Recovering causal graphs with adaptive interventions

Tea talk (10 August 2023)
Empirical Inference group @ MPI Intelligent Systems
Suppose there is an underlying causal DAG G^*

SACHS
- Number of nodes: 11
- Number of arcs: 17
- Number of parameters: 178
- Average Markov blanket size: 3.09
- Average degree: 3.09
- Maximum in-degree: 3

Assumption:
- **Causal sufficiency**

Source: https://www.bnlearn.com/bnrepository/discrete-small.html#sachs
Suppose there is an underlying causal DAG G^*

SACHS

Number of nodes: 11
Number of arcs: 17
Number of parameters: 178
Average Markov blanket size: 3.09
Average degree: 3.09
Maximum in-degree: 3

BIF (1.9kB)
DSC (1.9kB)
NET (1.7kB)
RDA (bn.fit) (2.4kB)
RDS (bn.fit) (2.4kB)

Suppose there is an underlying causal DAG G^*
Suppose there is an underlying causal DAG G^*

Let me modify G^* slightly for this presentation.
Goal: Recover DAG G* from data

Hidden G*

Observational data
From observational data, can only recover up to MEC $[G^*]$. All graphs in MEC have the same conditional independencies.
Markov equivalence class \([G^*]\)

- From observational data, can only recover up to MEC \([G^*]\)
 - All graphs in MEC have same conditional independencies
- Fact: \(G_1\) and \(G_2\) in \([G^*]\) means they share same skeleton and v-structures

For this audience, I guess I don't need to explain why v-structures are special beyond a reminder that they encode different conditional independencies.
Essential graph $E(G^*)$

- From observational data, can only recover up to MEC $[G^*]$
 - All graphs in MEC have same conditional independencies
- Fact: G_1 and G_2 in $[G^*]$ means they share same skeleton and v-structures
- Essential graph $E(G^*)$
 - Graphical representation of $[G^*]$
 - Partially oriented version of G^*
- How to compute $E(G^*)$ from G^*?
From observational data, can only recover up to MEC \([G^*]\)
- All graphs in MEC have same conditional independencies
- Fact: \(G_1\) and \(G_2\) in \([G^*]\) means they share same skeleton and v-structures
- Essential graph \(E(G^*)\)
 - Graphical representation of \([G^*]\)
 - Partially oriented version of \(G^*\)
- How to compute \(E(G^*)\) from \(G^*\)?
 - Start from skeleton of \(G^*\)
Essential graph $E(G^*)$

- From observational data, can only recover up to MEC $[G^*]$
 - All graphs in MEC have same conditional independencies
- Fact: G_1 and G_2 in $[G^*]$ means they share same skeleton and v-structures
- Essential graph $E(G^*)$
 - Graphical representation of $[G^*]$
 - Partially oriented version of G^*
- How to compute $E(G^*)$ from G^*?
 - Start from skeleton of G^*
 - Orient v-structures
From observational data, can only recover up to MEC \([G^*]\)
- All graphs in MEC have same conditional independencies
- Fact: \(G_1\) and \(G_2\) in \([G^*]\) means they share same skeleton and v-structures

- Essential graph \(E(G^*)\)
 - Graphical representation of \([G^*]\)
 - Partially oriented version of \(G^*\)

- How to compute \(E(G^*)\) from \(G^*\)?
 - Start from skeleton of \(G^*\)
 - Orient v-structures
 - Apply Meek rules until fixed point
Meek rules [Meek 1995]

- **Sound** and **complete** (with respect to arc orientations with acyclic completions)
- Converge in polynomial time [Wienöbst, Bannach, Liśkiewicz 2021]
Meek rules [Meek 1995]

- **Sound** and **complete** (with respect to arc orientations with acyclic completions)
- Converge in polynomial time [Wienöbst, Bannach, Liśkiewicz 2021]
Exercise: Getting a feel of Meek rules

Suppose we are given this partially oriented graph…

What additional arcs can we recover?

Quiz: How many unoriented edges remain?

(A): 0
(B): 1
(C): 3
(D): 5
Exercise: Getting a feel of Meek rules
Exercise: Getting a feel of Meek rules

Note: Also okay to apply R1 first before R3. Ordering does not matter since Meek rules is complete!
Any of these 4 graphs could have been the true underlying causal graph G^*
Any of these 4 graphs could have been the true underlying causal graph G^*. How to pin down G^* within $[G^*]$?

- Make more assumptions on data generating process
 - e.g. Additive non-Gaussian noise → LiNGAM methods

- Perform interventions
 - e.g. Gene knockout experiments / randomized controlled trials
What do interventions buy us?

Intervene on vertex d

We recover arc orientations incident to intervened vertex
Caveats

- Assumptions
 - Causal sufficiency
 - When we perform intervention on a vertex v, we recover arc orientations\(^\dagger\) incident to intervened vertex v (ignoring finite sample and computational concerns)
 - e.g. hard / perfect / do interventions then compare the skeletons
 - May also be possible with imperfect interventions while making other assumptions about the data generating process

- For this talk
 - Atomic / Single vertex interventions
 - Each vertex has the same intervention cost

- Objective and performance metric
 - Minimize number of interventions performed to recover G^* from $[G^*]$

\(^\dagger\) This is slightly different when we intervene on multiple vertices. We do not learn orientation of an edge $\{u,v\}$ if we intervene on both at the same time.
Caveats

- Assumptions
 - Causal sufficiency
 - When we perform intervention on a vertex v, we recover arc orientations incident to intervened vertex v (ignoring finite sample and computational concerns)
 - E.g. hard / perfect / do interventions then compare the skeletons
 - May also be possible with imperfect interventions while making other assumptions about the data generating process

- For this talk
 - Atomic / Single vertex interventions
 - Each vertex has the same intervention cost

Objective and performance metric
- Minimize number of interventions performed to recover G^* from $[G^*]$

† This is slightly different when we intervene on multiple vertices. We do not learn orientation of an edge $\{u,v\}$ if we intervene on both at the same time.
Before we proceed...
5Ws and 1H

[Image of meme with text: I'm gonna ask you this one time... Where is adaptive interventions?]

[Image of meme with text: Yeah. I'll do you one better. Who's adaptive interventions?]

[Image of meme with text: I'll do you one better! Why is Gamora adaptive interventions?]

https://knowyourmeme.com/memes/why-is-gamora
https://imgflip.com/memegenerator/184033944/Where-is-Gamora
Non-adaptive interventions

- Given MEC $[G^*]$, decide on a **single fixed set of interventions** that recovers **any possible G^*** within $[G^*]$.
- **Graph-separating system**\(^{†}\) [Kocaoglu, Dimakis, Vishwanath 2017]
- For single interventions, this corresponds to a vertex cover

\(^{†}\) Every unoriented arc $\{u,v\}$ is "cut" by at least one intervention, i.e. there is some intervention J such that $| J \cap \{u,v\} | = 1.$
Non-adaptive interventions

- Given MEC \([G^*]\), decide on a **single fixed set of interventions** that recovers any possible \(G^*\) within \([G^*]\)
- Graph-separating system\(^\dagger\) [Kocaoglu, Dimakis, Vishwanath 2017]
- For single interventions, this corresponds to a vertex cover

![Graph](image)

- Suppose the essential graph is an unoriented path on \(n = 9\) nodes
- There are 9 possible DAGs in this MEC: Pick \(v_i\) as source and orient arcs away
- 4 non-adaptive interventions are necessary and sufficient

\(^\dagger\) Every unoriented arc \(\{u,v\}\) is "cut" by at least one intervention, i.e. there is some intervention \(J\) such that \(|J \cap \{u,v\}| = 1\).
Adaptive interventions
Power of adaptivity: Possibly exponential improvement!

- Consider essential graph is a path on \(n \) nodes: \(\Theta(n) \) non-adaptive interventions
- But we only need \(\Theta(\log n) \) adaptive interventions by simulating binary search!
Power of adaptivity: Possibly exponential improvement!

- Consider essential graph is a path on n nodes: $\Theta(n)$ non-adaptive interventions
- But we only need $\Theta(\log n)$ adaptive interventions by simulating binary search!

Suppose this was G^*
Power of adaptivity: Possibly exponential improvement!

- Consider essential graph is a path on n nodes: $\Theta(n)$ non-adaptive interventions
- But we only need $\Theta(\log n)$ adaptive interventions by simulating binary search!

Recover arc orientations incident to v_5
Power of adaptivity: Possibly exponential improvement!

- Consider essential graph is a path on n nodes: $\Theta(n)$ non-adaptive interventions
- But we only need $\Theta(\log n)$ adaptive interventions by simulating binary search!

Apply Meek rules (in this case, R1)
Power of adaptivity: Possibly exponential improvement!

- Consider essential graph is a path on n nodes: $\Theta(n)$ non-adaptive interventions
- But we only need $\Theta(\log n)$ adaptive interventions by simulating binary search!

Recurse on unoriented $v_1 - v_2 - v_3 - v_4$
How to measure performance?

- Since we recover arc orientations incident to intervened vertex, $O(n)$ interventions always trivially suffice...
- But what if we know G^* and tell someone else the best possible set of interventions to perform, in order to "verify"? What is the best we can hope for?
 - Clearly, the difficulty depends on structure of G^*
 - Let us denote this "verification number" as $v(G^*)$
How to measure performance?

- Since we recover arc orientations incident to intervened vertex, $O(n)$ interventions always trivially suffice…
- But what if we know G^* and tell someone else the best possible set of interventions to perform, in order to "verify"? What is the best we can hope for?
 - Clearly, the difficulty depends on structure of G^*
 - Let us denote this "verification number" as $\nu(G^*)$
- What was known?†
 - If $E(G^*)$ is a clique on n vertices, $\nu(G^*) = \lfloor n/2 \rfloor$
 - If $E(G^*)$ is a tree on n vertices, $\nu(G^*) = 1$
 - Intervene on the source node, then apply Meek R1
 - Approximations and bounds to $\nu(G^*)$

† Before our work

[Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]
[Porwal, Srivastava, Sinha 2022]
How to measure performance?

Since we recover arc orientations incident to intervened vertex, $O(n)$ interventions always trivially suffice…

But what if we know G^* and tell someone else the best possible set of interventions to perform, in order to “verify”? What is the best we can hope for?

○ Clearly, the difficulty depends on structure of G^*

○ Let us denote this smallest “verification number” as $\nu(G^*)$

What was known?

○ If $E(G^*)$ is a clique on n vertices, $\nu(G^*) = \left\lfloor \frac{n}{2} \right\rfloor$

○ If $E(G^*)$ is a tree on n vertices, $\nu(G^*) = 1$

Intervene on the source node, then apply Meek R1

Approximations and bounds to $\nu(G^*)$

[Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]

[Porwal, Srivastava, Sinha 2022]

Before our work

What we can show

• Exact characterization of $\nu(G^*)$

$O(\log n \cdot \nu(G^*))$ adaptive interventions always possible

$\Omega(\log n \cdot \nu(G^*))$ is worst case necessary

Along with many other extensions…
How to measure performance?

- Since we recover arc orientations incident to intervened vertex, $O(n)$ interventions always trivially suffice...

- But what if we know G^* and tell someone else the best possible set of interventions to perform, in order to “verify”? What is the best we can hope for?
 - Clearly, the difficulty depends on structure of G^*
 - Let us denote this smallest “verification number” as $\nu(G^*)$

- What was known?
 - If $E(G^*)$ is a clique on n vertices, $\nu(G^*) = \lfloor n/2 \rfloor$
 - If $E(G^*)$ is a tree on n vertices, $\nu(G^*) = 1$

- Intervene on the source node, then apply Meek R1

- Approximations and bounds to $\nu(G^*)$
 - [Squires, Magliacane, Greenewald, Katz, Kocaoglu, Shanmugam 2020]
 - [Porwal, Srivastava, Sinha 2022]

What we can show

- Exact characterization of $\nu(G^*)$
- $O(\log n \cdot \nu(G^*))$ adaptive interventions always possible
- $\Omega(\log n \cdot \nu(G^*))$ is worst case necessary (n-node path)
- Along with many other extensions… (see ending slides)
Verification number \(v(G^*) \) is the size of the minimum vertex cover of the covered edges of \(G^* \)

To be precise, we showed that it is necessary and sufficient to intervene on at least one endpoint of every covered edge.
Verification number \(v(G^*) \) is the size of the minimum vertex cover of the covered edges of \(G^* \)

\[\begin{align*}
\text{Chickering 1995} \\
\text{u → v is covered edge if} \\
\text{Pa(u) = Pa(v) \setminus \{u\}} \\
\text{i.e. u and v "share same parents"}
\end{align*}\]
Verification number $\nu(G^*)$ is the size of the minimum vertex cover of the covered edges of G^*

- Minimum vertex cover is NP-hard to compute in general…
- What we can show:
 - Covered edges form a forest
 - So, we can use dynamic programming to compute $\nu(G^*)$ in linear time
 - Also works if vertices have different interventional costs
Verification number $\nu(G^*)$ is the size of the minimum vertex cover of the covered edges of G^*

- If $E(G^*)$ is a clique on n vertices, $\nu(G^*) = \lfloor n/2 \rfloor$
 - Suppose clique topological ordering is v_1, v_2, \ldots, v_n
 - Then, covered edges are precisely $v_1 \rightarrow v_2, v_2 \rightarrow v_3, \ldots, v_{n-1} \rightarrow v_n$
- If $E(G^*)$ is a tree on n vertices, $\nu(G^*) = 1$
 - Covered edges are precisely all edges incident to the root
- Non-adaptive interventions and graph separating systems
 - Two graphs are in the same MEC if and only if there is a sequence of covered edge reversals that transform between them \cite{Chickering1995}
 - Implication: Every unoriented edge in the essential graph is a covered edge for some DAG in the MEC, so non-adaptive interventions must cut all edges!

†Skip if no time
Algorithm does not need to know $v(G^*)$, just the essential graph $E(G^*)$ as input

Based on two ideas†:

- Unoriented connected components are *chordal* graphs and information from one component does not help another
 [Hauser, Bühlmann 2012, 2014]
- For any *chordal* graph $G = (V, E)$ on $|V| = n$ nodes, one can compute a *clique separator* C in polynomial time
 [Gilbert, Rose, Edenbrandt 1984]
 - That is, we can partition vertex set V into A, B, C such that: $|A|$, $|B| \leq n/2$; C is a clique; no edges between A and B

† I do not wish to define / introduce the notions of chordal graphs, chain components and interventional essential graphs, so let me be a little informal here :)
O(log n \cdot v(G*)) adaptive interventions always suffice

- Algorithm does not need to know \(v(G^*)\), just the essential graph \(E(G^*)\) as input
- Based on two ideas\(^\dagger\):
 - Unoriented connected components are *chordal* graphs and information from one component does not help another [Hauser, Bühlmann 2012, 2014]
 - For any chordal graph \(G = (V, E)\) on \(|V| = n\) nodes, one can compute a *clique separator* \(C\) in polynomial time [Gilbert, Rose, Edenbrandt 1984]
 - That is, we can partition vertex set \(V\) into \(A, B, C\) such that: \(|A|, |B| \leq n/2\); \(C\) is a clique; no edges between \(A\) and \(B\)
- Algo.: Find clique separators, intervene on vertices within one by one; Recurse
- Analysis
 - O(log \(n\)) rounds of recursion suffices
 - Incur O(\(v(G^*)\)) interventions per round
 - (We proved a new stronger lower bound on \(v(G^*)\); see [CSB22])

\(^\dagger\) I do not wish to define / introduce the notions of chordal graphs, chain components and interventional essential graphs, so let me be a little informal here :)
Some other related questions that we have also studied†

- Non-atomic / bounded size interventions
 - May intervene on more than 1 vertex in one intervention
- Vertices have varying interventional costs
 - It may be easier to enforce an intervention on diet (eat an apple a day) than exercise (run 10km every day) → $w(\text{diet} = 1 \text{ apple}) < w(\text{exercise} = \text{run 10km})$
 - Some vertices cannot be intervened, possibly due to ethics → $w(v) = \infty$

- Some motivating vignettes in the next few concluding slides:
 - What if we only care about a subgraph in the large causal graph? [CS23]
 - What if there are limited rounds of adaptivity? [CS23]
 - Can we make use of an imperfect expert knowledge to improve guarantees in a principled and provable fashion? [CGB23]

† See my webpage (davinchoo.com) for more details, or come talk to me! Some other follow-ups that we have studied are not shown here.
What if causal graph is HUGE?

Local causal discovery:
Only care about a small subgraph of the larger graph

(Informal) Verification: Generalization of “DP on covered edge forest” [CS23]
(Informal) Search: $O(\log |H| \cdot \nu(G^*))$ interventions suffices [CS23]
What if we have limited rounds of adaptivity?

Given a budget of \(r \) adaptive rounds, how to minimize number of interventions?

\[
\mathcal{O}\left(\min\{r, \log n\} \cdot n^{\min\{r, \log n\}} \cdot \nu(G^*)\right)\text{ interventions\dagger suffice} \quad [CS23]
\]

\(r = 1 \quad \Rightarrow \quad \mathcal{O}(n) \quad \text{“Matches non-adaptive”} \)

\(r \in \mathcal{O}(\log n) \quad \Rightarrow \quad \mathcal{O}(\log n \cdot \nu(G^*)) \quad \text{“Matches fully adaptive”} \)
There are domain experts!

Image credit: https://thenounproject.com/leo/products/4968809/
There are domain experts!

The true causal graph is G^*!

Downstream tasks with G^* with ZERO interventions!
But... experts can be wrong

The true causal graph is \mathcal{G}!

Downstream tasks with \tilde{G}

ZERO interventions!

Image credit: https://dribbble.com/shots/3759014-Atomic-Illustrations/attachments/3759014-Atomic-Illustrations?mode=media
Searching with imperfect advice

The true causal graph is \(\tilde{G} \)!

"some" interventions

Downstream tasks with \(G^* \)

MEC \([G^*]\)
Searching with imperfect advice

The true causal graph is \bar{G}!

Quality of advice \bar{G}

$0 \leq \psi(G^*, \bar{G}) \leq n$

(good) (bad)

Advice search: $O\left(\max\{1, \log(\psi(G^*, \bar{G})) \cdot \psi(G^*)\}\right)$ interventions

[CGB23]