1 Overview

Under the DMPC model, each machine has memory of $O(\sqrt{N})$ bits, where $N = |V| + |E|$ for a graph $G = (V, E)$. We are interested in maintaining exact Minimum Spanning Trees\(^1\) (MST) in the DMPC model in $O(1)$ rounds per update using $O(\sqrt{N})$ total communication per update. As in the paper, we maintain an Euler tour tree (ET), as a sequence of vertices, for each connected component of G. Each vertex v knows the following:

- $id(v)$: ID of the Euler tour tree $T_{id(v)}$ that v belongs to
- $|T_{id(v)}|$: Size of the connected component that v belongs to
- $f(v)$: The first index in $T_{id(v)}$ that v appears in
- $l(v)$: The last index in $T_{id(v)}$ that v appears in

We denote the set of 4 numbers $S(v) = \{id(v), |T_{id(v)}|, f(v), l(v)\}$ as the “side information” of vertex v. Each edge $\{u, v\}$ knows $S(u), S(v)$, and whether it is in some Euler tour tree.

1.1 Maintaining an Euler tour tree

For simplicity, we assume there is a coordinating machine (it can be any of the machines). For each vertex v, the set $S(v)$ is maintained when we maintain the Euler tour trees. We know that the following Euler tour tree operations can be performed under the DMPC model in $O(1)$ rounds using $O(\sqrt{N})$ total communication by broadcasting $S(\cdot)$ around.

- **Reroot**(T, v): Returns a ET sequence with $v \in T$ as the root.
- **Cut**(u, v): Returns 2 ETs, one containing $u \in T$ and the other containing $v \in T$.
- **Join**(u, v): Joins 2 ETs, one containing u and the other containing v.
- **Query**(u, v): Returns whether u and v are in the same ET.
- **FindEdge**(T_i, T_j): Returns an edge whose endpoints lie in T_i and T_j.

$\text{FindEdge}(T_i, T_j)$ is described in the paper as follows:

- Coordinator broadcasts T_i and T_j to all machines.
 - Note: T_i is just a number representing the ID of the i^{th} Euler tour tree.
- Each machine sends an arbitrary edge whose endpoints lie in T_i and T_j.
- The coordinator outputs an arbitrary edge amongst the received edges.

We can define a similar function $\text{FindMinEdge}(T_1, T_2)$ that returns an edge whose endpoints lie in T_1 and T_2 of the minimum cost. The only change is to require each machine to reply with the minimum cost edge instead of an arbitrary one.

\(^1\)Technically it could be disjoint forests (where each component maintains a separate Euler tour tree) but we write MST instead of MSF.
2 Algorithm

2.1 Edge insertion

Suppose edge \(e = \{a, b\} \) is inserted with weight \(w(e) \). If \(id(a) \neq id(b) \), then we connect the two Euler tour trees via \(\text{Join}(a, b) \). Otherwise, \(id(a) = id(b) \). That is, \(a \) and \(b \) are in the same connected component. Let \(T = T_{id(a)} = T_{id(b)} \) be the Euler tour tree that contains \(a \) and \(b \). We know that adding edge \(e \) into the tree \(T \) forms a cycle \(C \). So, it suffices to argue that we can efficiently find the maximum weight edge in \(C \).

To efficiently find the maximum weight edge in \(C \), the coordinator first broadcast \(S(a) \) and \(S(b) \) to all machines. In the Euler tour tree, any common ancestor \(v \) of \(a \) and \(b \) fulfill the condition:

\[
\min \{f(a), f(b)\} < l(v) < \max \{l(a), l(b)\}
\]

Without loss of generality, suppose \(f(a) < f(b) \). See Fig. 1 for an illustration.

- If \(l(a) < f(b) \), then there is some other lowest common ancestor in the ET. Consider set \(Y = Y_1 \cup Y_2 \), where
 \[
 Y_1 = \{v : f(v) < f(a) \land l(a) < l(v) < l(b)\}
 \]
 \[
 Y_2 = \{v : l(a) < f(v) < f(b) \land l(b) < l(v)\}.
 \]

- If \(l(a) > f(b) \), then \(l(a) > l(b) \) and \(a \) is an ancestor of \(b \) in the ET. Consider set \(X = \{v : f(a) < f(v) < f(b) \land l(b) < l(v) < l(a)\} \).

An edge lies in cycle \(C \) if at least one of its endpoints is in \(X \) or \(Y \). Since all edges know the \(S(\cdot) \) of their endpoints, each edge can self-identify whether it is in the cycle \(C \). Each machine then returns the maximum weight edge amongst all self-identified edges to the coordinator. Let \(e' = \{c, d\} \) be the edge with the maximum weight amongst all \(O(\sqrt{N}) \) edges received by the coordinator. If \(w(e) \geq w(e') \), then we just add the new edge to the system without updating \(T \). On the other hand, if \(w(e) < w(e') \), then the new edge \(e = \{a, b\} \) should replace \(e' = \{c, d\} \) in \(T \). To do so, we perform \(\text{Cut}(c, d) \) and \(\text{Join}(a, b) \).

![Figure 1: Identification of vertices on the cycle if we add edge \(\{a, b\} \)](image-url)
2.2 Edge deletion

Edge deletion is handled similarly to edge deletion in maintaining connected components. The only change is that we use \texttt{FindMinEdge} instead of \texttt{FindEdge}. To be precise, if edge $e = \{a, b\}$ in T is to be removed, we do the following:

- $T_1, T_2 \leftarrow \text{Cut}(a, b)$
- $e' \leftarrow \text{FindMinEdge}(T_1, T_2)$
- If $e' \neq \emptyset$, say $e' = \{u, v\}$. Execute \texttt{Join}(u, v).

3 Analysis

Recall that \texttt{Cut}, \texttt{Join}, \texttt{FindEdge}, and \texttt{FindMinEdge} are operations on the Euler tour trees that run in $O(1)$ rounds using $O(\sqrt{N})$ total communication in the DMPC model. In each communication round, either an $O(1)$-sized message is broadcasted, or each machine sends at most an $O(1)$-sized message to the coordinator.

3.1 Edge insertion

Suppose edge $e = \{a, b\}$ is inserted with weight $w(e)$. If $id(a) \neq id(b)$, a single call to \texttt{Join} is made. If $id(a) = id(b)$, let e' be the maximum weight edge found in C. If $w(e) \geq w(e')$, only simple book-keeping is done. If $w(e) < w(e')$, then a call to \texttt{Cut} and \texttt{Join} are made.

3.2 Edge deletion

A call to \texttt{Cut} and \texttt{FindMinEdge} is made. At most one call to \texttt{Join} is made.