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Two ways forward

1. Make model assumptions about the functional dependencies
e.g. X4 = f4(X1, ε4) = αX1 + ε4, where ε4 is non-Gaussian

2. Perform interventions (Our focus)
e.g. set X4 = 0.5, then draw samples from the resulting
intervened causal graph
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Interventions in real-life

• Randomized controlled trials

• Gene knockout experiments

Can be expensive to perform ⇒ Minimize number of interventions!
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https://i.ytimg.com/vi/1BSiFfyObTY/maxresdefault.jpg

https://i.ytimg.com/vi/vyVyg4Bf2JY/maxresdefault.jpg
https://i.ytimg.com/vi/1BSiFfyObTY/maxresdefault.jpg


What can we learn about G ∗ from D and interventions?
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Meek rules

Meek rules [Mee95]:
A set of 4 arc orientation rules that are sound and complete
(with respect to arc orientations with acyclic completion)
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Meek rules converge in polynomial time [WBL21, Algorithm 2].

If b ← a,
then v-structure

If b ← a,
then cycle

If b ← a, then the unoriented arcs would
have been oriented in the same way in all
DAGs within the equivalence class (via R2)



Problem setup

Identify G ∗ using as few interventions as possible (minimize t)

Simplifying assumption for this talk:
Each intervention is on a single node, i.e. |S1| = . . . = |St | = 1
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Problem setup (using atomic interventions)

Identify G ∗ using as few interventions as possible (minimize t)
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Wait a minute... we have domain experts!

G ∗
G

Experts can be wrong...

Problem solved with zero interventions!

How do we even check if G = G ∗?

Do stuff with
discovered causal graph G
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The verification problem

Goal: Determine if G = G ∗

ν(G ) = minimum number of interventions to answer G
?
= G ∗

• We know: Intervening on v orients all arcs incident to v

• Trivial solution: Compute minimum vertex cover (MVC) on
unoriented arcs! i.e. ν(G ) ≤ MVC(unoriented)
(Can be a very bad upper bound!)

G ∗
G



Verification: A complete characterization via covered edges

• Meek rules ⇒ Outperform MVC(unoriented)

• Surprisingly, enough to compute MVC on a subset of edges

• Covered edges [Chi95]:
u ∼ v is covered edge ⇐⇒ Pa(u) \ {v} = Pa(v) \ {u}

Claim: Necessary and sufficient to intervene on MVC(covered)
Proof: Simple (but subtle) using the notion of covered edges

Claim: Covered edges form a forest.
Implication: MVC(covered) can be computed exactly in linear time.



Easy re-interpretation of known facts via covered edges

• Covered edges of clique Kn: v1 → v2, . . . , vn−1 → vn
• Covered edges of a tree: incident edges to root vertex
• Necessity of separating system for non-adaptive interventions

• [Chi95]: Two graphs are equivalent ⇐⇒ there is a sequence
of covered edge reversals to transform between them.

• Unoriented edge ⇒ Covered edge for some DAG in eq. class.
• Conclusion: any non-adaptive search must cut all edges.

• Covered edge cannot have both endpoints as a sink of any
maximal clique ⇒ ν(G ) ≤ n − r (result of [PSS22]).

(Slide catering to domain experts. If interested, pause to read; Else, skip)



The verification problem ✓

Can determine G
?
= G ∗

• Using ν(G ) = MVC(covered) interventions

• Computable in polynomial time

What about actually searching for G ∗ without the expert?

G ∗
G G ∗?

=



The adaptive search problem

Goal: Identify G ∗ using as few interventions as possible

• We know that at least ν(G ∗) interventions is necessary

• Punchline: O(log n · ν(G ∗)) interventions suffice
• Algorithm: Use chordal graph separators; recurse on subgraphs
• Analysis: We prove stronger lower bound on ν(G∗)

• Prior works only have theoretical guarantees on special classes
of graphs; The guarantee that we have holds for any graph.

G ∗ D
G ∗Consistent with S1

Consistent with St
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Experiments (Atomic search comparision)

Qualitatively, our algorithm is competitive with the state-of-the-art
search algorithms while being ∼10x faster in some experiments.
Implementation: https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs

https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs


Summary

1. Verification

• Polynomial time exact characterization of ν(G )

• ν(G ) = MVC(covered) to determine if G
?
= G ∗

2. Adaptive search

• Polynomial time adaptive search algorithm using interventions

• O(log n · ν(G ∗)) suffice for any general graph

• Ω(log n · ν(G ∗)) worst case necessary

G ∗
G

G∗ D
G ∗

Consistent with S1

Consistent with St



Natural follow up questions

• In this work, we studied verification and search under an
idealized setting with hard interventions and infinite samples.

• Soft interventions may be more realistic in certain real-life
scenarios (e.g. effects from parental vertices are not
completely removed but only altered); see [KJSB19]

• Sample complexities also play a crucial role when one has
limited experimental budget; see [ABDK18]

• We also make standard assumptions such as the Markov
assumption, the faithfulness assumption, and causal sufficiency
[SGSH00]. Can we remove/weaken these assumptions?



Want to learn more?

Read our paper and/or see our longer talk here:

https://github.com/cxjdavin/

verification-and-search-algorithms-for-causal-DAGs/tree/main/talk

• More examples to facilitate understanding and explanation of
intuition behind some of our techniques, including:

• Why is identifying a set of interventions to fully orient G is

equivalent to answering G
?
= G∗

• A simple concrete example showing why the prior known
bounds on ν(G ) is loose.

• Why is Ω(log n · ν(G∗)) necessary for search?
• What is our stronger lower bound? How does it work?

Thank you for your kind attention!

https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs/tree/main/talk
https://github.com/cxjdavin/verification-and-search-algorithms-for-causal-DAGs/tree/main/talk
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