
line of the construction of Roughgarden et al. [RVW18] with Section 4.1.3,
Section 4.1.4 and Section 4.1.5 providing the necessary details.

63

64 CHAPTER 4. LOWER BOUNDS & CONDITIONAL HARDNESS

4.1.1 Motivation

Claim 4.1. With “enough” machines, we can compute function f in O(logS n)
MPC rounds, for any arbitrary function f : {0, 1}n → {0, 1}.

Proof. A function f : {0, 1}n → {0, 1} has 2n possible inputs.

M0

M1 Mi M2n

Output f(x) ∈ {0, 1}

.

S bits S bits . . . S bits

Input x ∈ {0, 1}n

Height
of S-ary
tree is

O(logS n)

We dedicate a single machine M0 for output, and 2n machines M1, . . . ,M2n

for handling each possible input x. That is, machine Mi will send f(i) to
machine M0 if it knows that input string is i. For each machine Mi, we
can construct a S-ary tree that reads the input string x and lets Mi know
whether x = i. By construction, exactly one of the machines Mi from
{M1, . . . ,M2n} will detect that the input x = i and send the value f(i) to
M0 in one round. Then, M0 can output the value f(x) = f(i) as the output
of the whole computation. In total, this takes O(logS n) rounds since the
S-ary trees have depth at most O(logS n).

While we have shown that any n-bit function can be computed in
O(logS n) rounds in MPC, the construction uses exponentially many ma-
chines. A reasonable question is to wonder whether one can show an
Ω(logS n) round lower bound in MPC if we restrict ourselves to poly(n)

4.1. LOWER BOUNDS 65

number of machines. Unfortunately, it is probably not possible (for now).
To understand why, we look to the study of circuit complexity.

The circuit complexity of a function f is the minimum depth of a circuit
that can compute f using logical gates with fan-in 2, such as AND and
OR gates. One can show that complexity analyses assuming fan-in 2

generalize to larger fan-in numbers. Recall that P is the class of decision
problems that can be solved on a deterministic sequential machine in
polynomial time with respect to input size. One long standing question in
circuit complexity is the following:

Does every problem in P admit an O(logn) depth circuit?

The following claim shows that if we are able to show an Ω(logS n)-
round lower bound in MPC with poly(n) number of machines, then we
have answered the long standing question in the negative.

Claim 4.2. For an arbitrary machine memory S, an Ω(logS n)-round lower
bound in MPC for a problem in P implies that this problem has no O(logn)
depth fan-in 2 Boolean circuit.

Proof. To prove this, we show that any depth d fan-in 2 Boolean circuit
can be simulated in O(d

logS) rounds in MPC. Denote the inputs as depth
0 and output as depth d. Since we are considering gates of only fan-in
2, a gate at depth i depends on at most 2i inputs. Consider the set of
gates G of depth d ′ ∈ {0, . . . , logS}. Since gates in G depend on at most
2logS = S inputs, we can use a single machine to simulate each gate and its
connection. Thus, in one MPC round, we can effectively reduce the depth
of the circuit by O(logS). Therefore, we can simulate the entire circuit in
MPC by repeating this process O(d

logS) times.

4.1.2 Outline

There are three key steps in the lower bound construction of Roughgarden
et al. [RVW18]:

1. Define the s-SHUFFLE model, and show that any MPC computation
can be formulated as a s-SHUFFLE computation.

2. s-SHUFFLE can only compute polynomials of degree at most sR in R
rounds.

66 CHAPTER 4. LOWER BOUNDS & CONDITIONAL HARDNESS

3. Undirected connectivity requires a sufficiently high degree polyno-
mial to represent. To be precise, the degree of the Boolean function
fn for undirected connectivity on a graph with n vertices is

(
n
2

)
.

By setting machine memory to s in the s-SHUFFLE definition, steps 2 and
3 together show that graph connectivity require at least Ω(logs n) rounds
in MPC. We explain each of the three steps in Section 4.1.3, Section 4.1.4
and Section 4.1.5 respectively.

4.1.3 Step 1: Modelling MPC computation with s-SHUFFLEs

Claim 4.2 suggests that machines in MPC are more powerful than an
arbitrary logical gate (even if it is a lookup table) in circuit complexity.
This is because of two key differences between machines in MPC and gates
in Boolean circuits:

1. Adaptivity of communication topology
In Boolean circuits, the connections between gates are fixed. In MPC,
machines can communicate with each other in arbitrary manner, as
long as the total size of received and sent messages for a machine is
S at every round.

2. Possibility of silence (i.e. not send anything)
In Boolean circuits, all “earlier” circuits send either a 0 or 1 to “later”
circuits. In MPC, machines can choose not to send anything to
another machine. This “silence” can actually carry information and
affect computation.

To model computation in MPC, Roughgarden et al. [RVW18] used ⊥ to
denote silence and defined a R-round s-SHUFFLE computation as follows:

• Let input be x = (x1, x2, . . . , xn) and output be y = (y1,y2, . . . ,yk).

• Let V be the set of machines in the system, including one machine
for each input bit xi and output bit yj

• Assign a level r(v) for each machine v ∈ V . Machines handling input
x are on level 0 while machines handling output y are on level R+ 1.
All other machines have levels in the range {1, 2, . . . ,R}.

• For each pair of machines u and v, where r(u) < r(v), we have a
function αuv : {0, 1,⊥}s → {0, 1,⊥}s denoting what u sends to v.

4.1. LOWER BOUNDS 67

One may think of an s-SHUFFLE computation as a “super circuit” where
each machine is a “gate” with s ports. Each port accepts at most 1 bit of
input from any lower level machine. Between machines u and v, where
r(u) < r(v), the message (αuv)i = ⊥ indicates that machine u did not send
any bit to the ith port of v. On input x = (x1, . . . , xn), the ith input machine
at level 0 outputs {xi,⊥, . . . ,⊥} and the jth output machine at level R+ 1

outputs {yj,⊥, . . . ,⊥}. For an s-SHUFFLE computation to be valid, every
machine should receive a non-⊥ bit input for each port from at most one
machine. That is, every other lower level machine sends ⊥ to that port.

One can extend s-SHUFFLEs to handle unordered input messages by
using Σ to denote all possible multi-sets of bit strings with length at most
w. Then, one can show the following claim:

Claim 4.3 (Proposition 2.7, [RVW18]). Every r-round MapReduce computa-
tion with m machines and space s per machine can be simulated by an (r+ 1)-
round s-SHUFFLE(Σ) computation with (r+ 1)m machines and word size s.

4.1.4 Step 2: s-SHUFFLEs are low-degree polynomials

Theorem 4.4. Suppose that an s-SHUFFLE computes a function f : {0, 1}n → {0, 1}
in R rounds. Then, there is a polynomial p(x1, . . . , xn) of degree at most sR such
that p(x) = f(x) for any x ∈ {0, 1}n.

Proof. The proof is by induction over the round numbers. For each ma-
chine v with r(v) = r ∈ {0, . . . ,R+ 1} and value z ∈ {0, 1,⊥}s, we show that
there is a polynomial pv,z(x) of degree at most sr(v) such that pv,z(x) = 1

if the s-SHUFFLE computation evaluates input x to value z in machine v,
and 0 otherwise.

In the base case of input machines v with r(v) = 0, the correspond-
ing polynomials for values z0 = (0,⊥, . . . ,⊥) and z1 = (1,⊥, . . . ,⊥) are
pv,z0(x1, . . . , xn) = 1− xi and pv,z1(x1, . . . , xn) = xi respectively. All other
values are impossible and hence pv,z(x1, . . . , xn) = ⊥ for all other values z.

In the inductive case of round number r ∈ {1, . . . ,R + 1}, consider
machine v with r(v) = r. We first show that all inputs to machine v can be
represented by polynomials of degree at most sr−1. Consider the ith input
port of machine v. We know there exists a set of polynomials

Pu,z,1 = {pu,z : Machine u with r(u) < r(v) and (αuv)i(z) = 1}

that indicates machine v receiving ‘1’ on the ith port. By induction,
polynomials in Pu,z,1 have degrees at most sr−1. Thus, the summation

68 CHAPTER 4. LOWER BOUNDS & CONDITIONAL HARDNESS

pv,i,1 =
∑
p∈Pu,z,1

p is a polynomial of degree at most sr−1 that represents
all possible ways for machine v to receive a ‘1’ in the ith port. Similarly,
we can obtain polynomials pv,i,0 and pv,i,⊥ of degree at most sr−1. Note
that we only consider valid s-SHUFFLES, so at most one machine actually
sends a non-⊥ value to each port of v. Now, for an output value z of
machine v, we look at the set of possible inputs to v such that v outputs
z. Every such input is represented by a product of the individual input
polynomials, yielding a polynomial of degree at most sr. Thus1, pv,z is a
polynomial with degree at most sr.

Theorem 4.4 can be generalized to outputs of k bits by repeating the
argument for each output (See Theorem 3.1 of [RVW18]). Consider the
following example to better understand the inductive step of Theorem 4.4.

Example Suppose s = 3. Fix a value z and machine v at round r = r(v). By
induction, we know that pv,i,0, pv,i,1 and pv,i⊥ are polynomials of degree at
most sr−1, for i ∈ {1, 2, 3}. Suppose machine v outputs value z when given
inputs (1, 0,⊥) or (0, 0, 1). Then, pv,z = pv,1,1pv,2,0pv,3,⊥ + pv,1,0pv,2,0pv,3,1.
Since pv,1,1pv,2,0pv,3,⊥ and pv,1,0pv,2,0pv,3,1 are polynomials of degree at most
sr, the polynomial pv,z has degree at most sr.

4.1.5 Step 3: Connectivity as a high-degree polynomial

Theorem 4.4 tells us that an R-round s-SHUFFLE computation can be
represented as a polynomial of degree at most sR. In this step, we show that
modelling undirected graph connectivity as a Boolean function requires
a polynomial of degree at least

(
n
2

)
. Therefore, this implies that any

valid s-SHUFFLE computation, and hence any MPC algorithm, that solves
undirected graph connectivity would require at least R = Ω(logS n) rounds.

A Boolean function that models undirected graph connectivity on n-
node graphs is a function from

(
n
2

)
bits to 1 bit. Rivest and Vuillemin

[RV75] proved the Aanderaa-Rosenberg conjecture [Ros73] that every non-
trivial monotone graph property has the decision-tree complexity is Ω(n2).
One can verify that connectivity is a non-trivial monotone graph property
— The output is not the same for all graphs, and adding more edges does
not disconnect a graph. Using the notion of parity difference, one can use
induction on n to show that the degree of a Boolean function representing
undirected graph connectivity is

(
n
2

)
. We refer readers to Definition 5.1,

1See the example below this proof for a concrete illustration.

4.2. CONDITIONAL HARDNESS 69

Lemma 5.2 and Theorem 5.3 of Roughgarden et al. [RVW18] for details
on parity difference and how it is used. Thus, any valid s-SHUFFLE
computation that solves undirected graph connectivity would require at
least R = Ω(logS n) rounds.

4.2 Conditional hardness results for problems
such as matching and vertex cover

In this section, we introduce the notion of conditional lower bounds and
give an example. Using the conditional lower bound of Claim 4.7, we
introduce a general framework that allows us to adapt lower bounds in
the LOCAL model to conditional lower bounds in the MPC setting.

Conjecture 4.5 (One cycle versus two cycles). Suppose machines have nα

memory for α ∈ (0, 1). Even with poly(n) number of machines, distinguishing a
cycle of n nodes and two cycles of n2 nodes require Ω(logn) MPC rounds.

Definition 4.6 (The D-diameter s-t connectivity problem). Given vertices s
and t, and a parameter D,

• Output YES, w.h.p., if s and t are in the same connected component that
is a path of length at most D, with s and t as its two endpoints.

• Output NO, w.h.p., if s and t are in different connected components.

In other cases, one may output arbitrarily. Notice that, with high probability, the
output can only be YES whenever s and t are in the same connected component.

Claim 4.7. Given Conjecture 4.5, solving the D-diameter s-t connectivity prob-
lem requires Ω(logD) MPC rounds.

We leave the proof of Claim 4.7 as an exercise (See Exercise 4.1). We
now turn our attention towards using Claim 4.7 in a framework that lifts
lower bounds in the LOCAL model to conditional lower bounds in the
MPC model. The following claim shows such a result:

Claim 4.8. Under Conjecture 4.5, computing a constant approximation to max-
imum matching requires Ω(log logn) MPC rounds in the sublinear memory
regime.

We describe the two key steps for proving Claim 4.8:

70 CHAPTER 4. LOWER BOUNDS & CONDITIONAL HARDNESS

1. Kuhn et al. [KMW04] showed computing a constant approximation
to maximum matching in the LOCAL model requires Ω̃(

√
logn)

rounds. Using this lower bound result, one can show that for any
o(log logn)-round MPC algorithm A that computes a constant ap-
proximation to maximum matching with success probability > 2

3 ,
there exists two graphs G and G ′ for which A will fail with non-
negligible probability ε.

2. Next, we obtain a contradiction using Claim 4.7 for D ∈ Ω̃(
√

logn).
Assume, for a contradiction, that there is an o(log logn)-round MPC
algorithm B that computes a constant approximation to maximum
matching. Using B as an oracle, one can construct an o(log logn)-
round MPC algorithm A to solve the D-diameter s-t connectivity
problem. However, running A on graphs G and G ′ from the previous
step will fail with a non-negligible probability. Therefore, no such
o(log logn)-round MPC algorithm B can exist.

Notice that the first step can be generalized to other problems. In
particular, any R-round lower bound in the LOCAL model with shared
randomness can be converted into a (logR)-round MPC lower bound
using the argument above. Figure Section 4.2 illustrates the generalized
conditional lower bound reduction workflow. We forward interested
readers to the manuscript of Ghaffari et al. [GKU19] for details.

Remark Step 1 is a special case on the problem of finding constant
approximations to maximum matching. In the manuscript of Ghaffari et al.
[GKU19], graphs G and G ′ are called r-hop-isomorphic centered graphs,
and A is said to be (r, ε)-sensitive with respect to G and G ′.

Exercise 4.1. D-diameter s-t connectivity
Suppose we have poly(n) machines, each with nα memory for α ∈ (0, 1). If there
is no o(logn) MPC algorithm for distinguishing a cycle of n nodes and two
cycles of n2 nodes, then there is no o(logD) round MPC algorithm for solving
the D-diameter s-t connectivity problem.

Hint Assume, for a contradiction, that exists an oracle that solves the D-
diameter s-t connectivity problem in o(logD) rounds. Use the oracle O(logD n)
times to distinguishing a cycle of n nodes and two cycles of n

2 nodes, hence
obtaining a contradiction.

4.2. CONDITIONAL HARDNESS 71

R-round lower bound
in LOCAL model

Existence of (logR)-hop-
isomorphic centered

graphs G and G ′

(logR)-round lower bound in MPC model

D-diameter s-t
connectivity requires
Ω(logD) MPC rounds

One-versus-two
cycles conjecture

Lemma 3.1

Lemma 4.2

Lemma 4.1

Set D = R

Figure 4.1: Graphical illustration of conditional lower bound reduction
technique of Ghaffari et al. [GKU19] which relies on Conjecture 4.5.

72 CHAPTER 4. LOWER BOUNDS & CONDITIONAL HARDNESS

Chapter 5

Dynamic Programming

In this chapter, we look to the class of problems which admit dynamic
programming (DP) solutions. In particular, we study the weighted interval
selection problem and the (1− ε)-approximation MPC algorithms proposed
by Im et al. [IMS17]. In their work, Im et al. also designed (1 + ε)-
approximation algorithms for the longest increasing subsequence and optimal
binary search tree problems but they are beyond the scope of this chapter.

5.1 Weighted Interval Selection

Let us first define the weighted interval selection problem.

Definition 5.1 (The weighted interval selection problem). Given n input
intervals Ii = [ai,bi] with weights wi > 0, output a selection of non-overlapping
intervals with the maximum total weight.

An exact sequential DP algorithm In the sequential setting where all
n intervals fit into a single machine, we know the following dynamic
programming solution: First sort all intervals by their starting points ai’s,
then let A(i) = OPT({Ii, Ii+1, . . . , In}) be the maximum attainable weight
between picking the ith interval Ii, or ignoring it. That is,

A(i) = max

{
wi +A(j), where j = min{j ′ : j ′ > i∧ bi 6 aj ′} (Pick Ii)
A(i+ 1) (Ignore Ii)

MPC setting We are interested in computing a (1− ε)-approximation
solution to the weighted interval selection problem with m machines, each

73

74 CHAPTER 5. DYNAMIC PROGRAMMING

having memory S = Õ(nα) for some constant α ∈ (0, 1), such that the total
global memory is Õ(n). Since sorting can be done in O(1) rounds with
strongly sublinear memory1, we assume without loss of generality that
the intervals are sorted by the starting points ai’s. We describe O(logn)
round and constant round MPC algorithms due to Im et al. [IMS17] in
Section 5.1.1 and Section 5.1.2 respectively.

Remarks on computing an approximate solution We can rescale all
weights wi to wi

maxiwi
such that all weights are now in the interval [0, 1]

and the maximum total weight is at most n. Consider the sequence
(1+ε)0, (1+ε)1, . . . , (1+ε)log(1+ε) n = n. We know that one of these O(logn)
values will be an (1− ε)-approximation to the optimum maximum total
weight. Furthermore, we can ignore all intervals with weight less than ε

n

as their contribution will not affect the approximation.

5.1.1 An O(logn) round MPC algorithm

The sequential DP formulation A(i) is inherently sequential and is ill-
suited to be adapted into the MPC setting. We shall describe a “smooth”
reformulation of the dynamic programming recursion, and show how this
reformulation allows for an O(logn) round MPC algorithm.

Reformulation of the dynamic programming recursion

One way to remove the sequentiality of A(i) is to consider pairs of indices
as follows: Let B(i, j) be the maximum weight selection among intervals
{Ii, Ii+1, . . . , Ij−1} such that the selected intervals end before aj. This implies
that for i < j < k, the selections from B(i, j) and B(j,k) can be concatenated
to form a larger non-overlapping selection of intervals. Observe that
for any i ′ 6 i and j ′ > j, B(i ′, j ′) > B(i, j). This property of B(·, ·) is
called “monotonicity” by Im et al. [IMS17]. Unfortunately, while this
reformulation removes the sequentiality of A(i), computing and storing
all possible B(·, ·) values will require Ω(n2) space, greatly exceeding our
global memory constraint of Õ(n).

Instead, we consider the following reformulation: Let C(i,w) be the
minimum index j such that there is a selection with total weight at least
w among intervals {Ii, Ii+1, . . . , Ij−1} such that the selected intervals end

1See Exercise 2.1.

5.1. WEIGHTED INTERVAL SELECTION 75

before aj. If no such index j exists, we denote C(i,w) =∞. In other words,

C(i,w) = min
j ′:B(i,j ′)>w

j ′

While C(·, ·) still has 2 dimensions, the weight parameter w is “smooth”
and we only need to consider O(logn) possible w values if we only aim
for an (1− ε)-approximation. Furthermore, since B(·, ·) is monotonic, a
feasible solution (without overlapping intervals) that includes the selection
from C(i,w) remains feasible when we replace the selection from C(i,w)
by the selection of C(i,w ′), for any w ′ < w.

To compute an (1 − ε)-approximation, we first compute C(i,w) for
all i ∈ [n] and O(logn) possible w values, then output the selection that
maximizes {w : C(1,w) 6=∞}.

Algorithm

We initialize the m machines by placing the kth consecutive chunk of n
m

intervals into the kth machine. That is, the kth machine receives intervals
I n
m ·(k−1)+1 to I n

m ·k. See Fig. 5.1 for an illustration2.
Let η be a constant to be defined. We use M(i) to denote the machine

holding interval Ii, and C ′(i,w) to denote the DP entries of C(i,w). The
values C ′(·, ·) are initialized to ∞ and we iteratively updating them over
O(logn) rounds. At round r, C ′(·, ·) is the optimal solution by considering
intervals residing on 2r machines.

1. In round 0, we compute C ′(i,w) locally by considering only the
intervals residing on machine M(i).

2. For r ∈ {1, . . . , log2(n) − 1}

• Consider an arbitrary i ∈ [n] and an arbitrary weight value w
out of the O(logn) possible values.

• For O(logn) possible weight values of w1

(a) Suppose that C ′(i,w1) = j1 at the start of round r.
(b) Machine M(i) sends machine M(j) the pair (j1,w1).
(c) Machine M(j) will reply machine M(i) with

j2 = min{C ′(j1,w2) : w1 +w2 > (1− η)w}

2Ignore the annotations t1, t2, t3 and the phrase “local” — they will be explained later.

76 CHAPTER 5. DYNAMIC PROGRAMMING

• Machine M(i) updates C ′(i,w) to the min. of all j2’s received.

Notice that in round r ∈ {1, . . . , log2(n) − 1}, we lose a factor of (1− η)
as we combine partial information across 2r machines. After O(logn)
rounds, C ′(i,w) is computed with information from all machines, and the
weight of the selected interval of C ′(i,w) is at least

(
(1− η)O(logn)

)
times

the weight of the optimal interval of C(i,w). We then set η appropriately
such that (1− η)O(logn) = (1− ε).

Exercise 5.1. Handling potentially many requests to a single machine
In Step 2(b) of the above O(logn) round MPC algorithm, a machine M∗ may
receive� Õ(nα) pairs of (j,w) requests. This means machine M∗ cannot handle
all requests in a single MPC round as it will exceed the communication restric-
tion of MPC. Design a constant round protocol to such that Steps 2(b) and 2(c)
can be implemented in MPC with sublinear memory.

Hint Consider first an arbitrary weight w. Since there are a total of n requests,
there cannot be too many intervals receiving > nα

logn requests. Build broadcast
trees after randomly distributing the information held by these intervals.

5.1.2 A constant round MPC algorithm

Before we describe the constant round algorithm, we need to introduce a
couple of definitions. These definitions allow us to prove Lemma 5.2 which
then suggests a constant round algorithm to approximate the optimal
weighted interval selection.

Setup and definitions

We assume that the starting and ending points are unique3. As per
Section 5.1.1, we initialize the m machines by placing the kth consecutive
chunk of n

m intervals into the kth machine and denote M(i) as the machine
that holds interval Ii.

We define machine time tk = min{ai : Interval Ii resides in machine k}
as the earliest starting time of any interval assigned to machine k. For an
interval Ii = (a,b), we say that Ii starts in machine k if tk < a < tk+1, and
that Ii ends in machine k if tk < b < tk+1. An interval Ii = [a,b] is called
local if it starts and ends in the same machine, and crossing otherwise.
Fig. 5.1 illustrates an instance with 9 intervals on 3 machines.

3We can perturb the ai’s and bi’s without affecting the feasibility of the solution.

5.1. WEIGHTED INTERVAL SELECTION 77

Time

I1

I2

I3

I4

I5

I6

I7

I8

I9

Machine 1

Machine 2

Machine 3

t1 t2 t3

Figure 5.1: Interval assignment on 3 machines. Local intervals are in bold.

We call a subset of disjoint intervals, D, a block. A block D has weight∑
Ii∈Dwi, with starting time aD and ending time bD defined by the earliest

starting time and latest ending time of the intervals in D respectively. If
block D has 6 L crossing intervals, it is called an L-block. We say that
block D spans machines k,k+ 1, . . . ,k ′ if D starts in machine k and ends
in machine k ′ (i.e. tk 6 aD < tk+1 and tk ′ 6 bD < tk ′+1). Two blocks
D and D ′ are said to be independent if their span are disjoint. Consider
Fig. 5.1. Suppose we form blocks D1 = {I1, I5}, D2 = {I1, I6} and D3 = {I7, I9},
where each of them are made up of disjoint intervals. One can check that
span(D1) = {1, 2, 3}, span(D2) = {1, 2}, and span(D3) = {3}. Thus, D1 and
D2 are not pairwise independent, but D2 and D3 are pairwise independent.

Remark Observe that a local interval only spans one machine while a
crossing interval spans at least two machines.

Lemma 5.2. For any even integer L > 2, there is a (1− 2
L)-approximate weighted

interval selection problem consisting of pairwise independent L-blocks.

Proof. The proof is constructive: We will construct independent blocks
out of any arbitrary optimal solution. Fix an optimal solution and order
the chosen intervals in ascending starting time. Consider L consecutive
crossing intervals, then remove the minimum weight interval Imin amongst
each of them. Since we remove the minimum cost out of L intervals, we
lose at most a factor of L in the total weight. Partitioning the chosen
intervals at a machine spanned by the removed Imin’s, we have a collection
of pairwise independent (2L)-blocks. We have shown how to transform

78 CHAPTER 5. DYNAMIC PROGRAMMING

any arbitrary optimal solution into a selection of pairwise independent
(2L)-blocks. By halving L, we obtain the lemma.

Example for Lemma 5.2 Let L = 3 and consider an optimal selection in
the diagram below where crossing intervals are in red. We remove the
minimum weight interval from each of {I2, I4, I6} and {I7, I8, I10}.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t13 t14 t15

Say w2 = min{w2,w4,w6} and w10 = min{w7,w8,w10}. After removing
intervals I2 and I10, we can form (2L−2)-blocks by using machines spanned
by I2 and I10 as “split points” — {I1}, {I3, I4, I5, I6, I7, I8, I9}, {I11}.

I1 I3 I4 I5 I6 I7 I8 I9 I11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t13 t14 t15

Implication of Lemma 5.2 We only need to consider a concatenation of
independent 2ε -blocks. In the spirit of Section 5.1.1 where we concatenate
blocks recursively, Im et al. [IMS17] showed that 2ε -blocks can be computed
in O(log 2

ε) rounds. Then, as we are only dealing with independent blocks,
it suffices to approximate the starting and ending points of these blocks
by the machine times t1, t2, . . . , tm. Doing so allows us to obtain a smaller
problem instance of size n

nα , as we shall see. The above discussion suggests
an O(1ε,α) round algorithm, where 1ε,α is a constant function of ε and α.

Let W be the set of O(logn) weight options. Let OPT(i,µ,L) be the
smallest index j such that there is an L-block of weight > µ among
{Ii, Ii+1, . . . , Ij−1} which ends before aj. Similarly, we denote D(i,µ,L) as an
L-block of weight > µ among {Ii, Ii+1, . . . , Ij−1} which ends before aj.

A family F = {D(i,µ,L)}i∈[n],µ∈W of blocks is said to be an (1 − γ)-
approximate compact family of L-blocks if D(i,µ,L) has weight > (1− γ)µ

and D(i,µ,L) ends no later than aj, for j = OPT(i,µ,L). This implies that a
selection of intervals remains feasible if an L-block defined by OPT(i,µ,L)
is replaced by the block D(i,µ,L) ∈ F while not losing “too much weight”.
By Lemma 5.2, we can construct approximate solutions from F.

5.1. WEIGHTED INTERVAL SELECTION 79

Algorithm

Consider the following algorithm:

1. While there are > S = Õ(nα) intervals:

(a) Suppose there are n intervals. Build a compact family F.

(b) Recall that we only need pairwise independent blocks from the
compact family F. For each O(logn) possible weights w ∈ W,
we only need the blocks corresponding to

D(1,w,L),D(
n

m
+ 1,w,L),D(

2n

m
+ 1,w,L), . . .

(c) Suppose D(i, ·,L) has weight w ′ and spans machines j to k. Treat
D(i, ·,L) as an “interval” with weight w ′ that starts at tj and
ends before tk+1. Treat all blocks likewise.

(d) Recurse on the new problem instance with 6 n
nα “intervals”.

2. Solve on a single machine.

Since each iteration reduces the number of intervals by a factor of
nα, the algorithm runs for O(1α) before it fits in a single machine. The
construction of compact families F can be done in constant time using
ideas from Section 5.1.1. For details, we refer readers to the section on
Constructing the Desired Compact Family using DP in Im et al. [IMS17].

80 CHAPTER 5. DYNAMIC PROGRAMMING

Chapter 6

Submodular Maximization

In this chapter, we study algorithms that maximize monotone submodular
functions under cardinality constraints. To be precise, given a ground set U
of n elements, a set function f : 2U → R+, and an integer k > 0, we wish to
find a subset X ⊂ U of size k such that f(X) is maximized. The set function
f has the following properties:

Monotone f(A) 6 f(B), for any A ⊆ B ⊆ U

Submodular f(A∪ {e}) − f(A) > f(B∪ {e}) − f(B), for any A ⊆ B ⊆ U

The submodularity of f can be interpreted as “diminishing returns” where
the marginal gain for adding an element to a smaller set A is at least the
marginal gain for adding the same element to a superset of A. Notationally,
we write fA(e) = f(A∪ {e}) − f(A). So, the submodularity property can also
be written as fA(e) > fB(e).

Exercise 6.1. Equivalence of submodular property
Consider the following characterization of submodularity. For any A,B ⊆ U,

f(A) + f(B) > f(A∪B) + f(A∩B)

Show that the above is equivalent to fA(e) > fB(e), for any A ⊆ B ⊆ U.

Example An instance of a submodular maximization problem with car-
dinality constraints is the k-coverage problem. Consider a bipartite graph
G = (L∪ R,E) where the ground set are vertices in L. The goal is to select
a set X ⊆ L of size k such that the number of covered elements from R is
maximized. In the example below, A ⊆ B with A = {3, 4} and B = {2, 3, 4}.
We see that 1 = fA({1}) > fB({1}) = 0 and 2 = fA({5}) > fB({5}) = 1.

81

82 CHAPTER 6. SUBMODULAR MAXIMIZATION

1

2

3

4

5

a

b

c

d

e

Set B

Set A

Although submodular maximization is NP-hard, there is a natural
greedy algorithm that achieves a (1− 1

e)-approximation. In the following,
we first describe the sequential greedy algorithm Greedy in Section 6.1,
then introduce two MPC algorithms in Section 6.2 and Section 6.3.

6.1 A greedy sequential algorithm

The sequential algorithm Greedy greedily adds, one by one, the element
with the largest marginal gain with respect to the current set:

1. X← ∅

2. While |X| < k

(a) u← argmaxe∈U\XfX(e) = argmaxe∈U\Xf(X∪ {e}) − f(X)

(b) X← X∪ {u}

3. Return X

Claim 6.1. Greedy is a (1− 1
e)-approximation algorithm. To be precise,

f(X) >
(
1− (1−

1

k
)k
)
· f(OPT)

where X = Greedy(U) and OPT = argmaxX⊆U,|X|=kf(X) = {e1, . . . , ek}.

6.2. CONSTANT APPROXIMATION IN 2 MPC ROUNDS 83

Proof. Let Xi be the set computed by Greedy in the ith iteration. It suffices
to show that f(Xi+1) − f(Xi) > 1

k

(
f(OPT) − f(Xi)

)
for all i ∈ [k].

f(OPT) 6 f(Xi ∪OPT) Monotonicity of f

= f(Xi) +
(
f(Xi ∪ {e1}) − f(Xi)

)
Add items from OPT to Xi

+ . . .

+
(
f(Xi ∪OPT) − f(Xi ∪OPT \ {ek})

)
6 f(Si) +

(
f(Xi ∪ {e1}) − f(Xi)

)
Submodularity of f

+ . . .

+
(
f(Xi ∪ {ek}) − f(Xi)

)
6 f(Xi) + k ·

(
f(Xi+1) − f(Xi)

)
Greedy choice of Xi+1

Rearranging, we have f(Xi+1) − f(Xi) > 1
k

(
f(OPT) − f(Xi)

)
. One can then

rearrange the expression to f(OPT) − f(Xi+1) 6 (1− 1
k) ·

(
f(OPT) − f(Xi)

)
and telescope to obtain the claim1.

6.2 Constant approximation in 2 MPC rounds

6.2.1 Overview

Mirzasoleiman et al. [MKSK13] introduced a 2-round MPC called GreeDI.
GreeDI splits the elements arbitrarily into machines to compute a greedy
solution on the subset of elements, then combine the outputs together.
While Mirzasoleiman et al. could not prove very strong bounds, their
empirical results for GreeDI were promising. Barbosa et al. [BENW15]
analyzed a randomized variant of GreeDI dubbed RandGreeDI which dis-
tributes the elements randomly across the machines. They were able to
prove that RandGreeDI only loses a factor of 2 in the approximation factor
compared to running Greedy on all the elements on a single machine
under the assumption that each machine has memory S > max{k ·m, nm },
where m is the number of machines. The assumption is so that a sin-
gle machine can hold the output of Greedy from m machines. We now
describe RandGreeDI and analyze its approximation guarantees.

1Without loss of generality, we may assume that f(X0) = f(∅) = 0.

84 CHAPTER 6. SUBMODULAR MAXIMIZATION

6.2.2 Algorithm

Let m be the number of machines, each with memory S > max{k ·m, nm }

so that a single machine can hold the output of Greedy from m machines.
Given a ground set U of n elements, a monotone submodular set function
f, and an integer k > 0, RandGreeDI works as follows:

1. Randomly partition U into U1, . . . ,Um and distribute to m machines.

2. In parallel, the ith machine does the following:

• Compute the set of elements Gi = Greedy(Ui) greedily.

• Send the set Gi to a coordinator/leader machine M0.

3. The leader machine machine M0 computes G0 = Greedy(∪mi=1Gi) and
outputs the set of elements Gi∗ , where i = argmaxi∈{0,1,...,m}f(Gi).

Exercise 6.2. Deterministic GreeDI can be bad
Observe that RandGreeDI randomly partitions the elements into themmachines.
If one were to arbitrarily partition U across m machines as in GreeDI, show that
there are instances where GreeDI does not get a constant approximation to OPT .

By definition, the submodular set function f is discrete. To analyze
RandGreeDI, we use a continuous extension of the submodular set func-
tions called the Lovász extension.

6.2.3 The Lovász extension

Instead of considering discrete selection vectors x ∈ [0, 1]n, let us consider
continuous selection vectors x ∈ [0, 1]n. Then, the Lovász extension is
defined as

f− = Eθ∼Uniform(0,1)(f({i : xi > θ}))

Geometrically (See Fig. 6.1), consider a U-dimension ball of radius θ
centered at 0 where we round all xi’s within the ball to 0 and all xi’s
outside the ball to 1. The Lovász extension is then the expectation of the set
function f evaluated over all the roundings of x due to θ ∼ Uniform(0, 1).

The Lovász extension f− of function f has the following 3 properties:

1. f−(1X) = f(X), where (1X)i = 1 if i ∈ S and (1X)i = 0 if i 6∈ X

2. f− is convex

3. For any constant c ∈ [0, 1], f−(cx) > c · f−(x)

6.2. CONSTANT APPROXIMATION IN 2 MPC ROUNDS 85

0

Axis 1

Axis 2Axis 3

x1

x2
x3

Figure 6.1: A 3-dimensional geometric interpretation of rounding x under
the Lovász extension. x1 is rounded to 0 while x2 and x3 are rounded to 1.

Property 1 is self-explanatory: If the probability vector x is binary, then
any θ will round x to select X. To see why f− is convex, we refer readers
to Theorem 7 of this lecture notes2 and this lecture video3. We explain
Property 3 below. WLOG, suppose x1 6 x2 6 · · · 6 xn in vector x ∈ [0, 1]n.

Value of xi

Elements
x1

x2

x3

...

xn

1 2 3 . . . n

Since f− = Eθ∼Uniform(0,1)(f({i : xi > θ})), one can see that

f−(x) = x1 · f({1, 2, 3, . . . ,n})
+ (x2 − x1) · f({2, 3, . . . ,n})
+ (x3 − x2) · f({3, . . . ,n})
+ . . .

+ (xn − xn−1) · f({n})
+ (1− xn) · f(∅)

The first n terms scale linearly with a multiplicative constant c ∈ [0, 1]
while (1− c · xn) > c · (1− xn), yielding the third property of f−. Observe
that if f(∅) = 0, then f− scales linearly and f−(cx) = c · f−(x).

2http://people.csail.mit.edu/moitra/docs/6854lec13.pdf
3https://youtu.be/SDv18sickuM?t=2153

http://people.csail.mit.edu/moitra/docs/6854lec13.pdf
https://youtu.be/SDv18sickuM?t=2153

86 CHAPTER 6. SUBMODULAR MAXIMIZATION

Lemma 6.2. Let c be a constant and p ∈ [0, 1]n be a vector. If X is a random
subset of U such that E[1X] = cp, then E[f(X)] > c · f−(p).

Proof. We use the three property of the Lovász extension f−.

E[f(X)] = E[f−(1X)] Property 1 of f−

> f−(E[1X]) Property 2 of f−, with Jensen’s inequality
= f−(cp) Assumption that E[1X] = cp

> c · f−(p) Property 3 of f−

6.2.4 Analysis of RandGreeDI

We will prove that RandGreeDI is a 1
2(1−

1
e)-approximation algorithm, in

expectation over the random partitions of U. To do so, we do the following:

• Define D(m), a distribution over the random partitionings of U

• Lower bound E[f
(
Greedy(∪mi=1Gi)

)
] in Lemma 6.3

• Lower bound E[f(Gi)] for each machine i in Lemma 6.4

• Combine the bounds from Lemma 6.3 and Lemma 6.4

Let D(m) be the distribution over random subsets of U where each
element is included independently with probability 1

m . Intuitively, the
distribution D(m) represents what a machine receives under RandGreeDI’s
random partitioning of U. Consider vector p = (p1, . . . ,pn) ∈ [0, 1]n where

pi =

{
PrA∼D(m)[i ∈ Greedy(A∪ {i})] if element i is in OPT
0 if element i is not in OPT

Lemma 6.3. Let Ui be the set of elements given to machine i and Gi be the set
returned by Greedy(Ui). Then, E[f

(
Greedy(∪mi=1Gi)

)
] > (1− 1

e) · f
−(p).

Proof. For an element e ∈ OPT ,

Pr[e ∈ ∪mi=1Gi | e ∈ Ui] = Pr[e ∈ Gi | e ∈ Ui]
= Pr
A∼D(m)

[e ∈ Greedy(A) | e ∈ A]

= Pr
B∼D(m)

[e ∈ Greedy(B∪ {e})]

= pe

6.2. CONSTANT APPROXIMATION IN 2 MPC ROUNDS 87

The first equality is because U1, . . . ,Un is a partition of U, so e ∈ ∪mi=1Gi if
and only if e ∈ Gi = Greedy(Ui), for the partition Ui that the element e was
assigned to. The second equality is because the distribution of Ui is the
same as D(m). The third inequality is because the distribution of A ∼ D(m)

conditioned on e ∈ A is identical to the distribution of B ∪ {e} where
B ∼ D(m). Thus, Pr[e ∈ (∪mi=1Gi

⋂
OPT)] = pe and E[1∪mi=1Gi

⋂
OPT] = p.

E[f
(
Greedy(∪mi=1Gi)

)
] > (1−

1

e
) ·E[f(OPT)] By Claim 6.1

> (1−
1

e
) ·E[f

(
∪mi=1 Gi

⋂
OPT

)
] Monotonicity of f

> (1−
1

e
) · f−(p) By Lemma 6.2

Lemma 6.4. Let Ui be the set of elements given to machine i and Gi be the set
returned by Greedy(Ui). Then, E[f(Gi)] > (1− 1

e) · f
−(1OPT − p).

Proof. Consider machine i that receives set of elements Ui. Let Oi be the
set of individual elements from OPT , each of which will not be selected by
Greedy if it is given together with Ui. That is,

Oi = {e ∈ OPT : e 6∈ Greedy(Ui ∪ {e}}

One can show that Greedy(Ui ∪Oi) = Greedy(Ui) = Gi (See Exercise 6.3).
So,

f(Gi) = f(Greedy(Ui ∪Oi))

> (1−
1

e
) · f
(
(Ui ∪Oi)

⋂
OPT

)
By Claim 6.1

> (1−
1

e
) · f(Oi) Monotonicity of f

Taking expectations, we have

E[f(Gi)] > (1−
1

e
) ·E[f(Oi)] From above

> (1−
1

e
) · f−(1OPT − p) By Lemma 6.2

88 CHAPTER 6. SUBMODULAR MAXIMIZATION

Exercise 6.3. Irrelevance of unselected elements
Consider machine i that receives set of elements Ui. LetOi be the set of individual
elements from OPT , each of which will not be selected by Greedy if it is given
together with Ui. That is, Oi = {e ∈ OPT : e 6∈ Greedy(Ui ∪ {e}}. Show that

Greedy(Ui ∪Oi) = Greedy(Ui) = Gi

Hint Derive a contradiction by using the greedy process of Greedy.

Theorem 6.5. In expectation (over the random partitions of U), RandGreeDI is
an 1

2(1−
1
e)-approximation algorithm.

Proof. Let Ui be the set of elements given to machine i and Gi be the set
returned by Greedy(Ui). From Lemma 6.4, we know that

max
i∈{1,...,m}

E[f(Gi)] > (1−
1

e
) · f−(1OPT − p)

Furthermore, for x,y ∈ [0, 1]n, we have 1
2f

−(x) + 1
2f

−(y) > f−(12x +
1
2y))

because f− is convex. Thus,

max
{

E[f
(
Greedy(∪mi=1Gi)

)
], max
i∈{1,...,m}

E[f(Gi)]
}

>
1

2
·
[
E[f
(
Greedy(∪mi=1Gi)

)
] + max

i∈{1,...,m}
E[f(Gi)

]
Maximum > Average

>
1

2
·
[
(1−

1

e
) · f−(p) + (1−

1

e
) · f−(1OPT − p)

]
Lemma 6.3 and Lemma 6.4

>
1

2
(1−

1

e
) · f−(1OPT) Convexity of f−

=
1

2
(1−

1

e
) · f(OPT) Property 1 of f−

In their work, Barbosa et al. [BENW15] also modified RandGreeDI for
non-monotone submodular functions f. This is beyond the scope of this
chapter and interested readers may refer to Section 4 of the paper.

Exercise 6.4. 4-approximation to the k-center problem
Consider a set X of n points in Euclidean space. The k-center problem is to find
a subset C ⊆ X of size k such that the maximum distance of any point to the
nearest point in C is minimized. The k-center problem is known to be NP-hard
but there is a sequential 2-approximation algorithm that runs in O(nk) time.

Given machine memory of S > max{k ·m, nm }, design a 2-round MPC algo-
rithm that outputs a 4-approximation to the k-center problem.

6.3. OPTIMAL APPROXIMATION VIA SAMPLE-AND-PRUNE 89

Hint Use the outline of RandGreeDI.

6.3 Optimal approximation via Sample-and-Prune

Previously, we saw a 2-round MPC algorithm RandGreeDI which com-
putes an 1

2(1−
1
e)-approximation using machine memory S > max{k ·m, nm }.

Kumar et al. [KMVV15] introduced a threshold-based MPC algorithm
Threshold-MPC that computes an 1

1+ε(1−
1
e)-approximation with machine

memory S = Õ(knα), for any constant α ∈ (0, 1). Unlike RandGreeDI,
Threshold-MPC runs in O(1εα logk) rounds.

As a warm up, we first describe a 1
2 -approximation sequential algorithm

Threshold-Greedy, and how to simulate it in a constant number of MPC
rounds via SampleAndPrune. One can then obtain an 1

1+ε(
1
2)-approximation

MPC algorithm that runs in constant rounds. To obtain an 1
1+ε(1−

1
e)-

approximation, we introduce a 1
1+ε-approximate version of Greedy and

describe Threshold-MPC which simulates some sequential steps of it with
the above SampleAndPrune technique.

6.3.1 Warm up

The main purpose of this warm up is to introduce the framework of
Sample-and-Prune. For now, let us assume we know the value of f(OPT).

The Threshold-Greedy algorithm

Given a set of elements U and a threshold τ, Threshold-Greedy does the
following:

1. X← ∅

2. While |X| < k, and ∃e ∈ U \X such that fX(e) > τ

• X← X∪ {e}

3. Return X

Claim 6.6. If X is the set returned by running Threshold-Greedy on the set of
all elements U and the threshold τ = f(OPT)

2k , then f(X) > f(OPT)
2 .

90 CHAPTER 6. SUBMODULAR MAXIMIZATION

Proof. Recall that Threshold-Greedy terminates if either |X| = k or there
are no more elements that have marginal gain at least τ. Since |OPT | = k

and |X| 6 k, we have 0 < |OPT \X| 6 k within Threshold-Greedy.
Suppose f(X) <

f(OPT)
2 . Then, fX(OPT \ X) = f(OPT ∪ X) − f(X) >

f(OPT) − f(X) >
f(OPT)
2 . Since f is submodular, we know that there is an el-

ement e ∈ OPT \X ⊆ U \X with marginal gain at least f(OPT)
2·|OPT\X| >

f(OPT)
2k = τ

by similar arguments as in the proof of Claim 6.1.
This means that if the returned X has size < k, then f(X) > f(OPT)

2 . On
the other hand, if the returned X is of size k, then the last element added
to X has marginal gain at least f(OPT)

2·|OPT\X| =
f(OPT)
2 .

The Sample-and-Prune technique

Threshold-Greedy is inherently sequential and a direct adaptation to
the MPC setting would require Ω(k) rounds because one has to check
the marginal gains of each element after adding an element to the set
X. On the other hand, Sample-and-Prune provides a way to execute
Threshold-Greedy in the MPC setting in constant number of rounds.
For cleanliness, we shall describe Sample-and-Prune assuming machine
memory S > k ·

√
n. It can be shown that a smaller machine memory of

S ∈ Õ(knα) also works (See Lemma 6.9).
Given a set of elements U and a threshold τ, Sample-and-Prune does

the following:

1. T ← Sample each element with probability 1√
n

.

2. X← Threshold-Greedy(T , τ).

3. R← {e ∈ U \X : fX(e) > τ}

4. Return X,R

Intuitively, set R is the set of remaining elements with “sufficiently large”
marginal gains with respect to output X. Observe that elements in T that
are not chosen by Threshold-Greedy will have small marginal gains.

Claim 6.7. Sample-and-Prune can be implemented in 2 MPC rounds with
machine memory S > k ·

√
n.

Proof. Sampling of T can be done independently across all machines. With
high probability, |T | 6 S ∈ Õ(

√
n) so T can be sent to a single machine. The

set X, of size 6 k, is computed locally on a single machine and can be

6.3. OPTIMAL APPROXIMATION VIA SAMPLE-AND-PRUNE 91

broadcasted to all other machines in 1 round. Each machine then locally
drops elements which have marginal contributions less than τ.

Claim 6.8. If R is the returned set from Sample-and-Prune on n elements, then
|R| < 2k

√
n logn with high probability.

Proof. Let us upper bound the negation of the claim. Consider an arbitrary
output X from Threshold-Greedy and suppose |R| > 2k

√
n logn. That is,

for this fixed output X, we suppose there are at least 2k
√
n logn elements

that have marginal gains larger than τ with respect to X.

Pr[R∩ T = ∅] = (1−
1√
n
)|R| 6 e

−
|R|√
n 6 e−2k logn = n−2k

Taking the union bound over all at most
∑k
i=0

(
n
i

)
6 2nk possible outputs X,

the probability that there is some instance where |R| > 2k
√
n logn is at most

2nk ·n−2k 6 2n−k. In other words, Pr
[
|R| < 2k

√
n logn

]
> 1− 2n−k.

Lemma 6.9. Suppose we have machine memory S = Õ(knα) for some α ∈ (0, 1).
Modify Sample-and-Prune to sample each element independently with proba-
bility 1

n1−α
into T . Prove that if |T | = n, then |R| ∈ O(kn1−α logn) w.h.p.

Suppose we have machine memory S = Õ(knα) for some α ∈ (0, 1).
Consider running Sample-and-Prune for O(1α) repetitions as follows:

1. X← ∅

2. R0 ← U

3. For i ∈ {1, . . . ,O(1α)}:

(a) Xi,Ri ← Sample-and-Prune(Ri−1, τ)

(b) X← X∪Xi

4. Return X

Corollary 6.10. Show that after T ∈ O(1α), the set X contains all elements that
contribute a marginal gain of at least τ and RT = ∅.

Exercise 6.5. Using a smaller machine memory
Prove Lemma 6.9, then use it to prove Corollary 6.10.

Hint Modify the proofs of Claim 6.7 and Claim 6.8 appropriately to prove
Lemma 6.9 under the modified sampling probability.

92 CHAPTER 6. SUBMODULAR MAXIMIZATION

Removing the assumption of knowing f(OPT) Let ∆ = maxe∈U f({e}),
then f(OPT) 6 k ·∆. By guessing f(OPT) ∈ { k∆

(1+ε)0
, k∆
(1+ε)1

, . . . , k∆

(1+ε)log1+ε k
},

we lose a factor of at most 1
1+ε . That is, one can obtain an 1

1+ε(
1
2)-

approximation MPC algorithm that runs in constant rounds by trying
O(logk) guesses for f(OPT) in parallel.

Exercise 6.6. Selecting the k largest elements in constant rounds
Given machine memory S > k · nα for some constant α ∈ (0, 1), design a O(1α)-
round algorithm that returns the k largest elements out of n elements.

Hint Use the outline of Sample-and-Prune.

Remark Observe the similarities between Exercise 6.6 and Exercise 2.1 on
sorting n items. Sample-and-Prune can also be applied to give a constant
round MPC algorithms for selecting the kth largest item amongst n items.

6.3.2 The Threshold-MPC algorithm

In the warm up, we saw that one could design a constant round MPC algo-
rithm Sample-and-Prune to compute an 1

1+ε(
1
2)-approximation. To improve

upon the approximation factor, Threshold-MPC uses the SampleAndPrune
technique to simulate some sequential steps of the 1

1+ε-approximate ver-
sion of Greedy we describe below.

Let ∆ = maxe∈U f({e}) be the largest possible marginal gain. Since
f(OPT) 6 k · ∆, all elements with marginal gains smaller than ε∆

k can
be ignored when computing a 1

1+ε-approximation to OPT . Observe that
marginal gains can only decrease as the set X grows. The following
algorithm is a 1

1+ε -approximate version of Greedy:

1. ∆←maxe∈U f({e})

2. X← ∅

3. For i ∈ {0, 1, 2, . . . , log1+ε k
ε }:

(a) τ← ∆
(1+ε)i

(b) While |X| < k, and ∃e ∈ U \X such that fX(e) > τ

• X← X∪ {e}

4. Return X

6.4. OPTIMAL APPROXIMATION IN CONSTANT TIME 93

Instead of running the while loop, Threshold-MPC runs SampleAndPrune
repeatedly for O(1α) iterations to extract the set X ′ of all elements that con-
tribute a marginal gain of at least τ (See Corollary 6.10):

1. ∆←maxe∈U f({e})

2. X← ∅

3. For i ∈ {0, 1, 2, . . . , log1+ε k
ε }:

(a) τ← ∆
(1+ε)i

(b) X ′ ← O(1α) repetitions of Sample-and-Prune(U, τ)

(c) X← X∪X ′

4. Return X

Claim 6.11. Threshold-MPC runs in O(1εα logk) MPC rounds with machine
memory S > k ·nα for any constant α ∈ (0, 1).

Proof. Each invocation of Sample-and-Prune runs in 2 MPC rounds. There
are O(1εα logk) invocations of Sample-and-Prune.

Claim 6.12. Threshold-MPC is a 1
1+ε(1−

1
e)-approximation algorithm.

Proof. Threshold-MPC emulates Greedy except that at each step, we may
be adding an element whose marginal gain is a factor 1

1+ε smaller.

6.4 Optimal approximation in constant time

In the earlier sections, we saw algorithms RandGreeDI from Section 6.2
and Threshold-MPC from Section 6.3. RandGreeDI computes an 1

2(1−
1
e)-

approximation using machine memory S > max{k ·m, nm } in 2 rounds.
Threshold-MPC computes an 1

1+ε(1 −
1
e)-approximation using machine

memory S > Õ(knα) in O(1εα logk) rounds.
In this section, we look at two pieces of work, due to Barbosa et al.

[BENW16] and Liu and Vondrak [LV18], that bring down the round com-
plexity for (1− 1

e −O(ε))-approximation to a constant. For cleanliness, we
consider a setting with O(

√
n
k) machines, each with memory of S ∈ Θ̃(

√
nk)

in the rest of this section.

94 CHAPTER 6. SUBMODULAR MAXIMIZATION

6.4.1 ParallelAlg by Barbosa et al. [BENW16]

Barbosa et al. [BENW16] describe a framework for converting a sequential
α-approximate algorithm A for monotone submodular functions into an
(α− ε)-approximate algorithm in MPC that runs in O(1ε) rounds. In our
context, A = Greedy which has an α = (1− 1

e) approximation.
The algorithm ParallelAlg is similar in spirit to RandGreeDI which

distributes elements from U across m machines and computes Greedy
on those subset of elements locally. In addition to this random process,
ParallelAlg maintains a pool C ⊆ U of “good” elements. This pool is
given to the machines together with the random distribution of elements,
and we grow this pool over time by adding elements chosen by Greedy
across all machines. To amplify success probability, a round involves
executing multiple groups in parallel.

Algorithm

Let g = Θ(1
ε·(1−1e)

) be the number of groups of m machines such that gm
is the total number of machines, and Cr be the pool of “good” elements
computed after round r. We now describe the algorithm ParallelAlg:

1. C0 ← ∅

2. For round r ∈ {1, 2, . . . ,O(1ε)}:

(a) Within each group, distribute the elements of U uniformly at
random across the m machines. In round r, let X(j)

i,r be the set of
elements sent to ith machine in the jth group.

(b) G(j)
i,r ← Greedy(X(j)

i,r ∪Cr−1), for each machine i in each group j.

(c) Cr ← Cr−1 ∪
(
G

(1)
1,r ∪ · · · ∪G

(1)
m,r

)
∪ · · · ∪

(
G

(g)
1,r ∪ · · · ∪G

(g)
m,r

)
3. Return the best output observed throughout all executions of Greedy.

Since the size of Cr grows by at most kgm ∈ Θ̃(
√
nk) additional el-

ements per round and there are only O(1ε) rounds, the set X(j)
i,r ∪ Cr can

always fit in memory of a machine. To avoid duplication of the data, one
can also run each iteration g times to simulate the parallel execution of
g groups. Since g is a constant, the resultant algorithm will still take a
constant number of rounds.

6.4. OPTIMAL APPROXIMATION IN CONSTANT TIME 95

Analysis

For analysis, we fix an arbitrary round r, machine i, group j, and pool
Ĉr−1 ⊆ U. Let D(m) be the distribution over random subsets of U where
each element is included independently with probability 1

m . We define

pr(e) =

{
PrA∼D(m)[e ∈ Greedy(Ĉr−1 ∪X

(j)
i,r ∪ {e})] if e ∈ OPT \Cr−1

0 if e 6∈ OPT \Cr−1
So, an element e ∈ OPT \Cr−1 will be added to the pool Cr with probability
1− (1− pr(e))

g. We first give an overview of the proof idea by assuming
that pr(e) ∈ {0, 1} for all elements.

The idea is to argue that in each round either ParallelAlg finds an
(1− 1

e −O(ε))-approximate solution, or it manages to grow the pool to gain
an O(ε) fraction of f(OPT). Consider sets Pr = {e ∈ OPT \ Ĉr−1 | pr(e) = 0}
and Qr = {e ∈ OPT \ Ĉr−1 | pr(e) = 1}. One can show these two inequalities:

f
(
Greedy(Ĉr−1 ∪X

(j)
i,r ∪ Pr)

)
> (1−

1

e
) · f
(
(OPT ∩ Ĉr−1)∪ Pr

)
f
(
Qr ∪ (OPT ∩ Ĉr−1)

)
− f
(
(OPT ∩ Ĉr−1)

)
> f(OPT) − f

(
(OPT ∩ Ĉr−1)∪ Pr

)
Thus, if f

(
(OPT ∩ Ĉr−1)∪ Pr

)
> (1− ε) · f(OPT), then ParallelAlg finds an

(1− 1
e −O(ε))-approximate solution. Otherwise, ParallelAlg manages to

grow the pool to gain an O(ε) fraction of f(OPT).
Using the above proof idea, let us handle the case where pr(e) ∈ [0, 1].

We prove a useful lemma using the Lovász extension (See Section 6.2.3)
and a theorem that tells us that in expectation, ParallelAlg makes “good
progress” in each round. An application of Markov’s inequality then tells
us that that ParallelAlg returns an (1− 1

e −O(ε))-approximation to OPT
with constant probability.

Lemma 6.13. Consider two sets S and T . Let R ⊆ T be a subset where each
element of T is included into R with probability p. Then,

E[f(R∪ S)] > p · f(T ∪ S) + (1− p) · f(S)

Proof. Fix a set R ⊆ T .

E[f(R∪ S)] = E[f−(1R∪S)] Property 1 of f−

> f−(E[1R∪S]) Property 2 of f−, with Jensen’s inequality
= f−(E[1R\S] + 1S) Separating deterministic selection of S

> f−(p · 1T\S + 1S) Sampling probability into R

= p · f(1T∪S) + (1− p) · f(1S) Definition of f−

96 CHAPTER 6. SUBMODULAR MAXIMIZATION

Theorem 6.14. For round r and pool Ĉr−1 ⊆ U, one of the following holds:

1. For some machine i in some group j,
E[f(Greedy(X(j)

i,r ∪Cr−1) | Cr−1 = Ĉr−1] > (1− ε)2 · (1− 1
e) · f(OPT)

2. E[f(Cr ∩OPT) | Cr−1 = Ĉr−1] − f(Ĉr−1 ∩OPT) > ε
2 · f(OPT)

Proof. We consider the following sets:

• Pr = {e ∈ OPT \ Ĉr−1 | pr(e) < ε}

• Qr = {e ∈ OPT \ Ĉr−1 | pr(e) > ε}

• P ′r = {e ∈ Pr | e 6∈ Greedy(Ĉr−1 ∪X
(j)
i,r ∪ {e})}

• Q ′r = Qr ∩ {∪
gm
i=1Greedy(Ĉr−1 ∪X

(j)
i,r)}

By definition, the sets Pr and Qr partition the set of elements OPT \ Ĉr−1.
Consider the following condition (?):

f
(
(OPT ∩ Ĉr−1)∪ Pr

)
> (1− ε) · f(OPT)

Suppose condition (?) is satisfied. We now show that statement (1) of
the theorem holds. Since Pr[e ∈ P ′r | e ∈ Pr] > 1− ε,

E[f(Greedy(Ĉr−1 ∪X
(j)
i,r))]

= E[f(Greedy(Ĉr−1 ∪X
(j)
i,r ∪ P

′
r))] See Exercise 6.3 with Oi = P ′r

> E[f(Greedy
(
(OPT ∩ Ĉr−1)∪ P ′r)

)
] f is monotone

> (1−
1

e
) ·E[f

(
(OPT ∩ Ĉr−1)∪ P ′r

)
] (1−

1

e
)-approximation of Greedy

> (1− ε) · (1− 1
e
) · f
(
(OPT ∩ Ĉr−1)∪ Pr

)
Lemma 6.13 with P ′r ⊆ Pr

> (1− ε)2 · (1− 1
e
) · f(OPT) If (?) is satisified

Hence, statement (1) holds. Now, suppose condition (?) is not satisfied.
We now show that statement (2) of the theorem holds.

f
(
Qr ∪ (OPT ∩ Ĉr−1)

)
− f
(
(OPT ∩ Ĉr−1)

)
> f

(
Pr ∪Qr ∪ (OPT ∩ Ĉr−1)

)
− f
(
(OPT ∩ Ĉr−1)∪ Pr

)
f is submodular

> f(OPT) − f
(
(OPT ∩ Ĉr−1)∪ Pr

)
Pr ∪Qr = OPT \ Ĉr−1

6.4. OPTIMAL APPROXIMATION IN CONSTANT TIME 97

Since Pr[e ∈ Q ′r | e ∈ Qr] = 1 − (1 − pr(e))
g > 1 − 1

e > 1
2 , by applying

Lemma 6.13 with Q ′r ⊆ Qr, we see that

E[f
(
Q ′r ∪ (OPT ∩ Ĉr−1)

)
] >

1

2
· f
(
Qr ∪ (OPT ∩ Ĉr−1)

)
+
1

2
· f
(
OPT ∩ Ĉr−1

)
By definition,

(
Q ′r ∪ (OPT ∩ Ĉr−1)

)
⊆ Cr ∩OPT . Thus,

E[f(Cr ∩OPT) | Cr−1 = Ĉr−1] − f(Ĉr−1 ∩OPT)

> E[f
(
Q ′r ∪ (OPT ∩ Ĉr−1)

)
] − f(OPT ∩ Ĉr−1) f is monotone

>
1

2
·
[
f
(
Qr ∪ (OPT ∩ Ĉr−1)

)
− f(OPT ∩ Ĉr−1)

]
From above

>
1

2
·
[
f(OPT) − f

(
(OPT ∩ Ĉr−1)∪ Pr

)]
From above

>
ε

2
· f(OPT) If (?) is not satisified

Hence, statement (2) holds.

6.4.2 A new analysis by Liu and Vondrak [LV18]

Liu and Vondrak [LV18] defined a slight variation to the algorithms of
Section 6.3 and gave a new analysis which showed that their algorithm
achieves an (1− 1

e −O(ε))-approximation in O(1ε) rounds. We first describe
their entire algorithm, then describe their analysis.

Throughout this section, we assume that f(OPT) is known. As seen
in earlier sections, for an (1− ε−O(ε))-approximation to f(OPT), one can
remove this assumption by running O(logk) guesses for f(OPT) in parallel.

Algorithm

Given a set S, a partial greedy solution G with |G| 6 k, and a threshold τ,
algorithm Threshold-Greedy adds to G, one by one, elements from S with
marginal gain larger than τ with respect to the current G.

1. While |G| < k, and ∃e ∈ S such that fG(e) > τ

• G← G∪ {e}

2. Return G

Given a set S, a partial greedy solution G, and a threshold τ, algorithm
Threshold-Filter removes from set S any element with marginal gain
less than τ with respect to G.

98 CHAPTER 6. SUBMODULAR MAXIMIZATION

1. X← S

2. For e ∈ S

• If fG(e) < τ, X← X \ {e}

3. Return X

Using Threshold-Greedy and Threshold-Filter above, given a set of
elements U and an approximation ε, Threshold-MPC does the following:

1. G← ∅

2. For round r ∈ {1, . . . , t ∈ O(1ε)}

(a) Set threshold for current round τr ← (1− 1
t+1)

r · f(OPT)k

(b) S← Sample elements from U independently w.p. p = 4
√

k
n .

(c) U1, . . . ,Um ← Partition U uniformly at random into m sets.

(d) On a single central machine M0

• G← Threshold-Greedy(S,G, τr)
• Send Ui, G, and τ to machine i, for i ∈ {1, . . . ,m}.

(e) For each machine i ∈ [m] that receives Ui, G, and τ:

• If |G| = k, set Ri ← ∅
• If |G| < k, set Ri ← Threshold-Filter(Ui,G, τ)
• Send Ri to machine M0

(f) Update G← Threshold-Greedy(∪mi=1Ri,G, τ) on machine M0

Analysis

Exercise 6.7. 1 round of Threshold-MPC gives an 1
2 -approximation

Prove that Threshold-MPC gives an 1
2 -approximation if we run for t = 1 rounds.

Hint See the analysis in Section 6.3.1.

Claim 6.15. With probability 1− e−k, |∪mi=1 Ri| is at most
√
nk.

Proof. Recall that we sampled each element with probability p = 4
√

k
n into

S. By Chernoff bounds, S has at least 3
√
nk elements with high probability.

6.4. OPTIMAL APPROXIMATION IN CONSTANT TIME 99

We analyze S as being provided in 3k phases, each with
√
n
k elements.

At any phase, if | ∪mi=1 Ri| 6
√
nk, the claim holds. Henceforth, suppose

| ∪mi=1 Ri| >
√
nk at every phase. Consider Sj of size

√
n
k at some phase j.

Then,

Pr[Sj ∩ (∪mi=1Ri) = ∅] 6 (1−
1√
n
k

)
√
nk 6 e−k 6

1

2

That is, some element from ∪mi=1Ri will be sampled into Sj with probability
at least half. Since we run 3k phases, we expect 3k2 elements from ∪mi=1Ri
to be sampled. Hence, with probability at least 1− e−k, we sampled k

elements with marginal gain (with respect to G) of > τ into S. In that case,
G = Threshold-Greedy(S, ∅, τ) will be of size k and ∪mi=1Ri = ∅.

Remark Claim 6.15 is of similar flavor as Lemma 6.9. Let R be the set
of remaining elements with sufficiently high marginal gain. Lemma 6.9
argues that |R| ∈ O(

k logn
p) while Claim 6.15 argues that |R| ∈ O(kp).

Lemma 6.16. Let Xr be the set of first r
tk elements chosen by Threshold-MPC.

Then, f(Xr) > (1− (1− 1
t+1)

r) · f(OPT).

Proof. For cleanliness, we assume that rtk is integral. We prove by induction
on the round number r. When r = 0, the statement trivially holds.

Recall that τr = (1− 1
t+1)

r · f(OPT)k .

• Case 1: All of Xr were selected when threshold was above τr

By the induction hypothesis,

f(Xr−1) > (1− (1−
1

t+ 1
)r−1) · f(OPT)

In case 1, the remaining (rtk −
r−1
t k) items of Xr \ Xr−1 each has

marginal gain of at least τr. Thus,

f(Xr) > f(Xr−1) + (
r

t
k−

r− 1

t
k) · τr

> (1− (1−
1

t+ 1
)r−1) · f(OPT) + 1

t
· (1− 1

t+ 1
)r · f(OPT)

= (1− (1−
1

t+ 1
)r) · f(OPT)

• Case 2: Not all of Xr were selected when threshold was above τr

100 CHAPTER 6. SUBMODULAR MAXIMIZATION

Let Sr ⊆ Xr be the set of elements selected when threshold value was
at least τr. Then, there are no elements with marginal value more
than τr with respect to S. Since f is monotone,

f(OPT) − f(Sr) 6 f(OPT ∪ Sr) − f(Sr) = fS(OPT) 6 kτr

Rearranging,

f(Sr) > f(OPT) − kτr = (1− (1−
1

t+ 1
)r) · f(OPT)

Theorem 6.17. Threshold-MPC gives an (1 − 1
e − O(ε))-approximation if we

run for t ∈ O(1ε) rounds.

Proof. Pick t ∈ O(1ε) in Lemma 6.16.

Chapter 7

Data clustering

In this chapter, we look at a clustering problem that is commonly used
in data science. Given a large corpus of data, clustering is often used to
group closely related elements so that one can get the rough sense of a
cluster by examining its representative element. Amongst the variants of
clustering, we will look at the problem of k-means clustering.

Definition 7.1 (The k-means clustering problem). Given a set X = {x1, . . . , xn}
of n points in Rd and an integer k ∈ [1,n], output a set C = {c1, . . . , ck} of k
points in Rd, not necessarily from X, that minimizes

φX(C) =
∑
x∈X

d2(x,C) =
∑
x∈X

min
i∈{1,...,k}

‖x− ci‖2

For notational cleanliness, for sets with only one element, we write
φX(c) and d2(x, c) to mean φX({c}) and d2(x, {c}) respectively. In Section 7.1,
we will describe the standard k-means clustering algorithm which itera-
tively refines an initial set C. Then, we describe a way to initialize the set
C to obtain theoretical competitive guarantees in Section 7.2, and discuss
a “parallelized” way to implement the initialization in Section 7.3.

Remark We saw another variant of clustering in Exercise 6.4 that aims
to minimize a different loss metric: maxx∈X d2(x,C).

7.1 k-means

Drineas et a. [DFK+
04, Section 3, Theorem 1] showed that k-means cluster-

ing is NP-hard even for k > 2. However, simple and efficient algorithms

101

102 CHAPTER 7. DATA CLUSTERING

with good empirical results exist. For example, Lloyd [Llo82] proposed a
local search algorithm that iteratively refines an initial set of k centers by
alternating the two following steps until convergence:

Assignment step Assign points in X to the nearest c ∈ C

Update step For each c ∈ C, let Xc ⊆ X be the set of points assigned to c.
Update point c to minimize φXc(c) =

∑
x∈Xc ‖x− c‖

2

In the update step, the best centroid for a fixed group of points Xc is
the average of the points of Xc. That is, we update c ∈ C to be the mean of
the data points assigned to it:

argmin φXc(c) =
1

|Xc|

∑
x∈Xc

x

Figure Fig. 7.1 illustrates k-means with randomly initial centroids C.

Remark The k-means algorithm is closely related to the Expectation-
Maximization algorithm1 and Gaussian mixture models2.

7.2 k-means++: Initializing with guarantees

Although k-means is simple and efficient in practice, it is known that
running it with different initial C will often end in different local minima.
In particular, there exists data distributions in which certain initializations
can be much worse than the optimum achievable φX(C). To achieve theo-
retical guarantees, Arthur and Vassilvitskii [AV07] proposed k-means++ to
initialize the k centroids so that running k-means on this initialization will
be O(logk)-competitive, regardless of data distribution:

1. Pick c1 uniformly at random from X.

2. For i ∈ {2, . . . ,k},

(a) For x ∈ X, denote d(x) = d2(x, {c1, . . . , ci−1}) as the distance of x
to the closest point in {c1, . . . , ci−1}.

(b) Pick x ∈ X as ci with probability d(x)∑
x∈X d(x)

.
1https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
2https://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model

https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model

7.3. K-MEANS‖: PARALLELIZING THE INITIALIZATION 103

Figure Fig. 7.2 illustrates k-means++. The intuition of this initialization
process is to favor picking points which are currently “badly represented”
by the current set of chosen centroids. We do not analyze k-means++ here,
but we will analyze a closely related variant in the next section.

7.3 k-means‖: Parallelizing the initialization

The initialization process of k-means++ is inherently sequential. Let ∆ be
the maximum distance among any pair of points from X. Bahmani et
al. [BMV+

12] proposed an O(log(n∆)) phase algorithm k-means‖ to first
reduce the data size to O(k logn) such that the loss is only a constant
factor in approximation. Then, a subsequent call to a weighted clustering
algorithm computes a set of k points using the O(k logn) representatives.

7.3.1 Algorithm

Fix l ∈ Θ(k). The algorithm k-means‖ chooses O(l logn) points from X

to represent all points in X. Then, k centroids are chosen amongst these
O(l logn) representatives as the initial set C for subsequent clustering
algorithms such as k-means++. For each representative c ∈ C, one can
think of “moving” points x ∈ X to their labels c ∈ C.

1. C← Sample a point uniformly at random from X

2. For O(log(n∆)) iterations

(a) C ′ ← Sample x ∈ X independently with probability l · d
2(x,C)
φX(C)

(b) C← C∪C ′

3. For each c ∈ C, set wc to be the number of points closest to c than
any other point in C

4. In one machine, cluster the weighted points of C into k points.

Claim 7.2. If an α-approximation algorithm A is used to recluster the points in
Step 4, then k-means‖ produces a set of k centroids that is O(α)-approximate to
the optimum clustering of the data points X.

104 CHAPTER 7. DATA CLUSTERING

Proof. Let C be the gathered set of representatives, OPT be the set of
optimum centroid for X, and OPT ′ be the set of optimum centroids for C.
In the analysis later, we will show that E[φX(C)] ∈ O(φX(OPT)). So,

E[A(C)] 6 E[α ·φX(OPT ′)] 6 E[α ·φX(C)] ∈ O(α ·φX(OPT))

If we use A = k-means++, then k-means‖ produces a set of k centroids that
is O(logk)-competitive to OPT .

k-means‖ in MPC Suppose each machine has memory S ∈ Ω̃(k), then
each iteration of k-means‖ can be executed in O(1) MPC rounds — points
from X are sampled independently on the machines and broadcasted. The
set of representatives C are then clustered on a single machine.

7.3.2 Analysis

We first discuss two successively complete intuitions about k-means‖ before
presenting the analysis.

First order intuition

Consider set C from some iteration of k-means‖ and the clusters of OPT .
Suppose A is a cluster where φA(C) > 1

2kφX(C). Since we sample l ∈ Ω(k)

points and each sample lies in A with probability at least 1
2k , a point from

A will be sampled into C ′ in the current iteration with constant probability.
Fig. 7.3 gives a visual interpretation of this intuition.

Second order intuition

Fix a cluster A in OPT . Suppose |A| = T and denote its centroid as
a∗ = 1

|A|

∑
a∈A a. Define the points A by a1, . . . ,aT such that ai is closer to

a∗ than aj for any i < j. That is, d2(ai,a∗) 6 d2(aj,a∗) for any i < j.

Claim 7.3. For 1 6 i < j 6 T , ai is a better centroid for set A than aj. That is,

φA(ai) 6 φA(aj)

Proof. For a point a ∈ A,

‖a− ai‖2 = ‖(a− a∗) + (a∗ − ai)‖2

= ‖a− a∗‖2 − 2〈a− a∗,a∗ − ai〉+ ‖a∗ − ai‖2

7.3. K-MEANS‖: PARALLELIZING THE INITIALIZATION 105

Since a∗ = 1
|A|

∑
a∈A a,

φA(ai) =
∑
a∈A
‖a− ai‖2

=
∑
a∈A

(
‖a− a∗‖2 − 2〈a− a∗,a∗ − ai〉+ ‖a∗ − ai‖2

)
=
∑
a∈A

(
‖a− a∗‖2

)
− 2
∑
a∈A

(
〈a− a∗,a∗ − ai〉

)
+ |A| · ‖a∗ − ai‖2

=
∑
a∈A

(
‖a− a∗‖2

)
+ |A| · ‖a∗ − ai‖2

By definition, ai is closer to a∗ than aj. Thus,

φA(aj) −φA(ai) = |A| ·
(
‖a∗ − aj‖2 − ‖a∗ − ai‖2

)
> 0

Consider set C from some iteration of k-means‖. For t ∈ {1, . . . , T }, let
us define the following quantities:

• The probability for sampling point at into C ′ (with respect to A)

pt = l ·
d2(at,C)
φA(C)

• The probability that at is the first / minimum index point sampled

qt = pt ·Πt−1i=1(1− pi)

• An upper bound on φA(C∪C ′), the new φ cost of A

st = min{φA(C),φA(at)}

where φA(C) is the old cost, and φA(at) =
∑
a∈A ‖a− at‖2. Note that

φA(C∪C ′) could be smaller than φA(at) if multiple points of A are
sampled into C ′, or if the points are closer to a centroid outside of A.

We further define qT+1 = 1−
∑T
t=1 qt as the probability of not sampling

any point from A into C ′, and sT+1 = φA(C) as the corresponding upper
bound of φA(C∪C ′).

Lemma 7.4.
∑T
t=1φA(at) = 2 · T ·φA(a∗) and Et[φA(at)] = 2φA(a

∗)

106 CHAPTER 7. DATA CLUSTERING

Proof. Recall that φA(ai) =
∑
a∈A

(
‖a− a∗‖2

)
+ T · ‖a∗ − ai‖2. Thus,

T∑
t=1

φA(at) =

T∑
t=1

(∑
a∈A

(
‖a− a∗‖2

)
+ T · ‖a∗ − at‖2

)

=

T∑
t=1

(
φA(a

∗)
)
+ T ·

T∑
t=1

(
‖a∗ − at‖2

)
= 2 · T ·φA(a∗)

Hence, Et[φA(at)] =
1
T

∑T
t=1φA(at) = 2φA(a

∗).

Under the assumption that {qt}t is a decreasing sequence, the following
claim shows that the potential φA(C∪C ′) of A “moves towards” a constant
approximation of φA(a∗), in expectation. One scenario in which the
assumption holds is when p1 = · · · = pT (consider a cluster A that is far
from all the chosen centroids so far, then all pi’s are roughly the same).
We will analyze the situation for general qt’s later.

Claim 7.5. If p1 = · · · = pT , then

E[φA(C∪C ′)] 6 (1− qT+1) ·
(
2φA(a

∗)
)
+ qT+1 ·φA(C)

Proof. Since p1 = · · · = pt, qi > qj for i < j. Furthermore, φA(ai) 6 φA(aj)

for i < j by Claim 7.3. So,
∑T
t=1 qtφA(at) is a sum of products between the

increasing sequence {qt}t and decreasing sequence {φA(at)}t. Therefore,
we can conclude that

∑T
t=1 qtφA(at) 6

1
T

(∑T
t=1 qt

∑T
t=1φA(at)

)
.

E[φA(C∪C ′)] 6
T∑
t=1

qtst + qT+1φA(C) Union bound over at’s

6
T∑
t=1

qtφA(at) + qT+1φA(C) st = min{φA(C),φA(at)}

6
1

T

(T∑
t=1

qt

T∑
t=1

φA(at)
)
+ qT+1φA(C) From above

=
(1
T

T∑
t=1

qt

)
·
(
2φA(a

∗)
)
+ qT+1φA(C) By Lemma 7.4

6 (1− qT+1) ·
(
2φ(a∗)

)
+ qT+1 ·φA(C)

7.3. K-MEANS‖: PARALLELIZING THE INITIALIZATION 107

Remark The inequality
∑T
t=1 qtφA(at) 6 1

T

(∑T
t=1 qt

∑T
t=1φA(at)

)
is a

case of the Chebyshev’s sum inequality3.

From the first inituition, we know that if cluster A has φA(C) > 1
2kφX(C)

at some iteration of k-means‖, then a point from A is likely to be sampled
with constant probability, so qT+1 will be small. The above claim assumes
that the sequence {qt}t is decreasing (via p1 = · · · = pT). This may not be
true in general and we will show a general upper bound of φA(C∪C ′).

Analysis

The first intuition tells us that if there is a cluster A which has high
potential φA(C) with respect to the current selection C, then we are likely
to pick something from the cluster A with constant probability. If φA(C)
remains high, k-means‖ will pick a point from A with high probability
over its O(logn) iterations.

The second intuition takes a closer look at such a cluster A and tells
us that we expect to “move” φA(C) towards a constant approximation of
φA(a

∗) in expectation. We saw an analysis assuming that the sequence
{qt}t is decreasing. For a proper analysis, one has to properly upper
bound φA(C ∪ C ′). To do so, Bahmani et al. [BMV+

12] proved a linear
constraint on qt’s (See Lemma 7.6) and formulated a linear program where
the objective is the upper bound

∑T+1
t=1 qtst. While the linear program is

complicated to solve, the optimum value of its dual is easy to compute.

Lemma 7.6. [BMV+12, Lemma 5] Let η0 = 1, and for any 1 6 t 6 T ,
ηt = Π

t
j=1

(
1−

d2(aj,C)
φA(C)

(1− qT+1)
)

. Then, for any 0 6 t 6 T ,
∑T+1
r=t+1 qr 6 ηt.

3https://en.wikipedia.org/wiki/Chebyshev%27s_sum_inequality

https://en.wikipedia.org/wiki/Chebyshev%27s_sum_inequality

108 CHAPTER 7. DATA CLUSTERING

Primal LP

maximize
T+1∑
t=1

qtst

subject to
T+1∑
r=t+1

qr 6 ηt ∀t ∈ {0, . . . , T }

qt > 0 ∀t ∈ {1, . . . , T + 1}

Dual LP

minimize
T∑
t=0

ηtαt

subject to
t−1∑
r=0

αr > st ∀t ∈ {1, . . . , T + 1}

αt > 0 ∀t ∈ {0, . . . , T }

The linear program formulates the upper bound on φA(C ∪ C ′) as
the primal objective function under the constraint

∑T+1
r=t+1 qr 6 ηt from

Lemma 7.6. In the dual LP, since st is an increasing sequence, the optimal
solution to the dual is αt = st+1 − st for t ∈ {0, . . . , T } (setting s0 = 0).

Lemma 7.7. [BMV+12, Lemma 6, Corollary 7] Let α = exp
(
− (1− e−

l
2k)
)
≈

e−
l
2k . Then, the expected potential of an optimal cluster A after a sampling step

is upper bounded as

E[φX(C∪C ′)] 6 8φA(OPT) · (1− qT+1) +φA(C) · e−(1−qT+1)

We now prove the main theorem that an iteration of k-means‖ “moves”
the potential towards a constant approximation of φX(OPT) in expectation.

Theorem 7.8. Let α = exp
(
− (1− e−

l
2k)
)
≈ e− l

2k . If C ′ is the random set of
points added to C in an iteration, then

E[φX(C∪C ′)] 6 8φX(OPT) +
1+α

2
φX(C)

Proof. Let A1, . . . ,Ak be the clusters of the optimal solution OPT . We say
that cluster A is “heavy” if φA(C)

φX(C)
> 1

2k . Otherwise, we say that A is “light”.

Since qT+1 = ΠTt=1(1− pt) 6 e
−
∑T
t=1 pt = e

−l·φA(C)

φX(C) , by Lemma 7.7,

E[φA(C∪C ′)] 6 8φA(OPT) · (1− qT+1) +φA(C) · e−(1−qT+1)

6 8φA(OPT) +αφA(C)

7.3. K-MEANS‖: PARALLELIZING THE INITIALIZATION 109

for any heavy cluster A. Meanwhile,

E[φA(C∪C ′)] 6 φA(C) 6
φX(C)

2k

for any light cluster A. Let AH be the set of heavy clusters and AL be the
set of light clusters. Then,

E[φAH(C∪C
′)] 6 8φAH(OPT) +αφAH(C)

and, because |AL| 6 k,

E[φAL(C∪C
′)] 6 φAL(C) 6

φX(C)

2

Since φX(C) = φAH(C) +φAL(C),

E[φX(C∪C ′)] = E[φAH(C∪C
′)] + E[φAL(C∪C

′)]

6 8φAH(OPT) +αφAH(C) +φAL(C)

= 8φAH(OPT) +αφX(C) + (1−α)φAL(C)

6 8φAH(OPT) +αφX(C) + (1−α)
φX(C)

2

= 8φX(OPT) +
1+α

2
φX(C)

By induction over the O(logn) iterations of k-means‖, we see that for
the representative set C produced by k-means‖, E[φX(C)] ∈ O(φX(OPT)).

110 CHAPTER 7. DATA CLUSTERING

Initial data Random initial centroids

Update
assignments

Update
centroids

Update
assignments

Update
centroids

Final
assignments

Centroids
converged

Figure 7.1: K-means with random initial C on data points X that are
generated from 5 Gaussians

7.3. K-MEANS‖: PARALLELIZING THE INITIALIZATION 111

Initial data k-means++ initialization

Update
assignments

Update
centroids

Update
assignments

Update
centroids

Final
assignments

Centroids
converged

Figure 7.2: K-means with k-means++ initialization on data points X that
are generated from 5 Gaussians

112 CHAPTER 7. DATA CLUSTERING

Figure 7.3: There are 5 optimal clusters and |C| = 1 currently. Lighter
colors indicate higher probability of being sampled into C ′. Visually, we
see that a point from the top left cluster is likely to be sampled.

Chapter 8

Exact minimum cut in near linear
memory

In Exercise 3.4, we worked towards an algorithm to compute an (1+ ε)-
approximation to the minimum cut in O(1) rounds with S = Õ(n) memory
per machine. In this chapter, we discuss an algorithm by Ghaffari and
Nowicki [GN19] that computes an exact minimum cut for simple and
unweighted graphs under the near linear memory regime.

The key ingredient is a new contraction process called k-out. k-out
contraction is a simple process that reduces the number of edges to O(n)

while preserving any non-trivial1 minimum cut with constant probability.
Under the near linear memory regime, the reduced graph fits in a single
machine and an exact minimum cut can be found in O(1) rounds. By
running O(logn) copies in parallel, we succeed with high probability.

A new contraction process

The algorithm works in two phases — Phase 1 performs a k-out contraction
for k = 3 while Phase 2 uses Karger’s single edge contraction.

1. Each node proposes 3 of its edges (independently, with repetition).
All proposed edges are contracted simultaneously.

2. Contract random edges, one at a time, so long as there are at least
10n edges, where n is the number of nodes in the input graph.

1A trivial cut is a cut where one partition contains only a single vertex and this can be
easily checked by looking at the minimum degree of the graph.

113

114 CHAPTER 8. EXACT MINIMUM CUT IN NEAR LINEAR MEMORY

Analysis

Definitions

For analysis, we fix a minimum cut (S,V \ S) of size λ such that 2 6 |S| 6
n− 1. For a vertex v ∈ V , we denote d(v) as its degree and c(v) as the
number of edges of v that lie in the cut (S,V \ S). Let δ = minv∈V d(v) be
the minimum degree of the input graph. Since we ignore trivial cuts, we
can safely assume that λ < δ.

Claim 8.1. c(v)
d(v) 6

1
2

Proof.

v

S V \ S

v

S V \ S

If c(v) > 1
2d(v), moving v to the other partition forms a smaller cut.

Overview of analysis

To prove the main result Theorem 8.2, it suffices to show that each of the
phases preserve (S,V \ S) with constant probability (See Lemma 8.3 and
Lemma 8.4 respectively). We will prove Lemma 8.3 using the inequality in
Claim 8.1 while Lemma 8.4 can be shown with Lemma 8.5. Lemma 8.5
is then proven in two steps by exposing the randomness of the 3-out
contraction suitably.

Theorem 8.2. Fix a non-trivial cut (S,V \ S) of size λ such that 2 6 |S| 6 n− 1.
With constant probability, the resulting multigraph of the algorithm preserves
(S,V \ S). That is, we did not contract any edge of (S,V \ S).

Remark Recall the inequality (1− x)k > 4−kx for x 6 1
2 .

115

Analysis

Lemma 8.3. Phase 1 preserves (S,V \ S) with constant probability.

Proof. In Phase 1, each vertex propose 3 random edges (independently,
with repetitions) to be contracted. We expose the randomness by first
considering the case of all vertices picking one random edge (k-out con-
traction for k = 1). If we can show that (S,V \ S) is preserved with at least
constant probability p, then Phase 1 preserves (S,V \ S) with probability at
least p3 because the proposal of edges are independent.

Pr[1-out preserves (S,V \ S)] = Πv∈V

(
1−

c(v)

d(v)

)
> Πv∈V 4

−
c(v)
d(v) Claim 8.1

= 4
−
∑
v∈V

c(v)
d(v)

> 4−
∑
v∈V

c(v)
λ d(v) > λ

= 4−
2λ
λ

∑
v∈V

c(v) = 2λ

=
1

16

Lemma 8.4. Phase 2 preserves (S,V \ S) with constant probability.

Proof. By Lemma 8.5, the number of vertices remaining after Phase 1 is
at most 20n

δ 6 20n
λ with high probability. For each edge contraction until

we have less than 10n edges, the probability of not picking an edge from
(S,V \ S) is at least (1− λ

10n). Since each contraction reduces the number of
vertices by one, the contraction can happen at most 20nλ times. So,

Pr[Phase 2 preserves (S,V \ S)] > (1−
λ

10n
)
20n
λ >

1

16

Lemma 8.5. With high probability, the number of connected components after
3-out contraction (i.e. the number of contracted vertices) remaining after Phase
1 is at most 20nδ 6 20n

λ .

116 CHAPTER 8. EXACT MINIMUM CUT IN NEAR LINEAR MEMORY

For cleanliness of the proof2, we assume δ 6 n
poly logn . We expose

the randomness of 3-out in two stages. We first analyze the number of
connected components after each vertex proposes 2 edges, then analyze
how the 3rd proposed edge connects the resultant connected components.

Claim 8.6. After 2-out contraction, there are at most 5nδ connected components
with less than 10 log δ vertices with high probability.

Proof. Consider the process of growing a connected component:

• Let S = {v} for some vertex v.

• We grow a connected component C by expanding each vertex v ∈ S:

– Remove v from S. Add v to C.

– Consider the two random edges {v,a} and {v,b} that v proposed.

– If a 6∈ C, add a to S. If b 6∈ C, add b to S.

When S becomes empty, the growing process stops. Either we have created
a new connected component, or the current component connects to a some
previous component. Let us now upper bound the number of bad events
when a new3 component is created with 10 log δ vertices.

During the growing process, a vertex v proposes edges {v,a} and {v,b}.
If C is a bad component with at most 10 log δ vertices, then the probability
that a ∈ C or b ∈ C is at most 10 log δ

δ independently. So, the probability
that vertex v prevents growth of the connected component C (because both
a ∈ C and b ∈ C) is at most (10 log δ

δ)2. Taking the union bound over vertices
in bad component C,

Pr[C is bad] 6
∑
v∈C

Pr[v prevented growth] 6 10 log δ · (
10 log δ
δ

)2

Since we start the process n times, we expect at most 1000n log3 δ
δ2

6 5n
δ2

components with less than < 10 log δ vertices. Apply Chernoff bounds.

Claim 8.7. Consider the connected components after 2-out contraction. After
another 1-out contraction, there are at most 12nδ connected components with less
than δ

2 vertices with high probability.
2See Ghaffari and Nowicki [GN19, Lemma 2.5] for the full proof.
3If the current component connects to an older one, this is not a bad event. If the old

component was small, we would have accounted for it.

117

Proof. We analyze in a similar manner as before, except now we connect
components instead of connect vertices.

• Let S = {C} for some component C from 2-out contraction’s output.

• We grow a connected component C∗ by expanding each C ∈ S:

– Remove component C from S. Add vertices of C to C∗.

– Consider the set of edges
{
{v,u}

}
v∈C

proposed by 1-out of v ∈ C.

– If u 6∈ C∗, add the component containing u to S.

When S becomes empty, the connection process stops. Let us upper bound
the number of bad events where the newly formed component has less
than δ

2 vertices. If the component C∗ has less than δ
2 vertices, then each

edge proposed points to some u ∈ C∗ with probability at most δ/2δ = 1
2 .

With high probability, there are at most 5n
δ connected components

with less than 10 log δ vertices after 2-out. These “small components” can
contribute at most 5nδ bad events. Let us consider components of size at
least 10 log δ at the end of the first 2-out process. Any such component
C ∈ S prevents growth with probability at most (12)

10 log δ. Taking union
bound over all δ2 possible components in a failed component,

Pr[C∗ is bad] 6
δ

2
· (1
2
)10 log δ 6

1

2δ9
6
1

δ

Since we start the process at most n times, we expect at most nδ components
with less than δ

2 vertices. Including “small components”, we expect at
most 5nδ + n

δ = 6n
δ bad events. By Chernoff bounds, the claim holds.

Proof Lemma 8.5. By the above claims, there are 6 12n
δ connected compo-

nents with less than < δ
2 vertices with high probability. Meanwhile, there

are 6 n
δ/2

components with > δ
2 vertices for an input graph of n vertices.

Since each connected component contracts into a single vertex, we have at
most 12nδ + 2n

δ 6 20n
δ vertices after the 3-out contraction in Phase 1.

Implementing the algorithm in constant rounds
under the near linear memory regime

In Phase 1 of the algorithm, each vertex proposes 3 edges for contraction.
The subgraph induced by these proposed edges fits in a single machine

118 CHAPTER 8. EXACT MINIMUM CUT IN NEAR LINEAR MEMORY

and thus Phase 1 can be done in constant rounds. It suffices to argue that
Phase 2, where we contract edges one at a time until there are at most 10n
edges, can be done in constant rounds. Observe that Phase 2 is equivalent
to the following process:

• Independently assign a random number r(e) ∈ [0, 1] for each edge e.

• Run Kruskal’s algorithm to build a MST according to these weights.

• Terminate Kruskal’s when there are less than 10n edges remaining.

Since edge weights are randomly assigned independently, the order in
which edges are chosen to merge is equivalent to picking a random edge
for contraction. The proof of Lemma 8.4 requires Ω(n) edges to remain to
preserve a minimum cut (S,V \ S) with constant probability. So, despite
being able to MST can be solved in constant rounds under the near linear
memory regime (See Section 3.1), it remains to argue that we are able to
terminate the MST algorithm before there are too little edges remaining.

Recall the idea of graph sketching from Section 3.2 where we guess
O(logn) values k̂ ∈ {(1 + ε)0, (1 + ε)1, . . . , (1 + ε)log1+ε n} for the cut size
between an arbitrary vertex partition (A,V \A). For the guess k̂ which
is an (1+ ε)-approximation of the true cut size, we will be able to de-
tect a cut edge with high probability. Hence, we can obtain an (1+ ε)-
approximation4 of the number of edges leaving a component during the
execution of Borůvka’s MST algorithm with high probability. Since the
summation of the number of edges leaving each component is twice the
number of edges remaining in the graph, we can obtain a constant ap-
proximation of the number of remaining edges using graph sketches, and
terminate the MST construction appropriately.

4Note that any O(1)-approximation suffices for our purposes.

Chapter 9

Vertex coloring

In this chapter, we look at the problem of vertex coloring of graphs with
maximum degree ∆. In the sequential setting, greedily coloring a vertex
by a free color yields a (∆+ 1) coloring in linear time and space. Recently,
Assadi et al. [ACK19] showed a MPC algorithm1 under the near linear
memory regime that runs in constant number of rounds.

At the core of their algorithm is the following process: Each node v
samples a list L(v) of size Θ(logn) from {1, . . . ,∆+ 1}. One may think of
picking each color independently with probability p = Θ(

logn
∆+1), or picking

the first few colors in a random permutation of {1, . . . ,∆+ 1}.

Theorem 9.1 (Palette-Sparsification Theorem). Let G(V ,E) be an n-vertex
graph with maximum degree ∆. Suppose for any vertex v ∈ V , we sample
Θ(logn) colors L(v) from {1, . . . ,∆+ 1} independently and uniformly at random.
Then with high probability, there exists a proper (∆+ 1) coloring of G in which
the color for every vertex v is chosen from L(v).

By Theorem 9.1, the above sampling process significantly reduces the
size of the graph that we have to consider in order to find a coloring.
Observe that there is still a potential coloring conflict between vertices u
and v only if L(u) and L(v) share a common color. Consider a subgraph H
of G where we keep edge {u, v} if and only if |L(u) ∩ L(v)| 6= ∅. Then, the

probability of an edge {u, v} being in H is at most (∆+ 1) · p2 ∈ Θ(log2 n
∆+1).

Since G has at most n∆ edges, we expect to see O(n log2 n) edges in H, and
with high probability, there are Õ(n) edges in H. Theorem 9.1 states the
key claim about the above process.

1They also showed a single-pass semi-streaming algorithm using Õ(n) space and a
sublinear-time algorithm in the standard query model using Õ(n

√
n) time.

119

120 CHAPTER 9. VERTEX COLORING

While solving list coloring is NP-hard in general, Theorem 9.1 implies
that one can non-adaptively sparsify a graph and apply the power of
the underlying computational model to compute a (∆+ 1) coloring of G
“quickly”. For example, sampling of color lists L(v) and sending H to a
single machine can be done in constant MPC rounds. As the MPC model
values communication overhead, solving list coloring on the sparsified
graph in a single machine is treated as a single round computation.

In the following sections, we prove Theorem 9.1. The proof relies on a
structural decomposition of the input graph and a three phase analysis.

9.1 Warm up

We first look at a variant of Theorem 9.1 that uses a larger color palette
of (1+ ε)∆ instead of just (∆+ 1) colors. The proof illustrates the idea
that having a “slack” of ε∆ colors allows for a feasible coloring using the
subsampled lists. Next, we discuss how Theorem 9.1 holds for two extreme
cases when G is sparse/dense. The subsequent analysis in Section 9.3 then
interpolates between these two extreme cases.

9.1.1 Using slightly more colors

As a warm up, we consider the process with a larger color palette of
(1+ ε)∆ instead of just (∆+ 1) colors, for some constant ε > 0.

Claim 9.2. Let G(V ,E) be an n-vertex graph with maximum degree ∆. Suppose
for any vertex v ∈ V , we sample Θ(logn

ε) colors L(v) from {1, . . . , (1 + ε)∆}
independently and uniformly at random. Then with high probability, there exists
a proper (1+ ε)∆ coloring of G in which the color for every vertex v is chosen
from L(v).

Proof. Consider an arbitrary vertex v and let p = Θ(
logn

ε(1+ε)∆). Since v has
at most ∆ neighbors, at most ∆ colors will be blocked from the possible
colors for v. Of the remaining > ε∆ colors, at least one will be chosen into
L(v) with probability at least 1− (1− p)ε∆ > 1− 1

poly(n) .

Remark With (∆+ 1) colors, if all vertices pick a single color at random,
the probability that a given vertex v has a color that is not “blocked” by
any neighbor is (1− 1

∆+1)
deg(v) > (1− 1

∆+1)
∆ ∈ Θ(1).

9.1. WARM UP 121

9.1.2 Handling relatively sparse graphs

Consider vertex v of degree ∆ with neighborhood N(v). Suppose G[N(v)]

is relatively sparse and has at most (1− ε)
(
∆
2

)
edges, for some constant ε.

Denote E as the set of non-edges in the subgraph G[N(v)] induced by N(v).
By assumption on sparseness of G[N(v)], |E| > ε

(
∆
2

)
.

We say that edge {u, v} ∈ E is good if we can color the endpoints u and
v with the same first color in their selected lists. That is, both u and v

sampled the same first color and none of their neighbors sampled it. So,
an edge in E is good with probability > (∆+ 1)(1

∆+1)
2(1− 1

∆+1)
2∆ ∈ Ω(1∆).

Thus, we expect to see Ω(ε∆) good edges. One can show2 that with
probability 1− eΩ(ε∆), there are at least Ω(ε∆) good edges in E.

Let Egood ⊆ E be the good edges. By coloring both endpoints of all good
edges with their good color, a “slack” of Ω(ε∆) appears in the difference
between the number of remaining free colors and number of uncolored
neighbors of v. To be precise,(

(∆+ 1) −
∣∣∣Egood∣∣∣)− (|N(v)|− 2

∣∣∣Egood∣∣∣) > Ω(ε∆)

By an argument similar to Claim 9.2, v can be colored with high probability.

9.1.3 Handling very dense graphs

Let n = ∆+ 1. Consider the clique K∆+1 and its corresponding complete
bipartite graph H = (V1,V2) between ∆+ 1 vertices (V1) and ∆+ 1 available
colors (V2). By sampling colors into L(v) with probability p = Θ(

logn
∆+1), we

get a subgraph where an edge exists between a vertex v and a color c if
c ∈ L(v). See Fig. 9.1 for an illustration.

Observe that a perfect matching in the above bipartite graph induces
a coloring on the vertices — we can color each vertex v ∈ V1 by the color
c ∈ V2 that v is matched to. We will argue that there is a perfect matching
in the sampled bipartite graph with high probability.

By Hall’s theorem3, each vertex can be matched to some color if for
every subset of vertices S ⊆ V1, the total number of covered colors |N(S)| >
|S|. Fix subset S ⊆ V1. We expect |S| · (∆+ 1) · p ∈ Θ(|S| logn) edges incident
to S. We say color c ∈ V2 is covered if edge {v, c} is sampled for some v ∈ S.

• Case 1: When |S| is “small”. Say, |S| 6 k ·∆ for some constant k.
For any color c, we expect c to have |S| · p = |S| ·Θ(logn

∆) ∈ O(logn)
2See Assadi et al. [ACK19, Appendix A, Lemma A.1].
3https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem

https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem

122 CHAPTER 9. VERTEX COLORING

...
...

...
...

Vertices Colors Vertices Colors
Sample

p = Θ(
log∆
∆)

∆+ 1 ∆+ 1

Figure 9.1: Illustration of a bipartite graph between vertices and colors.
Blue edges are subset of edges by sampling each edge independently.

sampled neighbors in S. By Chernoff bounds, each color is covered
by at most O(logn) sampled edges with high probability. Taking
union bound over all (∆+ 1) colors, the sampled edges incident to S
covers at least |S| different colors with high probability.

• Case 2: When |S| is “large”. Say, |S| > k ·∆ for some constant k.
The probability that color c is not covered by any sampled edge
is (1 − p)|S| 6 e−Θ(

|S| logn
∆) 6 e−Θ(logn). Then, using the inequality(

n
k

)
6 nk, the probability that |S| colors are not covered is at most(

∆+ 1

|S|

)
·
(
e−Θ(logn)

)|S|
=

(
n

|S|

)
· e−Θ(|S| logn) 6

1

poly(n)

Taking union bound over all
(
∆+1
|S|

)
subsets of size |S|, and all (∆+1) possible

sizes, we have that |N(S)| > |S| with high probability for any subset S ⊆ V1.

9.2 A structural decomposition

Structural decomposition was first introduced by Reed [Ree98] in the
context of the problem of total coloring. See Molloy and Reed [MB02,
Chapter 15] for a detailed exposition.

The proof of Theorem 9.1 uses a variant of a network decomposition
result from Harris, Schneider and Su [HSS16]. Their decomposition,

9.2. A STRUCTURAL DECOMPOSITION 123

henceforth HSS-decomposition, partitions a graph G(V ,E) into sparse and
dense regions measured with respect to a parameter ε ∈ [0, 1).

Definition 9.3 (Friends and dense/sparse vertices). Two adjacent vertices
u and v are called friends if and only if they share at least (1− ε)∆ common
neighbors. That is, |N(u) ∩N(v)| > (1− ε)∆. A vertex v is ε-dense if v has at
least (1− ε)∆ friends, and ε-sparse otherwise.

Claim 9.4. For a sparse vertex v, the number of edges in the graph induced by
N(v) is at most (1− ε2)

(
∆
2

)
.

Proof. If deg(v) < ∆, we can add dummy vertices that are adjacent only to v.
Suppose deg(v) = ∆. If v is sparse, then it has at least ε∆ non-friends. Each
non-friend can be adjacent to at most (1− ε)∆ vertices in N(v). So, there
are > (ε∆)2

2 edges missing among all possible
(
∆
2

)
edges within N(v).

Let Vdense denote the set of dense vertices, and let F denote the set of
friendship edges in G. Then, subgraph H = (Vdense, F) is the graph induced
by dense vertices and their friendship edges. The HSS-decomposition
partitions vertices into connected components C1,C2, . . . ,Ck of H and a
sparse region Vsparse = V \H. These connected components are also called
almost-cliques because they are dense regions of the graph. See Fig. 9.2.

C1 C2 . . . Ck

H = (Vdense, F)

Vsparse

Figure 9.2: HSS-decomposition with ∆ = 6 and ε = 2
3 . Vertices are friends

if they share > 2 common neighbors. A vertex is dense if it has > 2 friends.
Friendship edges are in blue and dense vertices are in black. H = (Vdense, F)
is induced by black vertices and blue edges. Almost-cliques C1, . . . ,Ck are
connected components of H. Observe that there can be friendship edges
missing in H, and non-friendship edges present in an almost-clique.

We state two properties of a HSS-decomposition that hold for vertices
in an almost-clique Ci, and give a proof sketch for each of them:

124 CHAPTER 9. VERTEX COLORING

• Property: v ∈ Ci has at most ε∆ dense neighbors in G but not in Ci.

We compute almost-clique Ci by taking the connected component of
H = (Vdense, F), so any dense neighbor of v connected by a friendship
edge will also be in Ci. Dense vertex v has at most ε∆ non-friendship
edges. So, at most ε∆ dense neighbors of v is not in Ci.

• Property: For any two vertices u, v ∈ Ci, |N(u)∩N(v)| > (1− 2ε)∆.

If u and v are friends, then |N(u) ∩N(v)| > (1 − ε)∆ > (1 − 2ε)∆.
Suppose u and v are not friends. Since Ci is a connected compo-
nent with respect to friendship edges, there exists a path of vertices
u = z0, z1, . . . , zk = v in Ci where any two adjacent vertices are
friends. We will argue that the shortest such u− v path between has
at only one intermediate vertex. Since adjacent vertices are friends
in the path, |N(zi) ∩N(zi+1)| > (1− ε)∆ for i ∈ {0, . . . ,k− 1}. Since
each vertex has at most ∆ neighbors, there are at most ε∆ neigh-
bors of zi+1 that are not neighbors of zi or neighbors of zi+2. So,
|N(zi) ∩N(zi+2)| > (1− 2ε)∆ for i ∈ {0, . . . ,k− 2}. This means that zi
and zi+2 shares a common neighbor. Therefore, the shortest such
u− v path has only one intermediate vertex (their common neighbor
z1). Thus, |N(u)∩N(v)| = |N(z0)∩N(z2)| > (1− 2ε)∆.

Assadi et al. [ACK19, Section 2.2] defined a slightly different extension4

of the HSS-decomposition with the following 4 properties5:

1. Vertex v ∈ Ci has at most 7ε∆ neighbors (both dense and sparse) in
G but not in Ci.

2. Vertex v ∈ Ci has at most 6ε∆ non-neighbors in G that are also in Ci.

3. For any two vertices u, v ∈ Ci, we have |N(u)∩N(v)| > (1− 2ε)∆.

4. (1− ε)∆ 6 |Ci| 6 (1+ 6ε)∆

Henceforth, whenever we refer to a HSS-decomposition, we mean one with
the above 4 properties. Note that the decomposition is purely for analysis
and we do not explicitly build it while computing a vertex coloring.

4By considering a vertex sparse if it is at least (2ε)-sparse and at most ε-sparse.
5See Assadi et al. [ACK19, Lemma 2.3].

9.3. A THREE PHASE ANALYSIS 125

9.3 A three phase analysis

Recall that we sample a list of colors L(v) for each vertex v. For the purpose
of analysis, we consider L(v) as a union of three sets L1(v), L2(v) and L3(v).
Each Li(v) is created by picking each color in {1, . . . ,∆+ 1} independently
and with probability p = Θ(

logn
∆+1). So, the list L(v) = L1(v) ∪ L2(v) ∪ L3(v)

has size Θ(logn) with high probability. By the HSS-decomposition, we
can partition the vertices of the input graph into (Vsparse,C1, . . . ,Ck).

Ideally, we would like to color vertices in Vsparse in a way similar to
Section 9.1.2, and each almost-clique Ci in a way similar to Section 9.1.3.
However, vertices in Vsparse may be adjacent to vertices in almost-cliques.
After coloring the sparse vertices, some colors will be blocked from possi-
ble valid colors for the dense vertices. Sampling edges from the resultant
bipartite graph (See Fig. 9.1) may not yield a subgraph which fulfills the
conditions of Hall’s theorem. Hence, an intermediate phase is introduced
to “fix” the almost-cliques. The analysis proceeds in three phases:

1. Using {L1(v)}v∈V , color the sparse region Vsparse similar to Section 9.1.2.

2. Using {L2(v)}v∈V , “fix” each Ci via colorful matchings (to be defined).

3. Using {L3(v)}v∈V , color the rest of each Ci similar to Section 9.1.3.

Each phase partially colors the graph G while leaving colored vertices
untouched such that all vertices are colored at the end of the third phase.

9.3.1 Phase 1

By Claim 9.4, the number of edges in the graph induced by the neigh-
borhood N(v) of a sparse vertex v is at most (1− ε2)

(
∆
2

)
. By the argument

from Section 9.1.2, each sparse vertex can be colored from L1(v) with high
probability. In this phase, we color of vertices v ∈ Vsparse while leaving the
vertices v ∈ Vdense uncolored.

9.3.2 Phase 2

The purpose of this phase is to “fix” each almost-clique such that phase 3

can use a similar argument to Section 9.1.3. To do so, we will attempt to
remove colors and vertices at the rate of 2 vertices per color.

Fix an arbitrary almost-clique Ci and consider its complement graph Ci.
Observe that any two adjacent vertices in Ci can be colored by the same

126 CHAPTER 9. VERTEX COLORING

color and hence creating a unit of “slack” in the number of remaining
colors versus the number of remaining vertices in Ci.

Phase 2 iterates through almost-cliques C1, . . . ,Ck using {L2(v)}v∈V . For
each almost-clique, say with average degree d, we find a colorful matching
of size 4d and color their endpoints accordingly.

Definition 9.5 (Colorful matching). We say that a matching Mi in the com-
plement graph Ci of an almost-clique is a coloring matching if and only if

• For any edge {u, v} ∈Mi, there is a color c ∈ L2(u)∩ L2(v) such that c has
not been taken by colored neighbors of u and v.

• All edges in Mi are colored differently.

We define the following potential function aD with respect to a subset
of colors D ⊆ {1, . . . ,∆+ 1}. For an edge e = {u, v}, aD(e) is the number of
possible colors in D that are still valid for both u and v. For a set of edges
E ′, we naturally define aD(E ′) =

∑
e∈E ′ aD(e). Lemma 9.6 tells us that for

once we accumulated “sufficient” potential of aD(E(C ′)), we can extract at
least one colored edge.

Lemma 9.6. Consider any arbitrary complement graph C of an almost-clique.
Fix a subgraph C ′ ⊆ C and a subset of colors D such that aD(E(C ′)) > 120ε2∆2.
If each node samples each color in D with probability 20 logn

ε∆ , then there is some
colorful edge in C ′ with high probability.

Proof. Let I(e,q) be the indicator variable whether edge e can be colored
by color q. Recall the definition of the potential function aD:

aD(E(C
′)) =

∑
e∈C ′

aD(e) =
∑
e∈C ′

∑
q∈D

I(e,q) =
∑
q∈D

∑
e∈C ′

I(e,q)

We now consider logn phases where every vertex samples each color in D
with probability 20

ε∆ in each phase. We will show that each phase succeeds
in finding a colorful edge with constant probability, hence logn phases
ensure that we find one with high probability.

Fix a phase. For a color q, an edge in {e ∈ C ′ : I(e,q) = 1} is sampled
with probability (20ε∆)

2, if both endpoints sampled color q. So, we expect∑
e∈C ′ I(e,q) · 40

ε2∆2
edges to be sampled for color q. Over all q ∈ D colors,

∑
q∈D

∑
e∈C ′

I(e,q) · 40
ε2∆2

=
40

ε2∆2
·
∑
q∈D

∑
e∈C ′

I(e,q) >
40

ε2∆2
· 120ε2∆2 ∈ Ω(1)

9.3. A THREE PHASE ANALYSIS 127

where the inequality is from the assumption that aD(E(C ′)) > 120ε2∆2.
Then, using variance arguments, one can argue that a colorful edge is
sampled with constant probability in one phase. Hence, logn phases
ensure that we find one with high probability.

Claim 9.7. With high probability, Ci has a colorful matching of size 4d, where
d is the average degree of Ci.

Proof. We start with D = ∅ and iteratively add colors to D as we walk over
the colors {1, . . . ,∆+ 1} one by one. When we find a colorful edge {u, v}
using color c ∈ D, we remove c from D and remove u, v from Ci.

From property 2 of HSS-decomposition, a vertex v ∈ Ci has at most
6ε∆ non-neighbors in G that are also in Ci. This means that removal
of a vertex decreases aD(E(Ci)) by at most 6ε∆ · ∆ = 6ε∆2. Meanwhile,
property 4 of HSS-decomposition tells us that there are at most (1+ 6ε)∆
vertices in Ci, so removal of a color from D decreases aD(E(Ci)) by at most
a{c}(E(Ci)) = d ·

|Ci|
2 6 d∆ 6 6ε∆2. Therefore, removal of c, u and v cause a

decrease in aD(E(Ci)) by at most 6ε∆2 + 2 · 6ε∆2 = 18ε∆2.
Lemma 9.6 tells us that a colorful matching can be found with high

probability after accumulating a potential of 120ε2∆2 while iterating through
the colors. This means that we lose at most 138ε2∆2 potential each time
we find and add an edge to the colorful matching.

From property 1 of HSS-decomposition, a vertex v ∈ Ci has at most
7ε∆ neighbors in G but not in Ci. So, there are at least (1− 14ε)∆ available
colors for an edge e = {u, v} ∈ Ci even if we have assigned colors to all
neighbors of u and v that are outside of Ci. That is, aD(e) > (1− 14ε)∆ for
any edge e ∈ Ci. From property 4 of HSS-decomposition, there are at least
(1− ε)∆ vertices in Ci. So, the total potential of Ci considering all colors is

a{1,...,∆+1}(E(Ci)) > |E(Ci)| · (1− 14ε)∆ since aD(e) > (1− 14ε)∆

=
d · |Ci|
2
· (1− 14ε)∆

>
1

2
(1− ε)(1− 14ε)d∆2 since |Ci| > (1− ε)∆

> 0.45d∆2 for sufficiently small ε

Since a{1,...,∆+1}(E(Ci)) > 0.45d∆2, we would be able to extract at least
0.45d∆2
138ε2∆2

> d
320ε colorful edges after iterating through all (∆+ 1) colors. For

a sufficiently small ε, d
320ε > 4d.

128 CHAPTER 9. VERTEX COLORING

9.3.3 Phase 3

In similar spirit to Section 9.1.3, we construct a bipartite graph and argue
that the edges due to L3(v) allow for a matching that colors all remaining
uncolored vertices in each almost-clique. Morally, we want to check for
Hall’s condition on the sampled graph as per Section 9.1.3.

Fix an arbitrary almost-clique Ci and consider the bipartite graph
H = (V1,V2) where V1 is the set of uncolored vertices of Ci and V2 is
the set of colors {1, . . . ,∆+ 1}. An edge exists between vertex v ∈ V1 and
color c ∈ V2 if and only if the color c is not used by any of v’s colored
neighbors. For each vertex v, its color list L3(v) can be seen as being
constructed by independently sampling each incident edge in H with
probability p ∈ Θ(logn

∆+1). If the resultant graph has a matching of size |V1|,
then the remaining uncolored vertices of Ci can be colored.

Lemma 9.8 (Lemma 3.5 of Assadi et al. [ACK19]). Suppose N 6 n and
0 6 δ 6 1

12 . Let H = (V1,V2) be a bipartite graph such that:

1. |V1| 6 (1− 3δ)N and |V2| 6 2N

2. Each vertex in V1 has degree at least 2N3 and at most N

3. The average degree of vertices in V1 is at least (1− δ)N

Then, a subgraph of H obtained by sampling each edge with probability p =
90 logn
N has a matching of size |V1| with high probability.

Recall that colorful edges remove 2 vertices for 1 color. By Claim 9.7, 4d
colorful edges can be found and removed, where d is the average degree
of V1. So, after phase 2, one can show6 that the bipartite graph H fulfills
the conditions of the above lemma. Thus, all remaining uncolored vertices
in each almost-clique can be colored with {L3(v)}v∈V with high probability.

6See Assadi et al. [ACK19, Lemma 3.4].

Bibliography

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algo-
rithms for (δ+ 1) vertex coloring. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
767–786. Society for Industrial and Applied Mathematics, 2019.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyz-
ing graph structure via linear measurements. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Al-
gorithms, pages 459–467. SIAM, 2012.

[AMN+
98] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Sil-

verman, and Angela Y Wu. An optimal algorithm for approxi-
mate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and
Grigory Yaroslavtsev. Parallel algorithms for geometric graph
problems. In Proceedings of the forty-sixth annual ACM sympo-
sium on Theory of computing, pages 574–583. ACM, 2014.

[ASS+
18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang,

and Peilin Zhong. Parallel graph connectivity in log diameter
rounds. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 674–685. IEEE, 2018.

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advan-
tages of careful seeding. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 1027–1035.
Society for Industrial and Applied Mathematics, 2007.

[BENW15] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The
power of randomization: Distributed submodular maximiza-

i

ii Massively Parallel Algorithms

tion on massive datasets. In International Conference on Machine
Learning, pages 1236–1244, 2015.

[BENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin
Ward. A new framework for distributed submodular maxi-
mization. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 645–654. Ieee, 2016.

[Ber57] Claude Berge. Two theorems in graph theory. Proceedings of
the National Academy of Sciences of the United States of America,
43(9):842, 1957.

[BKS13] Paul Beame, Paraschos Koutris, and Dan Suciu. Communica-
tion steps for parallel query processing. In Proceedings of the
32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of
database systems, pages 273–284. ACM, 2013.

[BMV+
12] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Ku-

mar, and Sergei Vassilvitskii. Scalable k-means++. Proceedings
of the VLDB Endowment, 5(7):622–633, 2012.

[CŁM+
18] Artur Czumaj, Jakub Łącki, Aleksander Mądry, Slobodan

Mitrović, Krzysztof Onak, and Piotr Sankowski. Round com-
pression for parallel matching algorithms. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 471–484. ACM, 2018.

[CW79] J Lawrence Carter and Mark N Wegman. Universal classes
of hash functions. Journal of computer and system sciences,
18(2):143–154, 1979.

[DFK+
04] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala,

and V Vinay. Clustering large graphs via the singular value
decomposition. Machine learning, 56(1-3):9–33, 2004.

[DG99] Sanjoy Dasgupta and Anupam Gupta. An elementary proof
of the johnson-lindenstrauss lemma. International Computer
Science Institute, Technical Report, 22(1):1–5, 1999.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

BIBLIOGRAPHY iii

[DP10] Ran Duan and Seth Pettie. Approximating maximum weight
matching in near-linear time. In 2010 IEEE 51st Annual Sympo-
sium on Foundations of Computer Science, pages 673–682. IEEE,
2010.

[EGS08] David Eppstein, Michael T Goodrich, and Jonathan Z Sun.
Skip quadtrees: Dynamic data structures for multidimensional
point sets. International Journal of Computational Geometry &
Applications, 18(01n02):131–160, 2008.

[Epp95] David Eppstein. Dynamic euclidean minimum spanning trees
and extrema of binary functions. Discrete & Computational
Geometry, 13(1):111–122, 1995.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight
bound on approximating arbitrary metrics by tree metrics. In
Proceedings of the thirty-fifth annual ACM symposium on Theory
of computing, pages 448–455. ACM, 2003.

[GGK+
18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slo-

bodan Mitrović, and Ronitt Rubinfeld. Improved massively
parallel computation algorithms for mis, matching, and vertex
cover. arXiv preprint arXiv:1802.08237, 2018.

[Gha17] Mohsen Ghaffari. Distributed mis via all-to-all communication.
In Proceedings of the ACM Symposium on Principles of Distributed
Computing, pages 141–149. ACM, 2017.

[GKMS18] Buddhima Gamlath, Sagar Kale, Slobodan Mitrović, and Ola
Svensson. Weighted matchings via unweighted augmentations.
arXiv preprint arXiv:1811.02760, 2018.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional
hardness results for massively parallel computation from dis-
tributed lower bounds. 2019. Manuscript.

[GN19] Mohsen Ghaffari and Krzysztof Nowicki. Faster algorithms
for edge connectivity via random out contractions. 2019.
Manuscript.

[GSZ11] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sort-
ing, searching, and simulation in the mapreduce framework. In

iv Massively Parallel Algorithms

International Symposium on Algorithms and Computation, pages
374–383. Springer, 2011.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed al-
gorithms with ramifications in massively parallel computa-
tion and centralized local computation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1636–1653. SIAM, 2019.

[HK73] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm
for maximum matchings in bipartite graphs. SIAM Journal on
computing, 2(4):225–231, 1973.

[HMK+
06] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger,

Michelle Effros, Jun Shi, and Ben Leong. A random linear
network coding approach to multicast. IEEE Transactions on
Information Theory, 52(10):4413–4430, 2006.

[HSS16] David G Harris, Johannes Schneider, and Hsin-Hao Su. Dis-
tributed (âĹĘ+ 1)-coloring in sublogarithmic rounds. In Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 465–478. ACM, 2016.

[IBY+
07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and

Dennis Fetterly. Dryad: distributed data-parallel programs
from sequential building blocks. In ACM SIGOPS operating
systems review, volume 41, pages 59–72. ACM, 2007.

[IMS17] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient
massively parallel methods for dynamic programming. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 798–811. ACM, 2017.

[KMVV15] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and An-
drea Vattani. Fast greedy algorithms in mapreduce and stream-
ing. ACM Transactions on Parallel Computing (TOPC), 2(3):14,
2015.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer.
What cannot be computed locally! In Proceedings of the twenty-
third annual ACM symposium on Principles of distributed comput-
ing, pages 300–309. ACM, 2004.

BIBLIOGRAPHY v

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A
model of computation for mapreduce. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 938–948. SIAM, 2010.

[Lin87] Nathan Linial. Distributive graph algorithms global solutions
from local data. In 28th Annual Symposium on Foundations of
Computer Science (sfcs 1987), pages 331–335. IEEE, 1987.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

[Llo82] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-
actions on information theory, 28(2):129–137, 1982.

[LMSV11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei
Vassilvitskii. Filtering: a method for solving graph problems
in mapreduce. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures, pages
85–94. ACM, 2011.

[LV18] Paul Liu and Jan Vondrak. Submodular optimization in the
mapreduce model. arXiv preprint arXiv:1810.01489, 2018.

[LW10] Christoph Lenzen and Roger Wattenhofer. Brief announce-
ment: Exponential speed-up of local algorithms using non-
local communication. In Proceedings of the 29th ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, pages
295–296. ACM, 2010.

[MB02] Molloy Michael and Reed Bruce. Graph coloring and the
probabilistic method. New York I Springer, 23:1329–356, 2002.

[McG05] Andrew McGregor. Finding graph matchings in data streams.
In Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 170–181. Springer, 2005.

[MKSK13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and An-
dreas Krause. Distributed submodular maximization: Identi-
fying representative elements in massive data. In Advances in
Neural Information Processing Systems, pages 2049–2057, 2013.

vi Massively Parallel Algorithms

[MV80] Silvio Micali and Vijay V Vazirani. An O(
√

|V | · |E|) algorithm
for finding maximum matching in general graphs. In 21st An-
nual Symposium on Foundations of Computer Science (sfcs 1980),
pages 17–27. IEEE, 1980.

[NW64] C St JA Nash-Williams. Decomposition of finite graphs into
forests. Journal of the London Mathematical Society, 1(1):12–12,
1964.

[NY18] Jelani Nelson and Huacheng Yu. Optimal lower bounds for
distributed and streaming spanning forest computation. arXiv
preprint arXiv:1807.05135, 2018.

[Ree98] Bruce Reed. ω, δ, and χ. Journal of Graph Theory, 27(4):177–212,
1998.

[Ros73] Arnold L Rosenberg. On the time required to recognize prop-
erties of graphs: A problem. ACM SIGACT News, 5(4):15–16,
1973.

[RV75] Ronald L Rivest and Jean Vuillemin. A generalization and
proof of the aanderaa-rosenberg conjecture. In Proceedings
of the seventh annual ACM symposium on Theory of computing,
pages 6–11. ACM, 1975.

[RVW18] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R Wang.
Shuffles and circuits (on lower bounds for modern parallel
computation). Journal of the ACM (JACM), 65(6):41, 2018.

[SSS95] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan.
Chernoff–hoeffding bounds for applications with limited inde-
pendence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

[WC81] Mark N Wegman and J Lawrence Carter. New hash functions
and their use in authentication and set equality. Journal of
computer and system sciences, 22(3):265–279, 1981.

[Whi12] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.",
2012.

[ZCF+
10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. Spark: Cluster computing with work-
ing sets. HotCloud, 10(10-10):95, 2010.

	Notation and useful inequalities
	Administrative matters
	The MPC Model
	Computation and Communication Model
	Initial data distribution
	Commonly used subroutines

	Matching
	Matching using strongly superlinear memory
	Matching using near linear memory
	Matching using strongly sublinear memory
	Approximation improvement via augmenting paths

	Connected Components & MST
	MST using near linear memory
	Connectivity using near linear memory
	Log diameter time connectivity using sublinear memory
	Geometric MST using sublinear memory

	Lower bounds & conditional hardness
	Lower bounds
	Conditional hardness

	Dynamic Programming
	Weighted Interval Selection

	Submodular Maximization
	A greedy sequential algorithm
	Constant approximation in 2 MPC rounds
	Optimal approximation via Sample-and-Prune
	Optimal approximation in constant time

	Data clustering
	k-means
	k-means++: Initializing with guarantees
	k-means"026B30D : Parallelizing the initialization

	Exact minimum cut in near linear memory
	Vertex coloring
	Warm up
	A structural decomposition
	A three phase analysis

