
Algorithms for Learning
Probabilistic and Causal Models with

Possible Imperfect Advice

Doctoral Seminar

9 September 2024

Davin Choo

National University of Singapore



https://huggingface.co/spaces/dalle-mini/dalle-mini on “A thoughtful person stands at the edge of a futuristic cityscape, filled with in tricate technology, complex networks, and  interconnected systems. They gaze intently at a  

holographic globe that d isplays dynamic data, char ts, and code swirling around it, their  expression a mix of curiosity and determination as they ponder how to interact and take action in th is complex world”

The world is complex

• Learning a useful representation 
of the world from data is a 
cornerstone of scientific discovery 
and the driving force behind 
successful modern machine 
learning methods

• This process often involves 
learning probabilistic models for 
predictive tasks and causal 
models to understand 
interventional effects on systems, 
which is crucial for informed 
downstream decision-making

1

https://huggingface.co/spaces/dalle-mini/dalle-mini


A general problem-solving framework

Abstract 
model world

Real world

Finding a 
word in a 
dictionary

Searching 
over length n 
sorted array

Binary search:
θ(log n) queries

Simulate binary 
search by flipping 
dictionary pages

Abstract

Solve

Map 
back

2



A general problem-solving framework

Abstract 
model world

Real world

Finding a 
word in a 
dictionary

Searching 
over length n 
sorted array

Binary search:
θ(log n) queries

Simulate binary 
search by flipping 
dictionary pages

• Simplified setting
• Generic problem framing
• Many plug-and-play 

solution concepts

• Complex setting
• Many nuances
• Possibly unseen problem

Abstract

Solve

Map 
back

2



Side-information about problem instances

Abstract 
model world

Real world

Finding a 
word in a 
dictionary

Searching 
over length n 
sorted array

Binary search:
θ(log n) queries

Simulate binary 
search by flipping 
dictionary pages

Abstract

Solve

Map 
back

https://thenounproject.com/icon/statistics-7090732/

https://thenounproject.com/icon/girl-1257314/ 

https://thenounproject.com/icon/robot-7098785/

It’s on 
page x

3

https://thenounproject.com/icon/statistics-7090732/
https://thenounproject.com/icon/girl-1257314/
https://thenounproject.com/icon/robot-7098785/


Side-information about problem instances

Abstract 
model world

Real world

Finding a 
word in a 
dictionary

Searching 
over length n 
sorted array

Simulate binary 
search by flipping 
dictionary pages

Abstract

Solve

Map 
back

It’s on 
page x

Algorithm with 
imperfect advice:

θ(log |x – x*|) queries

3



Main themes explored in my PhD

4



(I): Probabilistic models

• Classic results in statistics show asymptotic convergence of 
estimators in the “infinite data” regime

• Probably Approximately Correct (PAC) learning model [Val84]
• Given sample access to some underlying distribution 𝒫,

produce ෠𝒫 such that TV 𝒫, ෠𝒫 ≤ 𝜀 with probability ≥ 1 − 𝛿

• Bayesian networks [Pea88]
• Probabilistic graphical model commonly used to model beliefs

• ≈ 2𝑛2
 candidate directed acyclic graphs (DAGs), one of which is 𝒢∗

[Val84] Leslie G Valiant. A theory of the learnable. 

Communications of the ACM, 1984.

[Pea88] Judea Pearl. Probabilistic reasoning in intell igent 

systems. Morgan Kaufmann, 1988. 5



The ALARM network [BSCC89] 

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second 

European Conference on Artificial Intell igence in Medicine (AIME), 1989

• Handcrafted Bayesian 
network encoding 
medical knowledge

• Purpose: Provide an 
alarm message for 
patient monitoring

6



The ALARM network [BSCC89] 

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second 

European Conference on Artificial Intell igence in Medicine (AIME), 1989

• Handcrafted Bayesian 
network encoding 
medical knowledge

• Purpose: Provide an 
alarm message for 
patient monitoring

6



(I): Probabilistic models

• Suppose data distribution 𝒫 is described by Bayesian network
• NP-hard to find “score maximizing” DAG from data [Chi96] and to decide 

whether 𝒫 can be described by a DAG with p parameters [CHM04]

• Even under the promise that 𝒫 can be described by a DAG with p 
parameters, it is NP-hard to find such a parameter-bounded DAG [BCGM24]

• We also have some PAC-style finite sample results in learning the structure 
and parameters of Bayesian network for 𝒫 [BCG+22, DDKC23, CYBC24]

• Insight: If network’s in-degree is bounded, we can use less samples

[CYBC24] Davin Choo, Joy Qiping Yang, Arnab 

Bhattacharyya, Clément L. Canonne. Learning bounded 

degree polytrees with samples. International Conference 

on Algorithmic Learning Theory (ALT), 2024

[Chi96] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Lecture Notes in Statistics, vol 112, 1996

[CHM04] Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research (JMLR), 2004

[BCGM24] Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis. Learnability of Parameter-Bounded Bayes Nets. Structured Probabilistic Inference & Generative Modeling (ICML Workshop), 2024

[BCG+22] Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang. Learning Sparse Fixed-Structure Gaussian Bayesian Networks. International Conference on Artificial Intelligence and 

Statistics (AISTATS), 2024

[DDKC23] Yuval Dagan, Constantinos Daskalakis, Anthimos-Vardis Kandiros, Davin Choo. Learning and Testing Latent-Tree Ising Models Efficiently. Conference on Learning Theory (COLT), 2023

7



Correlation does not imply causation

https://tylervigen.com/spurious/correlation/2723_robberies-in-alaska_correlates-with_professor-salaries-in-the-us

https://imgflip.com/memetemplate/327010423/Truck-teamwork

Correlation

Causation

8

https://tylervigen.com/spurious/correlation/2723_robberies-in-alaska_correlates-with_professor-salaries-in-the-us
https://imgflip.com/memetemplate/327010423/Truck-teamwork


Correlation does not imply causation

Correlation

Causation

Occam’s razor: Professors 
paid with stolen money?

8



(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Use interventions!

• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))
• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

9



(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!

• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))
• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

9



Causal discovery via interventions

Ground truth 
causal graph 𝒢∗

A B

E

CD F

Essential
graph ℰ 𝒢∗

A B

E

CD F

?

??

?
?

• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data

10



Causal discovery via interventions

A B

E

CD F

Essential
graph ℰ 𝒢∗

A B

E

CD F

?

?

• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data
• Interventions reveal arc orientations (incident arcs + Meek rules)
• Goal: Recover 𝒢∗ using as few interventions as possible

Ground truth 
causal graph 𝒢∗

10



Causal discovery via interventions

A B

E

CD F

Essential
graph ℰ 𝒢∗

A B

E

CD F

?

?

• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data
• Interventions reveal arc orientations (incident arcs + Meek rules)
• Goal: Recover 𝒢∗ using as few interventions as possible
• We have some results regarding how to design algorithms to perform optimal adaptive 

interventions under various scenarios [CSB22, CS23a, CGB23, CS23b, CS23c, CSU24]
• Insight: Can abstract and treat this as a graph problem with specialized causal operations

[CSB22] Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Conference on Neural Information Processing Systems (NeurIPS), 2022.

[CS23a] Davin Choo, Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.

[CS23b] Davin Choo, Kirankumar Shiragur. New metrics and search algorithms for weighted causal DAGs. International Conference on Machine Learning (ICML), 2023.

[CS23c] Davin Choo, Kirankumar Shiragur. Adaptivity Complexity for Causal Graph Discovery. Conference on Uncertainty in Artificial Intelligence (UAI), 2023.

[CSU24] Davin Choo, Kirankumar Shiragur, Caroline Uhler. Causal discovery under off-target interventions. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Ground truth 
causal graph 𝒢∗

10



(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!

• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))
• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

11



Causal identification (the 2nd step)

𝒫 𝐸 = 𝑒 𝑑𝑜(𝐷 = 𝑑∗)) = 𝒫 𝑒 𝑑𝑜(𝑑∗)) ≠ 𝒫(𝑒 | 𝑑∗) in general

A B

E

CD F

A B

E

CD F

Ground truth 
graph 𝒢∗

Interventional
graph

Interventional query

What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗?

12



Causal identification (the 2nd step)

𝒫 𝐸 = 𝑒 𝑑𝑜(𝐷 = 𝑑∗)) = 𝒫 𝑒 𝑑𝑜(𝑑∗)) ≠ 𝒫(𝑒 | 𝑑∗) in general

A B

E

CD F

A B

E

CD F

Ground truth 
graph 𝒢∗

Interventional
graph

Interventional query

What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗?

Need to draw samples from interventional 
graph, i.e., perform experiment and measure

12



Causal identification (the 2nd step)

𝒫 𝐸 = 𝑒 𝑑𝑜(𝐷 = 𝑑∗)) = 𝒫 𝑒 𝑑𝑜(𝑑∗)) = ∫ 𝒫(𝑒  𝑑∗, 𝑎 ⋅ 𝒫 𝑎  𝑑𝑎 

A B

E

CD F

A B

E

CD F

Ground truth 
graph 𝒢∗

Interventional
graph

Interventional query

What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗?
Just observational terms!

Because of structure of 𝒢∗

12



(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!

• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))
• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

• [CSBS24] This is suboptimal as it may require strong assumptions and a lot of samples 

• Insight: “weak edges” shouldn’t affect much for PAC-style results

[CSBS24] Davin Choo, Chandler Squires, Arnab Bhattacharyya, and David Sontag. Causal effect estimation via 

covariate adjustments without knowing an equivalent causal graph or relying on faithfulness. In preparation, 2024. 13



(III/IV/V): Algorithms with advice

• Two key performance measures
• Consistency: If advice is “perfect”, how good are things?

• Robustness: If advice is “garbage”, how bad are things?

• Challenge: We don’t know how good the given advice is a priori!

14



Detour: Let’s make a deal

• There are 10 numbers in the universe
U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• There is an underlying process 𝒫 that 
generates IID samples from U

• I.e., We can observe a sequence such as 
1, 6, 3, 6, 2, 8, 0, 3, 9, 5, 4, …

• What property of 𝒫 will make this deal 
profitable in expectation?

https://imgflip.com/memegenerator/309868304/Trade-Offer 15

https://imgflip.com/memegenerator/309868304/Trade-Offer


Detour: Property testing land

• How to test if 𝒫 is the uniform distribution over U?
• Say, we only care about constant success probability (can be amplified)

• Learning a 𝜀-close ෠𝒫 then check: Θ
|𝑈|

𝜀2  IID samples from 𝒫

• Uniformity testing requires Θ
|𝑈|

𝜀2  IID samples from 𝒫

• If 𝒫 is uniform, output YES w.p. ≥
2

3

• If 𝒫 is 𝜀-far from uniform, output NO w.p. ≥
2

3
• Many existing proofs for this bound. E.g., look at collisions in samples

• See also [Can22] for an excellent property testing survey

[Can22] Clément L. Canonne. Topics and Techniques in Distribution Testing: A Biased but Representative Sample . Foundations and Trends® in Communications and Information Theory, 2022.

Allowed to output 
arbitrarily if not uniform, 

yet not “far from uniform”

16



(III/IV/V): Algorithms with advice

• Two key performance measures
• Consistency: If advice is “perfect”, how good are things?

• Robustness: If advice is “garbage”, how bad are things?

• Challenge: We don’t know how good the given advice is a priori!

• Insight: “Testing can be cheaper than learning” → TestAndAct
• [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching (III)

• [BCGG24] TestAndScheffe: Improve sample complexity of learning multivariate Gaussians (IV)

• [CGB23] TestAndSubsetSearch: Reduce num of interventions required for causal graph discovery (V)

[CGLB24] Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bipartite matching with imperfect advice. 

International Conference on Machine Learning (ICML), 2024.

[BCGG24] Arnab Bhattacharyya, Davin Choo, Philips George John, and Themistoklis Gouleakis. Learning multivariate Gaussians with imperfect 

advice. Under submission to Innovations in Theoretical Computer Science (ITCS), 2024.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on 

Machine Learning (ICML), 2023. 17



For the rest of this talk

18

[CGLB24] 

[BCGG24]

[CGB23]

[BCG+22], 

[DDKC23], 

[CYBC24], 

[BCGM24]

[CSB22], [CS23a], 

[CS23b], [CS23c], 

[CSU24], 

[CSBS24]



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We have a make an irrevocable decision whether, 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• When an online vertex vi arrives
• Its neighbors N vi  are revealed

• We must make an irrevocable decision whether, and 
how, to match vi to something in N vi

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4

19



Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known

• Online set V =  {v1, … , vn} arrive one by one

• Final offline graph G∗ = (U ∪ V, E)
• E = N v1 ∪ ⋯ ∪ N vn

• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

u1

u2

u3

u4

v1

v2

v3

v4Produce a matching M such that the resulting 

competitive ratio 
M

M∗  is maximized

Goal of online bipartite matching problem

For this talk, let’s treat n∗ = n

Here, the ratio is 3/4

19



What is known?

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…

• But we don’t know the future in the online setting!

u1

u2

v1

versus

u1

u2

v1

20



What is known?

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…

• But we don’t know the future in the online setting!

u1

u2

v1

v2

versus

u1

u2

v1

v2

20



What is known?

• Why is online bipartite matching hard?
• Maximum bipartite matching is poly time computable…

• But we don’t know the future in the online setting!

• Any reasonable greedy algorithm has competitive ratio ≥ 1/2
• Size of maximal matching is at least half of size of maximum matching

u1

u2

v1

v2

versus

u1

u2

v1

v2

20



What is known?

[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

(Expected) Competitive ratio

Deterministic algorithm
1

2

Deterministic hardness
1

2

Randomized algorithm 1 −
1

e
    [KVV90]

Randomized hardness 1 −
1

e
+ o(1)    [KVV90]

Greedy

Ranking

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U

• When vertex vi arrive with N vi , match vi to the smallest indexed (with 
respect to π) unmatched neighbor

min
G

min
V′s arrival 
sequence

Expected  number of matches

n∗

20



What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error

• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗

• Classical binary search: O(log n) queries possible and worst case necessary

• If someone provides an advice page ොx, O log x∗ − ොx  queries is possible

• Here, “best possible” is directly going to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − ොx ≤ n

A natural goal is to design an algorithm with 𝛼 = 1 
while 𝛽 being the best possible classically

21



Example settings with side information

Offline vertices Online vertices Presence of edge Advice Error

Advertisers Ad slots
New ad slot fits the 

advertisers’ 
requirements

Historical data
Data may have 
noise, bias, etc.

Job opening Hiring company
Applicant’s 

suitability for the 
job role

LinkedIn 
qualifications

May lie about 
credentials

Food bento boxes
Conference 

attendee

Attendee’s dietary 
options match the 

food type
Food preferences

May change mind if 
see a tastier option

21



Example settings with side information

Offline vertices Online vertices Presence of edge Advice Error

Advertisers Ad slots
New ad slot fits the 

advertisers’ 
requirements

Historical data
Data may have 
noise, bias, etc.

Job opening Hiring company
Applicant’s 

suitability for the 
job role

LinkedIn 
qualifications

May lie about 
credentials

Food bento boxes
Conference 

attendee

Attendee’s dietary 
options match the 

food type
Food preferences

May change mind if 
see a tastier option

21

Takeaway: Advice can come in many forms. Nuances in 
problem dictate which kind of advice are practical and useful



Research question

• If we have “perfect information” about G∗, can we get 𝑛 matches?

• Also, we know that Ranking achieves competitive ratio of 1 −
1

𝑒

Can we get an algorithm that is both

1-consistent and 1 −
1

𝑒
-robust?

22



Prior related attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness 

tradeoffs are not directly comparable

• [ACI22] Prediction of vertex degrees ෠d u1 , … , ෠d un  of the offline vertices in U
• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾

• For any R ∈ 0, ¾ , they can achieve consistency of 1 − 1 − 1 − R
2

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurIPS), 2020

[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022

[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurIPS), 2022

[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.

[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023 23



Prior related attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness 

tradeoffs are not directly comparable

• [ACI22] Prediction of vertex degrees ෠d u1 , … , ෠d un  of the offline vertices in U
• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾

• For any R ∈ 0, ¾ , they can achieve consistency of 1 − 1 − 1 − R
2

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurIPS), 2020

[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022

[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurIPS), 2022

[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.

[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023

Do not yield an algorithm that is both

1-consistent and 1 −
1

𝑒
-robust

23



Our first main result

• Extends to (1 − a)-consistent and 
1

2
+ a -robust, for any a ∈ 0, ½

• Proof sketch (for a = 0 case):
• Restrict G∗ to be one of two possible graphs (next slide)
• Any advice is equivalent to getting 1 bit of information

• In first 
n

2
 arrivals, no algorithm can distinguish between the two graphs

• Any 1-consistent algorithm must behave as if the advice is perfect initially 

With adversarial vertex arrivals, no algorithm can be both

1-consistent and >
1

2
 -robust, regardless of advice

Impossibility result (Informal)

24



With adversarial vertex arrivals, no algorithm can be both

1-consistent and >
1

2
 -robust, regardless of advice

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

u5

u6

u1

u2

u3

u4

v1

v2

v3

u5

u6

25



With adversarial vertex arrivals, no algorithm can be both

1-consistent and >
1

2
 -robust, regardless of advice

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

25



Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

EasierHarder

Easier models can achieve 
higher competitive ratios

[M13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science, 2013 26



Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Worst case G∗

Worst case 
arrival sequence

Arrival 
sequence is a 

random 
permutation

Each online vertex is drawn 
from some type distribution 
𝒟: 2𝑈 → ℝ in an IID fashion

𝒟: 2𝑈 → ℝ 
unknown

𝒟: 2𝑈 → ℝ 
known

26



What is known?

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

(Expected) Competitive ratio

Adversarial arrival Random order arrival

Deterministic 
algorithm

1

2
1 −

1

e
 [GM08]

Deterministic 
hardness

1

2

3

4

Randomized 
algorithm

1 −
1

e
 [KVV90] 0.696 [MY11]

Randomized 
hardness

1 −
1

e
+ o(1) [KVV90] 0.823 [MGS12]

Greedy

Ranking

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to Adwords. Symposium on Discrete Algorithms (SODA), 2008

[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011

[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offl ine statistics. Mathematics of Operations Research, 2012 27



Research question

• Let 𝛽 denote the “best possible competitive ratio”

• Our first result says: This is not possible for adversarial arrivals!

• What about random order arrivals?

Can we get an algorithm that is both 1-consistent and 1 −
1

𝑒
-robust?

𝛽

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

28



Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽

• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust

• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio 

interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 −
1

𝑒
-robust?

𝛽

e.g. use 
Ranking

29



Realized type counts as advice

• Classify online vertex in G∗ = (U ∪ V, E) based on their types
• Type of vi is the set of offline vertices in N vi  are adjacent to [BKP20]

• Define integer vector c∗ ∈ ℕ2n
 indexed by all possible types 2U

• c∗ t  = Number of times the type t ∈ 2U occurs in G∗

• Define T∗ ⊆ 2U as the subset of non-zero counts in c∗

• Note: T∗ ≤ n ≪ 2 U = 2n

• Advice is simply an estimate vector ොc which approximates c∗

• Let ෡T be non-zero counts in ොc. Similarly, we have ෡T ≤ n

• Can represent ොc using O n  labels and numbers

[BKP20] Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study of algorithms for online bipartite matching. Journal of Experimental Algorithmics (JEA), 2020 30



Realized type counts as advice

• Classify online vertex in G∗ = (U ∪ V, E) based on their types
• Type of vi is the set of offline vertices in N vi  are adjacent to [BKP20]

• Define integer vector c∗ ∈ ℕ2n
 indexed by all possible types 2U

• c∗ t  = Number of times the type t ∈ 2U occurs in G∗

• Define T∗ ⊆ 2U as the subset of non-zero counts in c∗

• Note: T∗ ≤ n ≪ 2 U = 2n

• Advice is simply an estimate vector ොc which approximates c∗

• Let ෡T be non-zero counts in ොc. Similarly, we have ෡T ≤ n

• Can represent ොc using O n  labels and numbers

30



Realized type counts as advice

u1

u2

u3

u4

Type c∗

{u1, u2, u4} 2

{u1, u3} 1

{u2, u3} 1

2U ∖ T∗ 0

T∗

Here, T∗ = 3 ≪ 24 = 16

30



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗

{u1, u2, u4} 2

{u1, u3} 1

{u2, u3} 1

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

2

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

2

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

2

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

෡M

u1

u2

u3

u4

2 1

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

Produced matching size

= 2 = 
L1 c∗,ොc

2

L1 c∗, ොc  
= 3 − 2 + 0 − 1  
 + 0 − 1 + 1 − 0   
= 4 

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

Produced matching size

= 2 = 
L1 c∗,ොc

2

L1 c∗, ොc  
= 3 − 2 + 0 − 1  
 + 0 − 1 + 1 − 0 + 0 …  
= 4 

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2n

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2n
> β ⋅ n

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

Produced matching size

= 2 = ෡M −
L1 c∗,ොc

2

L1 c∗, ොc  
= 3 − 2 + 0 − 1  
 + 0 − 1 + 1 − 0 + 0 …
= 4 

Error is “double 
counted” in L1

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2
> β ⋅ n

31



The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Try to mimic edge matches in ෡M while tracking the types of each arrival

• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size ෡M −
L1 c∗,ොc

2

• Mimic beats an advice-free Baseline whenever ෡M −
L1 c∗,ොc

2
> β ⋅ n

• Mimic beats an advice-free Baseline whenever 
L1 c∗,ොc

n
< 2(1 − β)

For this talk, let’s treat ෡M = n
31



How to test advice quality?

• Define p =
c∗

n
 and q =

ොc

n
 as distributions over the 2U types

• [VV11, JHW18]: Can estimate L1 p, q  "well" using o n  IID samples

• To be precise, if p and q have domain size r ≤ n, then Θ
r

ε2 log r
 IID samples 

sufficient and necessary to estimate ෠L1 such that ෠L1 − L1 p, q ≤ ε

• c∗ and ොc can be defined over ෡T + 1 elements with a “not in ෡T” bucket

Insight: Use sublinear property testing to estimate L1 c∗, ොc !

32



How to test advice quality?

• Define p =
c∗

n
 and q =

ොc

n
 as distributions over the 2U types

• [VV11, JHW18]: Can estimate L1 p, q  “well” using o n  IID samples
• Some adjustments needed to apply this property testing idea to our online 

bipartite matching setup, but it can be done (talk to me to find out more)

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.

[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. IEEE Transactions on Information Theory, 2018.

Insight: Use sublinear property testing to estimate L1 c∗, ොc !

32



The TestAndMatch algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Run Mimic while testing quality of ොc by estimating L1 c∗, ොc

• If test declares L1 c∗, ොc  is “large”, use Baseline for remaining arrivals

• Otherwise, continue using Mimic for remaining arrivals

• Analysis

• If ෠L1 ≲ 2 1 − β , then TestAndMatch attains ratio of at least 1 −
L1 c∗,ොc

2n

• Otherwise, TestAndMatch attains ratio of at least β ⋅ 1 − o 1

33



The TestAndMatch algorithm

• Algorithm
• Fix any arbitrary maximum matching ෡M on the graph defined by advice ොc

• Run Mimic while testing quality of ොc by estimating L1 c∗, ොc

• If test declares L1 c∗, ොc  is “large”, use Baseline for remaining arrivals

• Otherwise, continue using Mimic for remaining arrivals

• Analysis

• If ෠L1 ≲ 2 1 − β , then TestAndMatch attains ratio of at least 1 −
L1 c∗,ොc

2n

• Otherwise, TestAndMatch attains ratio of at least β ⋅ 1 − o 1

33



Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽

• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust

• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio 

interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 −
1

𝑒
-robust?

𝛽

34



Our second main result

Let ෠L1 be estimate of L1 c∗, ොc  from o n  vertex arrivals. TestAndMatch 
achieves a competitive ratio of at least

• At least 1 −
L1 c∗,ොc

2n
≥ β , when ෠L1 “small”

• At least β ⋅ 1 − o 1   , when ෠L1 “large”

i.e., TestAndMatch is 1-consistent and β ⋅ 1 − o 1 -robust

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 −
1

𝑒
-robust?

𝛽

34



Our second main result

Let ෠L1 be estimate of L1 c∗, ොc  from o n  vertex arrivals. TestAndMatch 
achieves a competitive ratio of at least

• At least 1 −
L1 c∗,ොc

2n
≥ β , when ෠L1 “small”

• At least β ⋅ 1 − o 1   , when ෠L1 “large”

i.e., TestAndMatch is 1-consistent and β ⋅ 1 − o 1 -robust

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 −
1

𝑒
-robust?

𝛽

34



Recap: Main themes explored in my PhD

35

[CGLB24] 

[BCGG24]

[CGB23]

[BCG+22], 

[DDKC23], 

[CYBC24], 

[BCGM24]

[CSB22], [CS23a], 

[CGB23], [CS23b], 

[CS23c], [CSU24], 

[CSBS24]



Future research directions

1. Developing causality-informed AI/ML methods
• Most AI/ML methods are built on statistical/associational relations

• Naively making real-world decisions can lead to unexpected outcomes

36



Future research directions

1. Developing causality-informed AI/ML methods
• Most AI/ML methods are built on statistical/associational relations

• Naively making real-world decisions can lead to unexpected outcomes

2. Incorporating human knowledge as imperfect advice
• First came out of the study of online algorithms: main difficulty is not 

knowing the future and advice is partial future knowledge

• I believe framework is much more broadly applicable
• How can we principally elicit and incorporate human domain experts’ knowledge?

• Note: “Just Bayesian it” doesn’t always work as an expert can be confidently wrong

36



(Some of the works with them are not mentioned in this presentation or are not part of my thesis)

Thank you to all my amazing collaborators during my PhD journey!

Thank you for your kind attention!


	Slide 1: Algorithms for Learning Probabilistic and Causal Models with Possible Imperfect Advice
	Slide 2: The world is complex
	Slide 3: A general problem-solving framework
	Slide 4: A general problem-solving framework
	Slide 5: Side-information about problem instances
	Slide 6: Side-information about problem instances
	Slide 7: Main themes explored in my PhD
	Slide 8: (I): Probabilistic models
	Slide 9: The ALARM network [BSCC89] 
	Slide 10: The ALARM network [BSCC89] 
	Slide 11: (I): Probabilistic models
	Slide 12: Correlation does not imply causation
	Slide 13: Correlation does not imply causation
	Slide 14: (II): Causal models
	Slide 15: (II): Causal models
	Slide 16: Causal discovery via interventions
	Slide 17: Causal discovery via interventions
	Slide 18: Causal discovery via interventions
	Slide 19: (II): Causal models
	Slide 20: Causal identification (the 2nd step)
	Slide 21: Causal identification (the 2nd step)
	Slide 22: Causal identification (the 2nd step)
	Slide 23: (II): Causal models
	Slide 24: (III/IV/V): Algorithms with advice
	Slide 25: Detour: Let’s make a deal
	Slide 26: Detour: Property testing land
	Slide 27: (III/IV/V): Algorithms with advice
	Slide 28: For the rest of this talk
	Slide 29: Online bipartite matching
	Slide 30: Online bipartite matching
	Slide 31: Online bipartite matching
	Slide 32: Online bipartite matching
	Slide 33: Online bipartite matching
	Slide 34: Online bipartite matching
	Slide 35: Online bipartite matching
	Slide 36: Online bipartite matching
	Slide 37: Online bipartite matching
	Slide 38: Online bipartite matching
	Slide 39: What is known?
	Slide 40: What is known?
	Slide 41: What is known?
	Slide 42: What is known?
	Slide 43: What if there is additional side information?
	Slide 44: Example settings with side information
	Slide 45: Example settings with side information
	Slide 46: Research question
	Slide 47: Prior related attempts
	Slide 48: Prior related attempts
	Slide 49: Our first main result
	Slide 50
	Slide 51
	Slide 52: Hierarchy of arrival models [M13]
	Slide 53: Hierarchy of arrival models [M13]
	Slide 54: What is known?
	Slide 55: Research question
	Slide 56: Our second main result
	Slide 57: Realized type counts as advice
	Slide 58: Realized type counts as advice
	Slide 59: Realized type counts as advice
	Slide 60: The Mimic algorithm
	Slide 61: The Mimic algorithm
	Slide 62: The Mimic algorithm
	Slide 63: The Mimic algorithm
	Slide 64: The Mimic algorithm
	Slide 65: The Mimic algorithm
	Slide 66: The Mimic algorithm
	Slide 67: The Mimic algorithm
	Slide 68: The Mimic algorithm
	Slide 69: The Mimic algorithm
	Slide 70: The Mimic algorithm
	Slide 71: The Mimic algorithm
	Slide 72: The Mimic algorithm
	Slide 73: The Mimic algorithm
	Slide 74: The Mimic algorithm
	Slide 75: The Mimic algorithm
	Slide 76: How to test advice quality?
	Slide 77: How to test advice quality?
	Slide 78: The TestAndMatch algorithm
	Slide 79: The TestAndMatch algorithm
	Slide 80: Our second main result
	Slide 81: Our second main result
	Slide 82: Our second main result
	Slide 83: Recap: Main themes explored in my PhD
	Slide 84: Future research directions
	Slide 85: Future research directions
	Slide 86

