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How do we split them into 2 groups of equal size?
Desiderata: Everyone wants to be in a group with as many of their friends as possible
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Is this a “good” partitioning?
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We don’t like this current assignment… Let’s 
defect and form our own group!

Notion 1: Core
(Related to “stability” of an assignments in cooperative game theory)



We don’t like this current assignment… Let’s 
defect and form our own group!

Notion 1: Core
(Related to “stability” of an assignments in cooperative game theory)

Remark: Value of everyone in coalition strictly increases



I want to swap places with Emma…

Notion 2: Envy (with respect to partition swapping)
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Notion 2: Envy (with respect to partition swapping)

Remark: We only care about a single individual’s value

I want to swap places with Emma…



Notion 2: Envy (with respect to partition swapping)

Remark: We only care about a single individual’s value
This new 

group 
sucks

1 ← 2

I want to swap places with Emma…



Problem setup

• Given a graph 𝐺 = (𝑉, 𝐸)
• Vertices are agents: 𝑛 = 1,… , 𝑛
• Edges denote symmetric friendship between agents
• Binary utility 𝑢! 𝑗 = ( 1 if 𝑖 and 𝑗 are adjacent

0 otherwise
• Output a partitioning of agents 𝑋 = (𝑋!, … , 𝑋") of 𝑉

• 𝑋 𝑖 ∈ 𝑋 denotes partition which agent 𝑖 is assigned to
• (Additive) utility gained by agent 𝑖 with respect to a set S ⊆ 𝑉

𝑢! 𝑆 =?
"∈$

𝑢! 𝑗 = 𝑆 ∩ 𝑁 𝑖

• Balanced partitioning when %
&
≤ X' ≤

%
&

No self-loops: 𝑢! 𝑖 = 0
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for all partitions



Fairness notion 1: Core

• No subset of agents can benefit from deviating and 
forming their own coalition/group
• A coalition S ⊆ 𝑉 blocks a 𝑘-partition X if

𝑢! 𝑆 > 𝑢! 𝑋 𝑖
• Size of coalition matters. For balanced, %& ≤ S ≤ %

&

Blocking coalition S



Fairness notion 1: Core

• No subset of agents can benefit from deviating and 
forming their own coalition/group
• A coalition S ⊆ 𝑉 blocks a 𝑘-partition X if

𝑢! 𝑆 > 𝑢! 𝑋 𝑖
• Size of coalition matters. For balanced, %& ≤ S ≤ %

&

• Relaxation: 𝛼, 𝛽 -core
• A coalition S ⊆ 𝑉 is 𝛼, 𝛽 -blocking for 𝑘-partition X if

𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



Fairness notion 2: Envy-free

• The (perceived) own utility is at least any other 
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

Agent 𝑗

Agent 𝑖
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• The (perceived) own utility is at least any other 
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

• Relaxation: EF-r
∀𝑗 ∈ 𝑛 , ∃𝑔), … , 𝑔* ∈ 𝑋 𝑗

𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗, 𝑔), … , 𝑔*

After removing 𝑟 people from 𝑋 𝑗 , agent 𝑖 no longer envy swapping places with agent 𝑗

Remove as many of agent 𝑖’s friends in 𝑋 𝑗
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• The (perceived) own utility is at least any other 
agent’s (perceived) utility. Note: This is subjective.
∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗

• Relaxation: EF-r
∀𝑗 ∈ 𝑛 , ∃𝑔), … , 𝑔* ∈ 𝑋 𝑗

𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗, 𝑔), … , 𝑔*

∀𝑗 ∈ 𝑛 , 𝑢+ 𝑋 𝑖 ≥ 𝑢+ 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟

After removing 𝑟 people from 𝑋 𝑗 , agent 𝑖 no longer envy swapping places with agent 𝑗

Remove as many of agent 𝑖’s friends in 𝑋 𝑗

Envy-free when 𝑟 = 0



Core versus envy-free 𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling
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𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling

Envy-free



Core versus envy-free

Core

𝑛 = 8, k = 2
Clique on 4 friends + 4 dangling

Envy-free

3 3

33

Maximum utility in any 
group of size 4 is at most 3

Envy

Dangling agents’ only 
friend is in already 

same group
Clique agents gain ≤ 2

but lose 2 if swap



Min 𝑘-cut and 𝐸(𝐴, 𝐵)



Min 𝑘-cut and 𝐸(𝐴, 𝐵)

Cut size = 6
balanced

Cut size = 5
imbalanced



Min 𝑘-cut and 𝐸(𝐴, 𝐵)

𝑐𝑢𝑡(𝐴, 𝐵) = 𝐸(𝐴, 𝐵) = 6
balanced

𝑐𝑢𝑡 𝐴", 𝐵′ = 𝐸(𝐴′, 𝐵′) = 5
imbalanced

𝐴 𝐵 𝐴′ 𝐵′



Min 𝑘-cut and 𝐸(𝐴, 𝐵)

• When 𝑘 = 2, can efficiently solve imbalanced min 2-cut in poly time
• Run max flow algorithm for different source and sink nodes

• When 𝑘 = 2 and 𝑛 is even, balanced min 2-cut is the min-bisection problem
• When 𝑘 ≥ 3, NP-hard if 𝑘 is part of input

• Polynomial time 2 − #
$

approximations exists
• Under some hardness conjecture, NP-hard to approximate within 2 − 𝜖

NP-hard

𝐴 𝐵

𝑐𝑢𝑡(𝐴, 𝐵) = 𝐸(𝐴, 𝐵) = 6
balanced

𝑐𝑢𝑡 𝐴", 𝐵′ = 𝐸(𝐴′, 𝐵′) = 5
imbalanced

𝐴′ 𝐵′

Some background about min cuts… The key point is that balanced min 2-cut is NP-hard.



Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)



Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?

“Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)



Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

(Many interesting results. Will only discuss the ones in red)



Results: Core (𝑘 = 2)

• Open question 1:
Is there a balanced 2-partitioning in the core?

• Result 1:
Min 2-cut is in the (2,0)-core

• Open question 2:
Can we compute something from (2,0)-core in poly time?
• “Almost” (2,0)-core can be efficiently computed:
• Partition in the (2,1)-core
• Partition in the (3,0)-core, when 𝑛 ≥ 𝑘@ + 𝑘

Corollary 
of next 

slide

(Many interesting results. Will only discuss the ones in red)



Results: Core (𝑘 ≥ 3)

• Result 2: There exists instances without balanced k-partition
(i) In the (𝛼, 0)-core, when 𝛼 ≥ 1
(ii) In the (1, 𝛽)-core, when 𝛽 < #

$
− 2 = #%&

$
• Open question 3: If k divides n, is the core empty?
• Result 3

1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that returns a k-partition 

in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘$ + 𝑘, min k-cut is in the (2k − 1,0)-core
4. When n ≥ k$ + k, ALG returns a k-partition in the (2k − 1,0)-core
5. When n < k$ + k, every balanced k-partition is in the (1, k)-core

• Result 4
There exists an instance with n ≥ 𝑘( + 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2.

(Many interesting results. Will only discuss the ones in red)

Depends on 𝑛 not 
dividing nicely by 𝑘
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2. There is a polynomial time algorithm ALG that returns a k-partition 
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• Result 4
There exists an instance with n ≥ 𝑘( + 𝑘 where

min k-cut is not in the (𝛼, 0)-core, for 𝛼 < 2𝑘 − 2.

Set 𝑘 = 2

(Many interesting results. Will only discuss the ones in red)
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Results: Envy-freeness

• Result 5
EF-1 may not exist even for 𝑘 = 2.

• Open question 4
For 𝑘 ≥ 2, does EF-2 always exist?

• Result 6

For 𝑘 ≥ 2 and 𝑟 ∈ 𝒪 "
#
ln 𝑘 , EF-𝑟 always exists 

and can be computed in polynomial time.

(Many interesting results. Will only discuss the ones in red)
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Results: Envy-freeness

• Result 5
EF-1 may not exist even for 𝑘 = 2.

• Open question 4
For 𝑘 ≥ 2, does EF-2 always exist?

• Result 6

For 𝑘 ≥ 2 and 𝑟 ∈ 𝒪 "
#
⋅ ln 𝑘 , EF-𝑟 always exists 

and can be computed in polynomial time.

(Many interesting results. Will only discuss the ones in red)

Relies on known results in 
discrepancy theory



Results: Imbalanced partitioning

• Result 7
• When 𝑘 ≥ 2, can find imbalanced k-partition in the 
1, 𝑘 − 2 -core in polynomial time

• When 𝑘 ≥ 3, exists instance where no imbalanced k-
partition exists in the 1, 𝛽 -core for 𝛽 < 𝑘 − 2

• Result 8
• EF-2 imbalanced 2-partition always exists and can be 

computed in polynomial time.

• Construction of result 5 can also be used to show 
that EF-1 may not exist

(Many interesting results. Will only discuss the ones in red)



Future directions

• The many open questions mentioned earlier
• Model extensions
• Beyond symmetric and binary preferences
• Assigning items to groups of agents

• Partition agents in groups,
then assign groups to items

• What if agents have attributes / types?



The “main part” of the talk is now over.

Since this is a technical class 
presentation, let’s go into some details.

In the rest of the talk, let’s go through the 
key ideas behind 1~2 (or more) results.



Some proof ideas and sketches

I will animate pictures and equations will be animated to make the key ideas easy to 
grasp and arguments easy to follow J

I will share them in descending order of what I think is interesting (and in an ordering 
that I feel facilitates understanding). Feel free to ask questions, it’s okay to not 

complete all the material (I expect not to). Slides are available for your leisure reading.

“An animated proof is 
even better!” - Davin

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words


Some proof ideas and sketches

I will animate pictures and equations will be animated to make the key ideas easy to 
grasp and arguments easy to follow J

I will share them in descending order of what I think is interesting (and in an ordering 
that I feel facilitates understanding). Feel free to ask questions, it’s okay to not 

complete all the material (I expect not to). Slides are available for your leisure reading.

“An animated proof is 
even better!” - Davin



Let’s first familiarize ourselves 
with the notion of Envy-free with 

some lower bound examples

Agent 𝑗

Agent 𝑖



Result 5



Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents

Result 5 EF-1 may not exist even for 𝑘 = 2
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Graph is complete tri-partite 𝐾%,%,% on 𝑛 = 9 agents
Let (𝑋', 𝑋() be any balanced 2-partition ⇒ 4 = )

#
= *

+
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+
= )

#
= 5

Without loss of generality, suppose 𝑋' = 4 and 𝑋( = 5

𝑋' 𝑋' 𝑋'

Result 5 EF-1 may not exist even for 𝑘 = 2
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𝑢! 𝑋' = 1
𝑢! 𝑋( ∪ 𝑖 \ {𝑗} = 3

Result 5 EF-1 may not exist even for 𝑘 = 2

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟
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Result 6



Discrepancy theory

• Informal: Given subset of elements, assign colors to 
elements such that each subset has roughly same number 
of colors of each type
• Universe Ω = 𝑛
• Set system 𝒮 = 𝑆), … , 𝑆i , where each Sj ⊆ [𝑛]
• Coloring 𝜒: Ω → 𝑘
• Discrepancy of 𝒮 with respect to coloring 𝜒

𝑑𝑖𝑠𝑐& 𝒮, 𝜒 = max
k ∈ & , + ∈ [i]

𝜒n) 𝑗 ∩ 𝑆+ −
|𝑆+|
𝑘

• Discrepancy of 𝒮 (pick best coloring)
𝑑𝑖𝑠𝑐& 𝒮 = min

o∶ q→ &
𝑑𝑖𝑠𝑐& 𝒮, 𝜒
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Discrepancy: What is known?
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o∶ q→ &

max
' ∈ )
* ∈ +
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|𝑆+|
𝑘
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𝑛
𝑘

• Achievable in polynomial time
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𝑛
𝑘
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𝑛
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Result 6
When 𝑘 ≥ 2, EF-r k-partition can be computed 

in polynomial time, where 𝑟 ∈ 𝒪 !
"
⋅ ln 𝑘

Agents Ω = 𝑛 ; Sj = N i ; 𝜒: Ω → 𝑘

m = n
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• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
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"
⋅ ln 𝑘



Result 6

• Problem: Partitions may not be balanced
• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 𝑋#\𝑆!%& − 𝑋$ ∩ 𝑆!%& − 𝑋$\𝑆!%&
𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& + 0 − 𝑋$ ∩ 𝑆!%& − 0

𝑋# − 𝑋$ = 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 𝑋# ∩ 𝑆!%& −
𝑆!%&
𝑘

+
𝑆!%&
𝑘

− 𝑋$ ∩ 𝑆!%&

𝑋# − 𝑋$ ≤ 2 ⋅ 𝑑𝑖𝑠𝑐" 𝒮, 𝜒

When 𝑘 ≥ 2, EF-r k-partition can be computed 

in polynomial time, where 𝑟 ∈ 𝒪 !
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• Fix:	Add	another	set	𝑆"./ = 𝑉 (So, 𝑚 = 𝑛 + 1)

𝑋! − 𝑋? ≤ 2 ⋅ 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
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not affect EF-r when 𝑟 ∈ 𝒪 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Apply known result
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𝑛
𝑘
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𝑘𝑚
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⊆ 𝒪
𝑛
𝑘
⋅ ln 𝑘

When 𝑘 ≥ 2, EF-r k-partition can be computed 
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"
⋅ ln 𝑘

Recall	definition	of	EF-r:	∀𝑗 ∈ 𝑛 , 𝑢! 𝑋 𝑖 ≥ 𝑢! 𝑋 𝑗 ∪ 𝑖 ∖ 𝑗 − 𝑟
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not affect EF-r when 𝑟 ∈ 𝒪 𝑑𝑖𝑠𝑐# 𝒮, 𝜒
• Apply known result (Note: 𝑚 = 𝑛 + 1)
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𝑛
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Let’s first familiarize ourselves 
with the notion of core and 

blocking coalitions with some 
lower bound examples

Blocking coalition S



Result 2



For k ≥ 3, there exists instances where
1. No balanced k-partition in the (𝛼, 0)-core

• For any 𝛼 ≥ 1
• In this instance, there are 𝑛 = 𝑘 + 1 agents

2. No balanced k-partition in the (1, 𝛽)-core
• For any 𝛽 < "

'
− 2 = "()

'
• In this instance, there are 𝑛 = 𝑘' − 1 agents

Result 2

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽

Depends on 𝑛 not dividing nicely by 𝑘



…

Graph is cycle on 𝑛 = 𝑘 + 1 agents

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1



Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1



Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

Since n = 𝑘 + 1 ≥ 4, maximal matching size is ≥ 2
There exists two agents (in different groups) who are friends

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1



Graph is cycle on 𝑛 = 𝑘 + 1 agents
In any k-partition, we have 1 pair and 𝑘 − 1 singletons

Since n = 𝑘 + 1 ≥ 4, maximal matching size is ≥ 2
There exists two agents (in different groups) who are friends

They can increase utility from 0 to 1 → (𝛼, 0)-blocking coalition

… …

Result 2(i) k ≥ 3, no (𝛼, 0)-core, ∀𝛼 ≥ 1

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@

…

Under this construction, play around with the inequalities.
The other stuff are more interesting, so we will skip the rest of the details.

You can read the slides at your own leisure.



Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents
There exists some clique 𝐶ℓ∗ such that 𝐶ℓ∗ ∩ 𝑋1 ≤ +2(

#
for any partition index 𝑗 ∈ 𝑘

Suppose not.
For any clique index ℓ ∈ [𝑘 + 1], we have 𝐶ℓ ∩ 𝑋1ℓ > +2(

#
for some partition index 𝑗ℓ ∈ 𝑘

Observation 1: For partition index 𝑗 ∈ 𝑘 , we have 𝑋1 ≤ *
+
= 𝑘 − (

+
= 𝑘 ≤ 𝑘 + 1

Observation 2: For clique index ℓ ∈ [𝑘 + 1], index 𝑗ℓ is unique
Otherwise: 𝐶ℓ > 2 ⋅ +2(

#
= 𝑘 + 1

Observation 3: For different clique indices ℓ ≠ ℓ", we must have 𝑗ℓ ≠ 𝑗ℓ#
Otherwise: |𝑋ℓ| = 𝑋ℓ# > 2 ⋅ +2(

#
= 𝑘 + 1 since 𝐶ℓ ∩ 𝐶ℓ# = ∅

Contradiction since k+1 cliques but only k partites (cannot have 𝑗ℓ ≠ 𝑗ℓ# for all clique indices)

…

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@



…

Graph is 𝑘 + 1 disjoint cliques 𝐶', … , 𝐶+ each of size 𝑘 − 1 ⇒ 𝑛 = 𝑘# − 1 agents
There exists some clique 𝐶ℓ∗ such that 𝐶ℓ∗ ∩ 𝑋1 ≤ +2(

#
for any partition index 𝑗 ∈ 𝑘

So, for any agent 𝑖 ∈ 𝐶ℓ∗, we have u3 X i = 𝑁 𝑖 ∩ 𝑋 𝑖 ≤ 𝐶ℓ∗ ∩ 𝑋 𝑖 − 1 ≤ +/(
#

Observation 1: 𝐶ℓ∗ = 𝑘 − 1 = *
+

Observation 2: u3 𝐶ℓ∗ = 𝑘 − 2 ≥ 𝑢! 𝑋 𝑖 + +/%
#
> 𝑢! 𝑋 𝑖 + +/4

#

In other words, 𝑪ℓ∗ is a (𝟏, 𝜷)-blocking coalition

Result 2(ii) k ≥ 3, no (1, 𝛽)-core, ∀𝛽 < &n�
@

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



Result 1



𝑋' 𝑋(

Let XE, X/ be an arbitrary min 2-cut
Result 1 Min 2-cut is in the (2,0)-core



𝑋' 𝑋(

𝑆

Let XE, X/ be an arbitrary min 2-cut
For contradiction, let S be a 2,0 -blocking coalition

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



𝑋' 𝑋(

𝑆

For any agent 𝑖 ∈ 𝑆, we have 𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖
Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



𝑋'∗
= 𝑋' ∩ 𝑆

𝑋' 𝑋(

𝑋(∗
= 𝑋( ∩ 𝑆

𝑖

For any agent 𝑖 ∈ 𝑆, we have 𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖
Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽



𝑋' 𝑋(

𝑢! 𝑆 > 2 ⋅ 𝑢! 𝑋 𝑖

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core



𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋E∗ + 𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	u3 S : 𝑢! 𝑆 = 𝑆 ∩ 𝑁 𝑖

𝑢! 𝑆 𝑢! 𝑋 𝑖
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𝑁 𝑖 ∩ 𝑋E∗ + 𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core
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𝑖
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𝑋'∗

𝑋' 𝑋(

𝑋(∗

𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ 𝑁 𝑖 ∩ 𝑋E − 𝑁 𝑖 ∩ 𝑋E∗

𝑖

Result 1 Min 2-cut is in the (2,0)-core



𝑋' 𝑋(

𝑁 𝑖 ∩ 𝑋/∗ > 2 ⋅ |𝑁 𝑖 ∩ 𝑋E \ 𝑋E∗|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core



𝑋' 𝑋(

*
4∈6)∗

𝑁 𝑖 ∩ 𝑋!∗ > 2 ⋅ *
4∈6)∗

|𝑁 𝑖 ∩ 𝑋8 \ 𝑋8∗|

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core



𝑋' 𝑋(

*
4∈𝑿𝟎

∗
𝑁 𝑖 ∩ 𝑿𝟏∗ > 2 ⋅ *

4∈𝑿𝟎
∗
|𝑁 𝑖 ∩ 𝑿𝟎 \ 𝑿𝟎∗ |

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Edges between 𝑿𝟎∗ and 𝑿𝟏∗ Edges between 𝑿𝟎∗ and 𝑿𝟎\𝑿𝟎∗

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵



𝑋' 𝑋(
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𝐸 𝑋E∗, 𝑋/∗ > 2 ⋅ max 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ , 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗
≥ 𝐸 𝑋E∗, 𝑋E \ 𝑋E∗ + 𝐸 𝑋/∗, 𝑋/ \ 𝑋/∗

𝑖

𝑋'∗ 𝑋(∗

Result 1 Min 2-cut is in the (2,0)-core

Recall	definition	of	𝐸(𝐴, 𝐵): Edges between sets 𝐴 and 𝐵
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For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that 

returns a k-partition in the (k, k − 1)-core
3. When 𝑛 ≥ 𝑘G + 𝑘, min k-cut is in the (2k − 1,0)-

core
4. When n ≥ kG + k, ALG returns a k-partition in 

the (2k − 1,0)-core
5. When n < kG + k, every balanced k-partition is in 

the (1, k)-core
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• Largest partition size is I
J
< 𝑘 + /

#
= 𝑘 + 1

• Extreme: Initially 0, then gain k friends by deviating
• Formally, for any agent 𝑖 in any blocking coalition S,

𝑢! 𝑆 ≤ 𝑘 ≤ 𝑢! 𝑋 𝑖 + 𝑘
• That is, no possible coalition S such that

𝑢! 𝑆 > 𝑢! 𝑋 𝑖 + 𝑘
• So, every balanced k-partition is in the (1, k)-core

When n < k' + k, every balanced k-
partition is in the (1, k)-coreTheorem 3(iv)

Recall	definition	of	 𝛼, 𝛽 -blocking coalition S for 𝑘-partition X: 𝑢! 𝑆 > 𝛼 ⋅ 𝑢! 𝑋 𝑖 + 𝛽
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k∈[&]

𝑢+ 𝑆 ∩ 𝑋k

𝑢+ 𝑆 ≤ 𝑢+ 𝑆 ∩ 𝑋 𝑖 + o
k∈[&]
�'�� +

𝑢+ 𝑋+ + 1

𝑢+ 𝑆 ≤ 𝑢+ 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢+ 𝑋+ + 1
𝑢+ 𝑆 ≤ 𝑘 ⋅ 𝑢+ 𝑋 𝑖 + 𝑘 − 1

Lemma
Suppose 𝑆 is (k, k − 1)-blocking coalition of 𝑋. 
Then, for all 𝑖 ∈ 𝑆,
𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all 𝑗 ∈ 𝑘
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Remove 
intersection
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Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)
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Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc 
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc 
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/( and 𝑖7

(Some	details…)
Remark: The strictness in the inequality is crucial.



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc 
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/( and 𝑖7
𝑢!!"# 𝑋 𝑖" > 𝑢!!"# 𝑋 𝑖"#$ + 1

So, cut drops by at least 2. Meanwhile,
𝑢!! 𝑋 𝑖" ≤ 𝑢% 𝑋 𝑗 + 1, for any j ∈ 𝑛

Plug j = 𝑡 − 1:
𝑢!! 𝑋 𝑖" ≤ 𝑢!!"# 𝑋 𝑖"#$ + 1

So,	cut	increases	by	at	most	1.

𝑢!$ 𝑋 𝑖%&$ > 𝑢!$ 𝑋 𝑖% + 1
So, cut drops by at least 1, even in the worst case where 
𝑖%&$ is a friend of 𝑖% that is leaving 𝑋 𝑖%&$ .



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (𝑘, 𝑘 − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ where an arc 
𝑖$ → 𝑖$%& means that 𝑢#" 𝑋 𝑖$%& > 𝑢#" 𝑋 𝑖$ + 1

For k ≥ 3,
every min k-cut is in the (k, k − 1)-coreResult 3(i)

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

Rotate agents along cycle Swap agents 𝑖7/( and 𝑖7

In either cases, cut size drops.
Contradiction to the assumption that 𝑋 was a min k-cut



1. Let 𝑋 be an arbitrary balanced k-partition
2. Repeat until fixed point:

1. Build a directed graph 𝐺′ using current partitioning 𝑋
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

3. Return 𝑋

Algorithm ALG: Local search



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐺0 = 𝑉0, 𝐸0

• 𝑉0 = 𝑉
• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1

2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐺0 = 𝑉0, 𝐸0

• 𝑉0 = 𝑉
• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1

2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search

The exact condition from 
the proof earlier



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate

• Envy cycle: 𝑖1 → 𝑖& → ⋯ → 𝑖2(& → 𝑖1 in 𝐸0

• Shift agent 𝑖$ into partition 𝑋 𝑖$%&345 2
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 2 triggers.
Shifting can be done in polynomial time.

Just like proof 
earlier



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖 + 1

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

Jointly 
guarantee that 

cut drops if 
swapped



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖 + 1

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

If not friends, enough to 
have condition 2 to swap

Same 
condition

Used in the 
2𝑘 − 1,0 -
core proof



Repeat until fixed point:
1. Build a directed graph 𝐺′ using current partitioning 𝑋

• 𝐸0 = 𝑖, 𝑗 : 𝑢# 𝑋(𝑗) > 𝑢# 𝑋 𝑖 + 1
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair

• {𝑖, 𝑗} are swappable if all 3 following conditions hold:
1. 𝑢1 𝑋 𝑗 = 0
2. 𝑢! 𝑋 𝑗 > 𝑢! 𝑋 𝑖
3. 𝑖 and 𝑗 are not friends or 𝑖 → 𝑗 in 𝐸"

4. Else, break

Algorithm ALG: Local search

Observe that cut(𝑋) always decreases if step 3 triggers.
Swapping can be done in polynomial time.

If not friends, enough to 
have condition 2 to swap

Same 
condition

Used in the 
2𝑘 − 1,0 -
core proof



1. Let 𝑋 be an arbitrary balanced k-partition
2. Repeat until fixed point:

1. Build a directed graph 𝐺′ using current partitioning 𝑋
2. If there is an “envy cycle” in 𝐺′, rotate to eliminate
3. Else if ∃“swappable pair”, swap one such pair
4. Else, break

3. Return 𝑋

Algorithm ALG: Local search

Since cut(𝑋) is initially at most 𝑛# and cut(𝑋) always decreases if step 
2 or 3 triggers, while loop terminates in polynomial number of steps. 

Furthermore, each iteration runs in polynomial time.



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑗 ∈ 𝑘 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋$

Suppose S is (k, k − 1)-blocking coalition of 𝑋. 
Then, for all i ∈ 𝑆,
u6 S ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1, for all j ∈ 𝑘

Lemma



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.

≤ 𝑢!6 𝑋 𝑖(



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.
Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ in 𝐸′.

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic



Result 3(iii) The algorithm ALG returns a k-partition in 
the (k, k − 1)-core

Let 𝑋 be output of ALG.

Suppose, for a contradiction, that S is a (k, k − 1)-blocking coalition.

For all 𝑖& ∈ 𝑆, 𝑖' ∈ 𝑛 ,
𝑢#! 𝑋 𝑖& + 1 < 𝑢#! 𝑆 ∩ 𝑋 𝑖'

So, 𝑖& → 𝑖' ∈ 𝐸′.
Consider the longest possible sequence 𝑖& → 𝑖' → ⋯ → 𝑖/ in 𝐸′.

≤ 𝑢!6 𝑋 𝑖(

Sequence forms cycle Sequence is acyclic

ALG would have rotated the cycle {𝑖7/(, 𝑖7} is “swappable pair”

In either cases, ALG would not have terminated.
Contradiction to the assumption that 𝑋 was output of ALG



For k ≥ 3, the following statements hold:
1. Every min k-cut is in the (k, k − 1)-core
2. There is a polynomial time algorithm ALG that 

returns a k-partition in the (k, k − 1)-core
3. When 𝒏 ≥ 𝒌𝟐 + 𝒌, min k-cut is in the (𝟐𝐤 −

𝟏, 𝟎)-core
4. When 𝐧 ≥ 𝐤𝟐 + 𝐤, ALG returns a k-partition in 

the (𝟐𝐤 − 𝟏, 𝟎)-core
5. When n < kG + k, every balanced k-partition is in 

the (1, k)-core

Result 3 Will not present. Idea: use a variant of Lemma.



Suppose, for contradiction, that there exists 𝑖 ∈ 𝑆 such that
u' S ∩ 𝑋" ≤ 𝑢! 𝑋 𝑖 + 1, for some 𝑗 ∈ [𝑘]

and 𝑢! 𝑋 𝑖 ≥ 1

𝑢! 𝑆 = ?
"∈[&]

𝑢! 𝑆 ∩ 𝑋"

𝑢! 𝑆 ≤ 𝑢! 𝑆 ∩ 𝑋 𝑖 + ?
"∈[&]

.8/. !

𝑢! 𝑋! + 1

𝑢! 𝑆 ≤ 𝑢! 𝑋 𝑖 + 𝑘 − 1 ⋅ 𝑢! 𝑋! + 1
𝑢! 𝑆 = 𝑘 ⋅ 𝑢! 𝑋 𝑖 + 𝑘 − 1
𝑢! 𝑆 ≤ (2𝑘 − 1) ⋅ 𝑢! 𝑋 𝑖

Lemma’
Suppose 𝑆 is (2k − 1,0)-blocking coalition of 𝑋. 
Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 , 
then 𝑢# 𝑋 𝑖 = 0.

The only 
changes to 

Lemma.



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Hiding the “for 
all 𝑗 ∈ [𝑘]”



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Suppose S is (2k − 1,0)-blocking coalition of 
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 , 
then 𝑢# 𝑋 𝑖 = 0.

Lemma’



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

So, 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

Suppose S is (2k − 1,0)-blocking coalition of 
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 , 
then 𝑢# 𝑋 𝑖 = 0.

Lemma’



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

𝑖( and 𝑖# are friends 𝑖( and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0 

∃𝑖% ∈ 𝑆 such that
{𝑖#, 𝑖%} is “swappable pair”

ALG would not have terminated.
Contradiction to the assumption that

𝑋 was output of ALG

(Some	details…)



Let 𝑋 be output of ALG.

Suppose, for a contradiction, that 𝑆 is a (2k − 1,0)-blocking coalition.

Suppose now that 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

Since n ≥ 𝑘' + 𝑘, 𝑆 ≥ "B%&
"

= 𝑘 + &
"
= 𝑘 + 1.

By pigeonhole principle, ∃𝑖&, 𝑖' ∈ 𝑆 such that 𝑋(𝑖&) = 𝑋 𝑖' .

Result 3(iv) When 𝑛 ≥ 𝑘' + 𝑘, ALG returns a k-
partition in the (2k − 1,0)-core

𝑖( and 𝑖# are friends 𝑖( and 𝑖# are not friends

Then, 𝑢! 𝑋 𝑖 ≥ 1
since 𝑋(𝑖() = 𝑋 𝑖#

Contradiction to 𝑢! 𝑋 𝑖 = 0 

• Since 𝑘 ≥ 2, 𝑆 ≥ 3.
• By definition of blocking coalition, utility of 𝑖$ strictly 

increases, so 𝑖$ has a friend in 𝑆. Let 𝑖' be this friend.
• Note that 𝑢!% 𝑋 𝑖' = 0 since 𝑖' ∈ 𝑆.
• Suppose 𝑖( and 𝑖' are not friends. Then, 𝑢!% 𝑋 𝑖' =
0 < 1 = 𝑢!% 𝑋 𝑖( since as 𝑖$ is friend of 𝑖'.

• Suppose 𝑖( and 𝑖' are friends. Then, 1 + 𝑢!% 𝑋 𝑖' =
1 < 2 = 𝑢!% 𝑋 𝑖( since both are friends of 𝑖'.

• In either case, (𝑖(, 𝑖') is a “swappable pair”.



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the 
(2k − 1,0)-coreResult 3(iii)

Repeat exact same argument as 3(iv)



Let 𝑋 be an arbitrary min k-cut.

Suppose, for a contradiction, that 𝑆 is a (2𝑘 − 1,0)-blocking coalition.

From earlier, “𝑢# 𝑆 ∩ 𝑋$ > 𝑢# 𝑋 𝑖 + 1” leads to contradiction.

Suppose now that “𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1”.

So, 𝑢# 𝑋 𝑖 = 0 for all 𝑖 ∈ 𝑆.

When 𝑛 ≥ 𝑘' + 𝑘, min k-cut is in the 
(2k − 1,0)-coreResult 3(iii)

Suppose S is (2k − 1,0)-blocking coalition of 
𝑋. Then, for all i ∈ 𝑆,
If 𝑢# 𝑆 ∩ 𝑋$ ≤ 𝑢# 𝑋 𝑖 + 1 for all 𝑗 ∈ 𝑘 , 
then 𝑢# 𝑋 𝑖 = 0.

Lemma’

Repeat exact same argument as 3(iv)
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∃𝑖% ∈ 𝑆 such that
{𝑖#, 𝑖%} is “swappable pair”

ALG would not have terminated.
Contradiction to the assumption that

𝑋 was output of ALG
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• Recall that cut size drops in each iteration of ALG.
• If we pass 𝑋 to ALG, it will not terminate.
• So, 𝑋 cannot be min k-cut!


