
Partitioning friends fairly
Lily Li, Evi Micha, Aleksandar Nikolov, Nisarg Shah

Paper presentation for CS6235 Advanced Topics in Theoretical Computer Science

8 Mar 2023

Davin Choo
*Screenshot from talk: https://www.birs.ca/events/2020/5-day-workshops/20w5141/videos/watch/202010020915-Li.html

Many thanks to Evi for
clarifications via email and

Warut for linking us up!

No website photo*

https://www.birs.ca/events/2020/5-day-workshops/20w5141/videos/watch/202010020915-Li.html

https://thenounproject.com/icon/child-4684486/
https://thenounproject.com/icon/child-4684492/
https://thenounproject.com/icon/child-4684495/
https://thenounproject.com/icon/child-4684494/
https://thenounproject.com/icon/child-4684491/
https://thenounproject.com/icon/child-4684493/

Andrew

Betty Charlie

Dennis Emma

Frank

https://thenounproject.com/icon/child-4684486/
https://thenounproject.com/icon/child-4684492/
https://thenounproject.com/icon/child-4684495/
https://thenounproject.com/icon/child-4684494/
https://thenounproject.com/icon/child-4684491/
https://thenounproject.com/icon/child-4684493/

How do we split them into 2 groups of equal size?
Desiderata: Everyone wants to be in a group with as many of their friends as possible

Andrew

Betty Charlie

Dennis Emma

Frank

Is this a “good” partitioning?

2
11

0

1

1

Andrew

Betty Charlie

Dennis Emma

Frank

We don’t like this current assignment… Let’s
defect and form our own group!

Notion 1: Core
(Related to “stability” of an assignments in cooperative game theory)

We don’t like this current assignment… Let’s
defect and form our own group!

Notion 1: Core
(Related to “stability” of an assignments in cooperative game theory)

Remark: Value of everyone in coalition strictly increases

I want to swap places with Emma…

Notion 2: Envy (with respect to partition swapping)

Charlie

Emma

Notion 2: Envy (with respect to partition swapping)

Remark: We only care about a single individual’s value

I want to swap places with Emma…

Notion 2: Envy (with respect to partition swapping)

Remark: We only care about a single individual’s value
This new

group
sucks

1 ← 2

I want to swap places with Emma…

Problem setup

• Given a graph 𝐺 = (𝑉, 𝐸)
• Vertices are agents: 𝑛 = 1,… , 𝑛
• Edges denote symmetric friendship between agents
• Binary utility 𝑢! 𝑗 = (1 if 𝑖 and 𝑗 are adjacent

0 otherwise
• Output a partitioning of agents 𝑋 = (𝑋!, … , 𝑋") of 𝑉

• 𝑋 𝑖 ∈ 𝑋 denotes partition which agent 𝑖 is assigned to
• (Additive) utility gained by agent 𝑖 with respect to a set S ⊆ 𝑉

𝑢! 𝑆 =?
"∈$

𝑢! 𝑗 = 𝑆 ∩ 𝑁 𝑖

• Balanced partitioning when %
&
≤ X' ≤

%
&

No self-loops: 𝑢! 𝑖 = 0

Problem setup

• Given a graph 𝐺 = (𝑉, 𝐸)
• Vertices are agents: 𝑛 = 1,… , 𝑛
• Edges denote symmetric friendship between agents
• Binary utility 𝑢! 𝑗 = (1 if 𝑖 and 𝑗 are adjacent

0 otherwise
• Output a partitioning of agents 𝑋 = (𝑋!, … , 𝑋") of 𝑉

• 𝑋 𝑖 ∈ 𝑋 denotes partition which agent 𝑖 is assigned to
• (Additive) utility gained by agent 𝑖 with respect to a set S ⊆ 𝑉

𝑢! 𝑆 =?
"∈$

𝑢! 𝑗 = 𝑆 ∩ 𝑁 𝑖

• Balanced partitioning when %
&
≤ X' ≤

%
&

for all partitions

Fairness notion 1: Core

• No subset of agents can benefit from deviating and
forming their own coalition/group
• A coalition S ⊆ 𝑉 blocks a 𝑘-partition X if

𝑢! 𝑆 > 𝑢! 𝑋 𝑖
• Size of coalition matters. For balanced, %& ≤ S ≤ %

&

Blocking coalition S

Fairness notion 1: Core

• No subset of agents can benefit from deviating and
forming their own coalition/group
• A coalition S ⊆ 𝑉 blocks a 𝑘-partition X if

𝑢! 𝑆 > 𝑢! 𝑋 𝑖
• Size of coalition matters. For balanced, %& ≤ S ≤ %

&

• Relaxation: 𝛼, 𝛽 -core
• A coalition S ⊆ 𝑉 is 𝛼, 𝛽 -blocking for 𝑘-partition X if

𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Fairness notion 2: Envy-free

• The (perceived) own utility is at least any other
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

Agent 𝑗

Agent 𝑖

Fairness notion 2: Envy-free

• The (perceived) own utility is at least any other
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

• Relaxation: EF-r
∀𝑗 ∈ 𝑛 , ∃𝑔), … , 𝑔* ∈ 𝑋 𝑗

𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗, 𝑔), … , 𝑔*

After removing 𝑟 people from 𝑋 𝑗 , agent 𝑖 no longer envy swapping places with agent 𝑗

Remove as many of agent 𝑖’s friends in 𝑋 𝑗

Fairness notion 2: Envy-free

• The (perceived) own utility is at least any other
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

• Relaxation: EF-r
∀𝑗 ∈ 𝑛 , ∃𝑔), … , 𝑔* ∈ 𝑋 𝑗

𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗, 𝑔), … , 𝑔*

∀𝑗 ∈ 𝑛 , 𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

After removing 𝑟 people from 𝑋 𝑗 , agent 𝑖 no longer envy swapping places with agent 𝑗

Remove as many of agent 𝑖’s friends in 𝑋 𝑗

Envy-free when 𝑟 = 0

Core versus envy-free 𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling

https://thenounproject.com/icon/person-thinking-1823342/

https://thenounproject.com/icon/person-thinking-1823342/

Core versus envy-free

Core

𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling

Envy-free

Core versus envy-free

Core

𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling

Envy-free

3 3

33

Maximum utility in any
group of size 4 is at most 3

Envy

Dangling agents’ only
friend is in already

same group
Clique agents gain ≤ 2

but lose 2 if swap

Min 𝑘-cut and 𝐸(𝐴, 𝐵)

Min 𝑘-cut and 𝐸(𝐴, 𝐵)

Cut size = 6
balanced

Cut size = 5
imbalanced

Min 𝑘-cut and 𝐸(𝐴, 𝐵)

𝑐𝑢𝑡(𝐴, 𝐵) = 𝐸(𝐴, 𝐵) = 6
balanced

𝑐𝑢𝑡 𝐴", 𝐵′ = 𝐸(𝐴′, 𝐵′) = 5
imbalanced

𝐴 𝐵 𝐴′ 𝐵′

Min 𝑘-cut and 𝐸(𝐴, 𝐵)

• When 𝑘 = 2, can efficiently solve imbalanced min 2-cut in poly time
• Run max flow algorithm for different source and sink nodes

• When 𝑘 = 2 and 𝑛 is even, balanced min 2-cut is the min-bisection problem
• When 𝑘 ≥ 3, NP-hard if 𝑘 is part of input

• Polynomial time 2 − #
$

approximations exists
• Under some hardness conjecture, NP-hard to approximate within 2 − 𝜖

NP-hard

𝐴 𝐵

𝑐𝑢𝑡(𝐴, 𝐵) = 𝐸(𝐴, 𝐵) = 6
balanced

𝑐𝑢𝑡 𝐴", 𝐵′ = 𝐸(𝐴′, 𝐵′) = 5
imbalanced

𝐴′ 𝐵′

Some background about min cuts… The key point is that balanced min 2-cut is NP-hard.

Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?

“Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

Corollary
of next

slide

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 ≥ 3)

• Result 2: There exists instances without balanced k-partition
(i) In the (𝛼, 0)-core, when 𝛼 ≥ 1
(ii) In the (1, 𝛽)-core, when 𝛽 < #

$
− 2 = #%&

$
• Open question 3: If k divides n, is the core empty?
• Result 3

1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that returns a k-partition

in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘$ + 𝑘, min k-cut is in the (2k − 1,0)-core
4. When n ≥ k$ + k, ALG returns a k-partition in the (2k − 1,0)-core
5. When n < k$ + k, every balanced k-partition is in the (1, k)-core

• Result 4
There exists an instance with n ≥ 𝑘(+ 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2.

(Many interesting results. Will only discuss the ones in red)

Depends on 𝑛 not
dividing nicely by 𝑘

Results: Core (𝑘 ≥ 3)

• Result 2: There exists instances without balanced k-partition
(i) In the (𝛼, 0)-core, when 𝛼 ≥ 1
(ii) In the (1, 𝛽)-core, when 𝛽 < #

$
− 2 = #%&

$
• Open question 3: If k divides n, is the core empty?
• Result 3

1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that returns a k-partition

in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘$ + 𝑘, min k-cut is in the (2k − 1,0)-core
4. When n ≥ k$ + k, ALG returns a k-partition in the (2k − 1,0)-core
5. When n < k$ + k, every balanced k-partition is in the (1, k)-core

• Result 4
There exists an instance with n ≥ 𝑘(+ 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2.

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 ≥ 3)

• Result 2: There exists instances without balanced k-partition
(i) In the (𝛼, 0)-core, when 𝛼 ≥ 1
(ii) In the (1, 𝛽)-core, when 𝛽 < #

$
− 2 = #%&

$
• Open question 3: If k divides n, is the core empty?
• Result 3

1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that returns a k-partition

in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘$ + 𝑘, min k-cut is in the (2k − 1,0)-core
4. When n ≥ k$ + k, ALG returns a k-partition in the (2k − 1,0)-core
5. When n < k$ + k, every balanced k-partition is in the (1, k)-core

• Result 4
There exists an instance with n ≥ 𝑘(+ 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2.

Set 𝑘 = 2

(Many interesting results. Will only discuss the ones in red)

Results: Core (𝑘 ≥ 3)

• Result 2: There exists instances without balanced k-partition
(i) In the (𝛼, 0)-core, when 𝛼 ≥ 1
(ii) In the (1, 𝛽)-core, when 𝛽 < #

$
− 2 = #%&

$
• Open question 3: If k divides n, is the core empty?
• Result 3

1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that returns a k-partition

in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘$ + 𝑘, min k-cut is in the (2k − 1,0)-core
4. When n ≥ k$ + k, ALG returns a k-partition in the (2k − 1,0)-core
5. When n < k$ + k, every balanced k-partition is in the (1, k)-core

• Result 4
There exists an instance with n ≥ 𝑘(+ 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2

(Many interesting results. Will only discuss the ones in red)

Results: Envy-freeness

• Result 5
EF-1 may not exist even for 𝑘 = 2.

• Open question 4
For 𝑘 ≥ 2, does EF-2 always exist?

• Result 6

For 𝑘 ≥ 2 and 𝑟 ∈ 𝒪 "
#
ln 𝑘 , EF-𝑟 always exists

and can be computed in polynomial time.

(Many interesting results. Will only discuss the ones in red)

Results: Envy-freeness

• Result 5
EF-1 may not exist even for 𝑘 = 2.

• Open question 4
For 𝑘 ≥ 2, does EF-2 always exist?

• Result 6

For 𝑘 ≥ 2 and 𝑟 ∈ 𝒪 "
#
ln 𝑘 , EF-𝑟 always exists

and can be computed in polynomial time.

(Many interesting results. Will only discuss the ones in red)

Results: Envy-freeness

• Result 5
EF-1 may not exist even for 𝑘 = 2.

• Open question 4
For 𝑘 ≥ 2, does EF-2 always exist?

• Result 6

For 𝑘 ≥ 2 and 𝑟 ∈ 𝒪 "
#
⋅ ln 𝑘 , EF-𝑟 always exists

and can be computed in polynomial time.

(Many interesting results. Will only discuss the ones in red)

Relies on known results in
discrepancy theory

Results: Imbalanced partitioning

• Result 7
• When 𝑘 ≥ 2, can find imbalanced k-partition in the
1, 𝑘 − 2 -core in polynomial time

• When 𝑘 ≥ 3, exists instance where no imbalanced k-
partition exists in the 1, 𝛽 -core for 𝛽 < 𝑘 − 2

• Result 8
• EF-2 imbalanced 2-partition always exists and can be

computed in polynomial time.

• Construction of result 5 can also be used to show
that EF-1 may not exist

(Many interesting results. Will only discuss the ones in red)

Future directions

• The many open questions mentioned earlier
• Model extensions
• Beyond symmetric and binary preferences
• Assigning items to groups of agents

• Partition agents in groups,
then assign groups to items

• What if agents have attributes / types?

The “main part” of the talk is now over.

Since this is a technical class
presentation, let’s go into some details.

In the rest of the talk, let’s go through the
key ideas behind 1~2 (or more) results.

Some proof ideas and sketches

I will animate pictures and equations will be animated to make the key ideas easy to
grasp and arguments easy to follow J

I will share them in descending order of what I think is interesting (and in an ordering
that I feel facilitates understanding). Feel free to ask questions, it’s okay to not

complete all the material (I expect not to). Slides are available for your leisure reading.

“An animated proof is
even better!” - Davin

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

Some proof ideas and sketches

I will animate pictures and equations will be animated to make the key ideas easy to
grasp and arguments easy to follow J

I will share them in descending order of what I think is interesting (and in an ordering
that I feel facilitates understanding). Feel free to ask questions, it’s okay to not

complete all the material (I expect not to). Slides are available for your leisure reading.

“An animated proof is
even better!” - Davin

Let’s first familiarize ourselves
with the notion of Envy-free with

some lower bound examples

Agent 𝑗

Agent 𝑖

Result 5

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents
Let (𝑋', 𝑋() be any balanced 2-partition ⇒ 4 =)

#
= *

+
≤ 𝑋' , 𝑋(≤ *

+
=)

#
= 5

Without loss of generality, suppose 𝑋' = 4 and 𝑋(= 5

𝑋' 𝑋' 𝑋'

Result 5 EF-1 may not exist even for 𝑘 = 2

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents
Let (𝑋', 𝑋() be any balanced 2-partition ⇒ 4 =)

#
= *

+
≤ 𝑋' , 𝑋(≤ *

+
=)

#
= 5

Without loss of generality, suppose 𝑋' = 4 and 𝑋(= 5

In all cases, 𝒖𝒊 𝑿 𝒊 < 𝒖𝒊 𝑿 𝒋 ∪ 𝒊 ∖ 𝒋 − 𝟏

i

j

i

j

i

j

𝑋' 𝑋' 𝑋'

𝑢! 𝑋' = 2
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 4

𝑢! 𝑋' = 2
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 4

𝑢! 𝑋' = 1
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 3

Result 5 EF-1 may not exist even for 𝑘 = 2

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents
Let (𝑋', 𝑋() be any balanced 2-partition ⇒ 4 =)

#
= *

+
≤ 𝑋' , 𝑋(≤ *

+
=)

#
= 5

Without loss of generality, suppose 𝑋' = 4 and 𝑋(= 5

In all cases, 𝒖𝒊 𝑿 𝒊 < 𝒖𝒊 𝑿 𝒋 ∪ 𝒊 ∖ 𝒋 − 𝟏

i

j

i

j

i

j

𝑋' 𝑋' 𝑋'

𝒖𝒊 𝑿𝟎 = 𝟐
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 4

𝒖𝒊 𝑿𝟎 = 𝟐
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 4

𝒖𝒊 𝑿𝟎 = 𝟏
𝑢! 𝑋(∪ 𝑖 \ {𝑗} = 3

Result 5 EF-1 may not exist even for 𝑘 = 2

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents
Let (𝑋', 𝑋() be any balanced 2-partition ⇒ 4 =)

#
= *

+
≤ 𝑋' , 𝑋(≤ *

+
=)

#
= 5

Without loss of generality, suppose 𝑋' = 4 and 𝑋(= 5

In all cases, 𝒖𝒊 𝑿 𝒊 < 𝒖𝒊 𝑿 𝒋 ∪ 𝒊 ∖ 𝒋 − 𝟏

j

i

j

i

i

j

i

𝑋' 𝑋' 𝑋'

𝑢! 𝑋' = 2
𝒖𝒊 𝑿𝟏 ∪ 𝒊 \ {𝒋} = 𝟒

𝑢! 𝑋' = 2
𝒖𝒊 𝑿𝟏 ∪ 𝒊 \ {𝒋} = 𝟒

𝑢! 𝑋' = 1
𝒖𝒊 𝑿𝟏 ∪ 𝒊 \ {𝒋} = 𝟑

Result 5 EF-1 may not exist even for 𝑘 = 2

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

Result 6

Discrepancy theory

• Informal: Given subset of elements, assign colors to
elements such that each subset has roughly same number
of colors of each type
• Universe Ω = 𝑛
• Set system 𝒮 = 𝑆), … , 𝑆i , where each Sj ⊆ [𝑛]
• Coloring 𝜒: Ω → 𝑘
• Discrepancy of 𝒮 with respect to coloring 𝜒

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Discrepancy of 𝒮 (pick best coloring)
𝑑𝑖𝑠𝑐& 𝒮 = min

o∶ q→ &
𝑑𝑖𝑠𝑐& 𝒮, 𝜒

Discrepancy theory

• Informal: Given subset of elements, assign colors to
elements such that each subset has roughly same number
of colors of each type
• Universe Ω = 𝑛
• Set system 𝒮 = 𝑆), … , 𝑆i , where each Sj ⊆ [𝑛]
• Coloring 𝜒: Ω → 𝑘
• Discrepancy of 𝒮 with respect to coloring 𝜒

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Discrepancy of 𝒮 (pick best coloring)
𝑑𝑖𝑠𝑐& 𝒮 = min

o∶ q→ &
𝑑𝑖𝑠𝑐& 𝒮, 𝜒

Given

Given

Find / Compute

Parameters 𝑛 and 𝑚 are fixed when Ω and 𝒮 are given
Given fixed 𝑘, output a coloring 𝜒

Discrepancy theory

• Informal: Given subset of elements, assign colors to
elements such that each subset has roughly same number
of colors of each type
• Universe Ω = 𝑛
• Set system 𝒮 = 𝑆), … , 𝑆i , where each Sj ⊆ [𝑛]
• Coloring 𝜒: Ω → 𝑘
• Discrepancy of 𝒮 with respect to coloring 𝜒

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Discrepancy of 𝒮 (pick best coloring)
𝑑𝑖𝑠𝑐& 𝒮 = min

o∶ q→ &
𝑑𝑖𝑠𝑐& 𝒮, 𝜒

Given

Given

Find / Compute

All elements in
universe that are
assigned color j

If all colors
are balanced

within Si

Discrepancy theory

• Informal: Given subset of elements, assign colors to
elements such that each subset has roughly same number
of colors of each type
• Universe Ω = 𝑛
• Set system 𝒮 = 𝑆), … , 𝑆i , where each Sj ⊆ [𝑛]
• Coloring 𝜒: Ω → 𝑘
• Discrepancy of 𝒮 with respect to coloring 𝜒

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Discrepancy of 𝒮 (pick best coloring 𝜒)
𝑑𝑖𝑠𝑐& 𝒮 = min

o∶ q→ &
𝑑𝑖𝑠𝑐& 𝒮, 𝜒

Given

Given

Find / Compute

Discrepancy: What is known?

• Ω = 𝑛 ; 𝒮 = 𝑆), … , 𝑆i ; 𝜒: Ω → 𝑘
• Discrepancy of 𝒮

𝑑𝑖𝑠𝑐& 𝒮 = min
o∶ q→ &

max
' ∈)
* ∈ +

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Lower bound

𝑑𝑖𝑠𝑐& 𝒮 ∈ Ω
𝑛
𝑘

• Achievable in polynomial time

𝑑𝑖𝑠𝑐& 𝒮 ∈ 𝒪
𝑛
𝑘
⋅ ln

𝑘𝑚
𝑛

Discrepancy: What is known?

• Ω = 𝑛 ; 𝒮 = 𝑆), … , 𝑆i ; 𝜒: Ω → 𝑘
• Discrepancy of 𝒮

𝑑𝑖𝑠𝑐& 𝒮 = min
o∶ q→ &

max
' ∈)
* ∈ +

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Lower bound

𝑑𝑖𝑠𝑐& 𝒮 ∈ Ω
𝑛
𝑘

• Achievable in polynomial time

𝑑𝑖𝑠𝑐& 𝒮 ∈ 𝒪
𝑛
𝑘
⋅ ln

𝑘𝑚
𝑛

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

𝜒/(0 = 𝐴, 𝐵, 𝐶
𝜒/(1 = 𝐷, 𝐸, 𝐹

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

A

B C

D E

F

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

𝜒/(0 = 𝐴, 𝐵, 𝐶
𝜒/(1 = 𝐷, 𝐸, 𝐹

A

F

E

CB

D

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

N(A) = {B,D,E}
N(B) = {A,E}
N(C) = {D}
N(D) = {A,C,F}
N(E) = {A,B,F}
N(F) = {D,E}

𝜒/(0 = 𝐴, 𝐵, 𝐶
𝜒/(1 = 𝐷, 𝐸, 𝐹

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

𝑋k 𝑁 𝑖

𝑁 𝑖

𝑚 = 𝑛

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [%]

𝑋k ∩ 𝑁(𝑖) −
|𝑁(𝑖)|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [%]

𝑋k ∩ 𝑁(𝑖) −
|𝑁(𝑖)|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in.	Then,

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [%]

𝑋k ∩ 𝑁(𝑖) −
|𝑁(𝑖)|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in.	Then,

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [%]

𝑋k ∩ 𝑁(𝑖) −
|𝑁(𝑖)|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in.	Then,

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [%]

𝑋k ∩ 𝑁(𝑖) −
|𝑁(𝑖)|
𝑘

Let	𝑋k ≠ 𝑋 𝑖 be	a	partition	that	𝑖 is	not	in.	Then,

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k = 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 𝑢+ 𝑋 𝑖 −
𝑁 𝑖
𝑘

+
𝑁 𝑖
𝑘

− 𝑢+ 𝑋k

𝑢+ 𝑋 𝑖 − 𝑢+ 𝑋k ≤ 2 ⋅ 𝑑𝑖𝑠𝑐& 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)

𝑋! − 𝑋? ≤ 2 ⋅ 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Moving 𝑑𝑖𝑠𝑐# 𝒮, 𝜒 agents between partitions will

not affect EF-r when 𝑟 ∈ 𝒪 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Apply known result

𝑑𝑖𝑠𝑐# 𝒮 ∈ 𝒪
𝑛
𝑘
⋅ ln

𝑘𝑚
𝑛

⊆ 𝒪
𝑛
𝑘
⋅ ln 𝑘

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)

𝑋! − 𝑋? ≤ 2 ⋅ 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Moving 𝑑𝑖𝑠𝑐# 𝒮, 𝜒 agents between partitions will

not affect EF-r when 𝑟 ∈ 𝒪 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Apply known result

𝑑𝑖𝑠𝑐# 𝒮 ∈ 𝒪
𝑛
𝑘
⋅ ln

𝑘𝑚
𝑛

⊆ 𝒪
𝑛
𝑘
⋅ ln 𝑘

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)

𝑋! − 𝑋? ≤ 2 ⋅ 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Moving 𝑑𝑖𝑠𝑐# 𝒮, 𝜒 agents between partitions will

not affect EF-r when 𝑟 ∈ 𝒪 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Apply known result (Note: 𝑚 = 𝑛 + 1)

𝑑𝑖𝑠𝑐# 𝒮 ∈ 𝒪
𝑛
𝑘
⋅ ln

𝑘𝑚
𝑛

⊆ 𝒪
𝑛
𝑘
⋅ ln 𝑘

When 𝑘 ≥ 2, EF-r k-partition can be computed

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

Let’s first familiarize ourselves
with the notion of core and

blocking coalitions with some
lower bound examples

Blocking coalition S

Result 2

For k ≥ 3, there exists instances where
1. No balanced k-partition in the (𝛼, 0)-core

• For any 𝛼 ≥ 1
• In this instance, there are 𝑛 = 𝑘 + 1 agents

2. No balanced k-partition in the (1, 𝛽)-core
• For any 𝛽 < "

'
− 2 = "()

'
• In this instance, there are 𝑛 = 𝑘' − 1 agents

Result 2

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Depends on 𝑛 not dividing nicely by 𝑘

…

Graph is cycle on 𝑛 = 𝑘 + 1 agents

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1

Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1

Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

Since n = 𝑘 + 1 ≥ 4, maximal matching size is ≥ 2
There exists two agents (in different groups) who are friends

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1

Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

Since n = 𝑘 + 1 ≥ 4, maximal matching size is ≥ 2
There exists two agents (in different groups) who are friends

They can increase utility from 0 to 1 → (𝛼, 0)-blocking coalition

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@

…

Under this construction, play around with the inequalities.
The other stuff are more interesting, so we will skip the rest of the details.

You can read the slides at your own leisure.

Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents
There exists some clique 𝐶ℓ∗ such that 𝐶ℓ∗ ∩ 𝑋1 ≤ +2(

#
for any partition index 𝑗 ∈ 𝑘

Suppose not.
For any clique index ℓ ∈ [𝑘 + 1], we have 𝐶ℓ ∩ 𝑋1ℓ > +2(

#
for some partition index 𝑗ℓ ∈ 𝑘

Observation 1: For partition index 𝑗 ∈ 𝑘 , we have 𝑋1 ≤ *
+
= 𝑘 − (

+
= 𝑘 ≤ 𝑘 + 1

Observation 2: For clique index ℓ ∈ [𝑘 + 1], index 𝑗ℓ is unique
Otherwise: 𝐶ℓ > 2 ⋅ +2(

#
= 𝑘 + 1

Observation 3: For different clique indices ℓ ≠ ℓ", we must have 𝑗ℓ ≠ 𝑗ℓ#
Otherwise: |𝑋ℓ| = 𝑋ℓ# > 2 ⋅ +2(

#
= 𝑘 + 1 since 𝐶ℓ ∩ 𝐶ℓ# = ∅

Contradiction since k+1 cliques but only k partites (cannot have 𝑗ℓ ≠ 𝑗ℓ# for all clique indices)

…

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@

…

Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents
There exists some clique 𝐶ℓ∗ such that 𝐶ℓ∗ ∩ 𝑋1 ≤ +2(

#
for any partition index 𝑗 ∈ 𝑘

So, for any agent 𝑖 ∈ 𝐶ℓ∗, we have u3 X i = 𝑁 𝑖 ∩ 𝑋 𝑖 ≤ 𝐶ℓ∗ ∩ 𝑋 𝑖 − 1 ≤ +/(
#

Observation 1: 𝐶ℓ∗ = 𝑘 − 1 = *
+

Observation 2: u3 𝐶ℓ∗ = 𝑘 − 2 ≥ 𝑢! 𝑋 𝑖 + +/%
#
> 𝑢! 𝑋 𝑖 + +/4

#

In other words, 𝑪ℓ∗ is a (𝟏, 𝜷)-blocking coalition

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Result 1

𝑋' 𝑋(

Let XE, X/ be an arbitrary min 2-cut
Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

𝑆

Let XE, X/ be an arbitrary min 2-cut
For contradiction, let S be a 2,0 -blocking coalition

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

𝑋' 𝑋(

𝑆

For any agent 𝑖 ∈ 𝑆, we have 𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖
Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

𝑋'∗
= 𝑋' ∩ 𝑆

𝑋' 𝑋(

𝑋(∗
= 𝑋(∩ 𝑆

𝑖

For any agent 𝑖 ∈ 𝑆, we have 𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖
Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

𝑋' 𝑋(

𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋E∗ + 𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	u3 S : 𝑢! 𝑆 = 𝑆 ∩ 𝑁 𝑖

𝑢! 𝑆 𝑢! 𝑋 𝑖

𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋E∗ + 𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋E∗ + 𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑋'∗

𝑋' 𝑋(

𝑋(∗

𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ 𝑁 𝑖 ∩ 𝑋E − 𝑁 𝑖 ∩ 𝑋E∗

𝑖

Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E \ 𝑋E∗|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

*
4∈6)∗

𝑁 𝑖 ∩ 𝑋!∗ > 2 ⋅ *
4∈6)∗

|𝑁 𝑖 ∩ 𝑋8 \ 𝑋8∗|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑋' 𝑋(

*
4∈𝑿𝟎

∗
𝑁 𝑖 ∩ 𝑿𝟏∗ > 2 ⋅ *

4∈𝑿𝟎
∗
|𝑁 𝑖 ∩ 𝑿𝟎 \ 𝑿𝟎∗ |

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Edges between 𝑿𝟎∗ and 𝑿𝟏∗ Edges between 𝑿𝟎∗ and 𝑿𝟎\𝑿𝟎∗

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵

𝑋' 𝑋(

𝐸(𝑋E∗, 𝑋/∗) > 2 ⋅ 𝐸(𝑋E∗, 𝑋E \ 𝑋E∗)

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵

𝑋' 𝑋(

𝐸(𝑋E∗, 𝑋/∗) > 2 ⋅ 𝐸(𝑋/∗, 𝑋/ \ 𝑋/∗)

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵

𝑋' 𝑋(

𝐸 𝑋E∗, 𝑋/∗ > 2 ⋅ max 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ , 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗
≥ 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗

𝑋' 𝑋(
𝑋(∗𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗

𝑋' 𝑋(
𝑋(∗𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑋' 𝑋(
𝑋(∗𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

𝑋' 𝑋(
𝑋(∗𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

drop this

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(
𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

Result 1 Min 2-cut is in the (2,0)-core

𝐸 𝑋E∗, 𝑋/∗ > 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(> 𝐸 𝑋'∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋(∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(> 𝐸 𝑋'∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋(∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(> 𝐸 𝑋'∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋(∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝑐𝑢𝑡(𝑆, 𝑉 \ S)

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(> 𝐸 𝑋'∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋(∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝑐𝑢𝑡(𝑆, 𝑉 \ S)

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

Let 𝑿𝟎, 𝑿𝟏 be an arbitrary min 2-cut
For contradiction, let 𝐒 be a 𝟐, 𝟎 -blocking coalition

Result 1 Min 2-cut is in the (2,0)-core

𝒄𝒖𝒕 𝑿𝟎, 𝑿𝟏 = 𝐸 𝑋', 𝑋(

𝑋' 𝑋(
𝑋(∗𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(≥ 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(> 𝐸 𝑋'∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋(∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗

𝑐𝑢𝑡 𝑋', 𝑋(= 𝒄𝒖𝒕(𝑺, 𝑽 \ 𝑺)

𝑐𝑢𝑡 𝑋', 𝑋(= 𝐸 𝑋'∗, 𝑋(∗ + 𝐸 𝑋'∗, 𝑋(\ 𝑋(∗ + 𝐸 𝑋(∗, 𝑋' \ 𝑋'∗ + 𝐸 𝑋' \ 𝑋'∗, 𝑋(\ 𝑋(∗

Contradiction since (𝑋�, 𝑋)) was	supposed	to	be	min	2-cut!

Let 𝑿𝟎, 𝑿𝟏 be an arbitrary min 2-cut
For contradiction, let 𝐒 be a 𝟐, 𝟎 -blocking coalition

Result 1 Min 2-cut is in the (2,0)-core

Result 3

For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that

returns a k-partition in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘G + 𝑘, min k-cut is in the (2k − 1,0)-

core
4. When n ≥ kG + k, ALG returns a k-partition in

the (2k − 1,0)-core
5. When n < kG + k, every balanced k-partition is in

the (1, k)-core

Result 3

For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that

returns a k-partition in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘G + 𝑘, min k-cut is in the (2k − 1,0)-

core
4. When n ≥ kG + k, ALG returns a k-partition in

the (2k − 1,0)-core
5. When 𝐧 < 𝐤𝟐 + 𝐤, every balanced k-partition is

in the (𝟏, 𝐤)-core

Result 3

• Largest partition size is I
J
< 𝑘 + /

#
= 𝑘 + 1

• Extreme: Initially 0, then gain k friends by deviating
• Formally, for any agent 𝑖 in any blocking coalition S,

𝑢! 𝑆 ≤ 𝑘 ≤ 𝑢! 𝑋 𝑖 + 𝑘
• That is, no possible coalition S such that

𝑢! 𝑆 > 𝑢! 𝑋 𝑖 + 𝑘
• So, every balanced k-partition is in the (1, k)-core

When n < k' + k, every balanced k-
partition is in the (1, k)-coreTheorem 3(iv)

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (𝐤, 𝐤 − 𝟏)-core
2. There is a polynomial time algorithm ALG that

returns a k-partition in the (𝐤, 𝐤 − 𝟏)-core
3. When 𝑛 ≥ 𝑘G + 𝑘, min k-cut is in the (2k − 1,0)-

core
4. When n ≥ kG + k, ALG returns a k-partition in

the (2k − 1,0)-core
5. When n < kG + k, every balanced k-partition is in

the (1, k)-core

Result 3

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
𝑢+ 𝑆 ∩ 𝑋k ≤ 𝑢+ 𝑋 𝑖 + 1, for all 𝑗 ∈ [𝑘]

𝑢+ 𝑆 = o
k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 ≤ 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma
Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
𝑢+ 𝑆 ∩ 𝑋k ≤ 𝑢+ 𝑋 𝑖 + 1, for all 𝑗 ∈ [𝑘]

𝑢+ 𝑆 = o
k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 ≤ 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma
Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
𝑢+ 𝑆 ∩ 𝑋k ≤ 𝑢+ 𝑋 𝑖 + 1, for all 𝑗 ∈ [𝑘]

𝑢+ 𝑆 = o
k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 ≤ 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma

Remove
intersection

Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
𝑢+ 𝑆 ∩ 𝑋k ≤ 𝑢+ 𝑋 𝑖 + 1, for all 𝑗 ∈ [𝑘]

𝑢+ 𝑆 = o
k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 = 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma
Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
𝑢+ 𝑆 ∩ 𝑋k ≤ 𝑢+ 𝑋 𝑖 + 1, for all 𝑗 ∈ [𝑘]

𝑢+ 𝑆 = o
k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 = 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma
Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Contradiction to S being a (k, k − 1)-blocking coalition.

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑗 ∈ 𝑘 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋$

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Lemma

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑗 ∈ 𝑘 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋$

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋.
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘

Lemma

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/(and 𝑖7

(Some	details…)
Remark: The strictness in the inequality is crucial.

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/(and 𝑖7
𝑢!!"# 𝑋 𝑖" > 𝑢!!"# 𝑋 𝑖"#$ + 1

So, cut drops by at least 2. Meanwhile,
𝑢!! 𝑋 𝑖" ≤ 𝑢% 𝑋 𝑗 + 1, for any j ∈ 𝑛

Plug j = 𝑡 − 1:
𝑢!! 𝑋 𝑖" ≤ 𝑢!!"# 𝑋 𝑖"#$ + 1

So,	cut	increases	by	at	most	1.

𝑢!$ 𝑋 𝑖%&$ > 𝑢!$ 𝑋 𝑖% + 1
So, cut drops by at least 1, even in the worst case where
𝑖%&$ is a friend of 𝑖% that is leaving 𝑋 𝑖%&$.

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/(and 𝑖7

In either cases, cut size drops.
Contradiction to the assumption that 𝑋 was a min k-cut

1. Let 𝑋 be an arbitrary balanced k-partition
2. Repeat until fixed point:

1. Build a directed graph 𝐺′ using current partitioning 𝑋
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

3. Return 𝑋

Algorithm ALG: Local search

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐺0 = 𝑉0, 𝐸0

• 𝑉0 = 𝑉
• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1

2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐺0 = 𝑉0, 𝐸0

• 𝑉0 = 𝑉
• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1

2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search

The exact condition from
the proof earlier

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate

• Envy cycle: 𝑖1 → 𝑖& → ⋯ → 𝑖2(& → 𝑖1 in 𝐸0

• Shift agent 𝑖$ into partition 𝑋 𝑖$%&345 2
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 2 triggers.
Shifting can be done in polynomial time.

Just like proof
earlier

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖 + 1

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

Jointly
guarantee that

cut drops if
swapped

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖 + 1

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

If not friends, enough to
have condition 2 to swap

Same
condition

Used in the
2𝑘 − 1,0 -
core proof

Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑖 → 𝑗 in 𝐸"

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

If not friends, enough to
have condition 2 to swap

Same
condition

Used in the
2𝑘 − 1,0 -
core proof

1. Let 𝑋 be an arbitrary balanced k-partition
2. Repeat until fixed point:

1. Build a directed graph 𝐺′ using current partitioning 𝑋
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

3. Return 𝑋

Algorithm ALG: Local search

Since cut(𝑋) is initially at most 𝑛# and cut(𝑋) always decreases if step
2 or 3 triggers, while loop terminates in polynomial number of steps.

Furthermore, each iteration runs in polynomial time.

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑗 ∈ 𝑘 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋$

Suppose S is (k, k − 1)-blocking coalition of 𝑋.
Then, for all i ∈ 𝑆,
u6 S ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all j ∈ 𝑘

Lemma

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.

≤ 𝑢!6 𝑋 𝑖(

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.
Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ in 𝐸′.

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Result 3(iii) The algorithm ALG returns a k-partition in
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.
Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ in 𝐸′.

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

ALG would have rotated the cycle {𝑖7/(, 𝑖7} is “swappable pair”

In either cases, ALG would not have terminated.
Contradiction to the assumption that 𝑋 was output of ALG

For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that

returns a k-partition in the (k, k − 1)-core
3. When 𝒏 ≥ 𝒌𝟐 + 𝒌, min k-cut is in the (𝟐𝐤 −

𝟏, 𝟎)-core
4. When 𝐧 ≥ 𝐤𝟐 + 𝐤, ALG returns a k-partition in

the (𝟐𝐤 − 𝟏, 𝟎)-core
5. When n < kG + k, every balanced k-partition is in

the (1, k)-core

Result 3 Will not present. Idea: use a variant of Lemma.

Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
u' S ∩ 𝑋" ≤ 𝑢! 𝑋 𝑖 + 1, for some 𝑗 ∈ [𝑘]

and 𝑢! 𝑋 𝑖 ≥ 1

𝑢! 𝑆 = ?
"∈[&]

𝑢! 𝑆 ∩ 𝑋"

𝑢! 𝑆 ≤ 𝑢! 𝑆 ∩ 𝑋 𝑖 + ?
"∈[&]

.8/. !

𝑢! 𝑋! + 1

𝑢! 𝑆 ≤ 𝑢! 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢! 𝑋! + 1
𝑢! 𝑆 = 𝑘 ⋅ 𝑢! 𝑋 𝑖 + 𝑘 − 1
𝑢! 𝑆 ≤ (2𝑘 − 1) ⋅ 𝑢! 𝑋 𝑖

Lemma’
Suppose 𝑆 is (2k − 1,0)-blocking coalition of 𝑋.
Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 ,
then 𝑢# 𝑋 𝑖 = 0.

The only
changes to

Lemma.

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Hiding the “for
all 𝑗 ∈ [𝑘]”

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Suppose S is (2k − 1,0)-blocking coalition of
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 ,
then 𝑢# 𝑋 𝑖 = 0.

Lemma’

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

So, 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Suppose S is (2k − 1,0)-blocking coalition of
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 ,
then 𝑢# 𝑋 𝑖 = 0.

Lemma’

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

𝑖(and 𝑖# are friends 𝑖(and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0

∃𝑖% ∈ 𝑆 such that
{𝑖#, 𝑖%} is “swappable pair”

ALG would not have terminated.
Contradiction to the assumption that

𝑋 was output of ALG

(Some	details…)

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

𝑖(and 𝑖# are friends 𝑖(and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0

• Since 𝑘 ≥ 2, 𝑆 ≥ 3.
• By definition of blocking coalition, utility of 𝑖$ strictly

increases, so 𝑖$ has a friend in 𝑆. Let 𝑖' be this friend.
• Note that 𝑢!% 𝑋 𝑖' = 0 since 𝑖' ∈ 𝑆.
• Suppose 𝑖(and 𝑖' are not friends. Then, 𝑢!% 𝑋 𝑖' =
0 < 1 = 𝑢!% 𝑋 𝑖(since as 𝑖$ is friend of 𝑖'.

• Suppose 𝑖(and 𝑖' are friends. Then, 1 + 𝑢!% 𝑋 𝑖' =
1 < 2 = 𝑢!% 𝑋 𝑖(since both are friends of 𝑖'.

• In either case, (𝑖(, 𝑖') is a “swappable pair”.

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the
(2k − 1,0)-coreResult 3(iii)

Repeat exact same argument as 3(iv)

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

So, 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the
(2k − 1,0)-coreResult 3(iii)

Suppose S is (2k − 1,0)-blocking coalition of
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 ,
then 𝑢# 𝑋 𝑖 = 0.

Lemma’

Repeat exact same argument as 3(iv)

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the
(2k − 1,0)-coreResult 3(iii)

𝑖(and 𝑖# are friends 𝑖(and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0

∃𝑖% ∈ 𝑆 such that
{𝑖#, 𝑖%} is “swappable pair”

ALG would not have terminated.
Contradiction to the assumption that

𝑋 was output of ALG

Repeat exact same argument as 3(iv)

Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the
(2k − 1,0)-coreResult 3(iii)

𝑖(and 𝑖# are friends 𝑖(and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0

∃𝑖% ∈ 𝑆 such that
{𝑖#, 𝑖%} is “swappable pair”

ALG would not have terminated.
Contradiction to the assumption that

𝑋 was output of ALG

• Recall that cut size drops in each iteration of ALG.
• If we pass 𝑋 to ALG, it will not terminate.
• So, 𝑋 cannot be min k-cut!

