
Maintaining exact MST in DMPC Davin Choo

1 Overview

Under the DMPC model, each machine has memory of O(
√
N) bits, where N = |V |+ |E|

for a graph G = (V,E). We are interested in maintaining exact Minimum Spanning Trees1

(MST) in the DMPC model inO(1) rounds per update usingO(
√
N) total communication

per update. As in the paper, we maintain an Euler tour tree (ET), as a sequence of
vertices, for each connected component of G. Each vertex v knows the following:

• id(v): ID of the Euler tour tree Tid(v) that v belongs to

• |Tid(v)|: Size of the connected component that v belongs to

• f(v): The first index in Tid(v) that v appears in

• l(v): The last index in Tid(v) that v appears in

We denote the set of 4 numbers S(v) = {id(v), |Tid(v)|, f(v), l(v)} as the “side information”
of vertex v. Each edge {u, v} knows S(u), S(v), and whether it is in some Euler tour tree.

1.1 Maintaining an Euler tour tree

For simplicity, we assume there is a coordinating machine (it can be any of the machines).
For each vertex v, the set S(v) is maintained when we maintain the Euler tour trees. We
know that the following Euler tour tree operations can be performed under the DMPC
model in O(1) rounds using O(

√
N) total communication by broadcasting S(·) around.

• Reroot(T, v): Returns a ET sequence with v ∈ T as the root.

• Cut(u, v): Returns 2 ETs, one containing u ∈ T and the other containing v ∈ T .

• Join(u, v): Joins 2 ETs, one containing u and the other containing v.

• Query(u, v): Returns whether u and v are in the same ET.

• FindEdge(Ti, Tj): Returns an edge whose endpoints lie in Ti and Tj.

FindEdge(Ti, Tj) is described in the paper as follows:

• Coordinator broadcasts Ti and Tj to all machines.
Note: Ti is just a number representing the ID of the ith Euler tour tree.

• Each machine sends an arbitrary edge whose endpoints lie in Ti and Tj.

• The coordinator outputs an arbitrary edge amongst the received edges.

We can define a similar function FindMinEdge(T1, T2) that returns an edge whose end-
points lie in T1 and T2 of the minimum cost. The only change is to require each machine
to reply with the minimum cost edge instead of an arbitrary one.

1Technically it could be disjoint forests (where each component maintains a separate Euler tour tree)
but we write MST instead of MSF.

Maintaining exact MST in DMPC Davin Choo

2 Algorithm

2.1 Edge insertion

Suppose edge e = {a, b} is inserted with weight w(e). If id(a) 6= id(b), then we connect
the two Euler tour trees via Join(a, b). Otherwise, id(a) = id(b). That is, a and b are
in the same connected component. Let T = Tid(a) = Tid(b) be the Euler tour tree that
contains a and b. We know that adding edge e into the tree T forms a cycle C. So, it
suffices to argue that we can efficiently find the maximum weight edge in C.

To efficiently find the maximum weight edge in C, the coordinator first broadcast
S(a) and S(b) to all machines. In the Euler tour tree, any common ancestor v of a and b
fulfill the condition: f(v) < min{f(a), f(b)} and max{l(a), l(b)} < l(v). Without loss of
generality, suppose f(a) < f(b). See Fig. 1 for an illustration.

• If l(a) < f(b), then there is some other lowest common ancestor in the ET.
Consider set Y = Y1 ∪ Y2, where
Y1 = {v : f(v) < f(a) ∧ l(a) < l(v) < l(b)} and
Y2 = {v : l(a) < f(v) < f(b) ∧ l(b) < l(v)}.

• If l(a) > f(b), then l(a) > l(b) and a is an ancestor of b in the ET.
Consider set X = {v : f(a) < f(v) < f(b) ∧ l(b) < l(v) < l(a)}.

An edge lies in cycle C if at least one of its endpoints is in X or Y . Since all edges know
the S(·) of their endpoints, each edge can self-identify whether it is in the cycle C. Each
machine then returns the maximum weight edge amongst all self-identified edges to the
coordinator. Let e′ = {c, d} be the edge with the maximum weight amongst all O(

√
N)

edges received by the coordinator. If w(e) ≥ w(e′), then we just add the new edge to
the system without updating T . On the other hand, if w(e) < w(e′), then the new edge
e = {a, b} should replace e′ = {c, d} in T . To do so, we perform Cut(c, d) and Join(a, b).

Figure 1: Identification of vertices on the cycle if we add edge {a, b}

Maintaining exact MST in DMPC Davin Choo

2.2 Edge deletion

Edge deletion is handled similarly to edge deletion in maintaining connected components.
The only change is that we use FindMinEdge instead of FindEdge. To be precise, if edge
e = {a, b} in T is to be removed, we do the following:

• T1, T2 ← Cut(a, b)

• e′ ← FindMinEdge(T1, T2)

• If e′ 6= ∅, say e′ = {u, v}. Execute Join(u, v).

3 Analysis

Recall that Cut, Join, FindEdge, and FindMinEdge are operations on the Euler tour trees
that run in O(1) rounds using O(

√
N) total communication in the DMPC model. In each

communication round, either an O(1)-sized message is broadcasted, or each machine sends
at most an O(1)-sized message to the coordinator.

3.1 Edge insertion

Suppose edge e = {a, b} is inserted with weight w(e). If id(a) 6= id(b), a single call to Join

is made. If id(a) = id(b), let e′ be the maximum weight edge found in C. If w(e) ≥ w(e′),
only simple book-keeping is done. If w(e) < w(′e), then a call to Cut and Join are made.

3.2 Edge deletion

A call to Cut and FindMinEdge is made. At most one call to Join is made.

	Overview
	Maintaining an Euler tour tree

	Algorithm
	Edge insertion
	Edge deletion

	Analysis
	Edge insertion
	Edge deletion

