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The world I1s comple

ALearning a useful representation
of the world from data is a
cornerstone of scientific discovery
and the driving force behind
successful modern machine
learning methods

AThis process often involves
learningprobabilistic models for
predictive tasksandcausal
models to understand
interventional effects on systems
which is crucial for informed
downstream decisioimaking

ion AA thoughtf ul person stands at the edge of a futur i s tniecconmectadpystensspTaey gakd intdnteydtawi t h
holographlc globe that displays dynamlc data, charts and code swirling around it, their expression a mix of curiosity anddetermi nat i on as t hey ponder how to interact and t alk


https://huggingface.co/spaces/dalle-mini/dalle-mini

A general problersolving framework
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A general problersolving framework

A Complex setting
A Many nuances

A Possibly unseen problem

Real world

Abstract
model world

Finding a Simulate binary
word in a search by flipping
dictionary dictionary pages
Abstract
Abstract |1 Map
back
Searching Solve

(A Simplifiedsetting

\

A Generic problem framing

A Many plugand-play
\_  solution concepts

J

Binary search:

over lengthn ___5 ., (log 1) queries

sorted array



Sideinformation about problem instances

= Finding a Simulate binary
Tk 2 yord in a search by flipping
A dictionary dictionary pages
JIniiiil
Real world Abstract
‘Abstract Map
model world back
Searching Solve

Binary search:

over length n > (log n) queries

sorted array


https://thenounproject.com/icon/statistics-7090732/
https://thenounproject.com/icon/girl-1257314/
https://thenounproject.com/icon/robot-7098785/

Sideinformation about problem instances

Finding a Simulate binary
2 yord in a search by flipping
dictionary dictionary pages

Real world

Abstract Map
model world back
Searching Solve Algorithm with
over lengthn __§ imperfect advice:

sorted array " (log |x ¢ x*[) queries




Main themes explored in my PhD

Probabilistic
models

. (1

e (II)

Causal

models Algorithms with

imperfect advice



(1): Probabilistic models

AClassic results in statistics show “asymptotic convergence of

V4

SaGAYFO2NE AY GKS GAYFAYAGS RIQ

AProbably Approximately Correct (PAC) learning mpdeB4]
AGiven sample access to some underlying distribution
producey such that4 §vhv) - with probability p |

ABayesian networkgeass]
AProbabilistic graphical model commonly used to model beliefs

A ¢ candidate directed acyclic graphs (DAGs), one of which is

[VValg4] Leslie G Valiant. A theory of the learnable.
Communications of the ACM, 1984.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent o
systems. Morgan Kaufmann, 1988. 5




The ALARM netwofk SCC89]

VENTMACH

AHandcrafted Bayesian

:
network encoding | ™
medical knowledge [PAP]  [sHUNT]
APUFpOSGI Provide an | FIO2 | [MINVOL| [VENTALV |

alarm message for
patient monitoring

TPR EXPCO2

CATECHOL

EDVOLUME | [ STROKEVOLUME | I:RRLOWOUTPU>T|/ \ ERRCAUTER |

Ner \Y‘ ot T T

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second
European Conference on Artificial Intelligence in Medicine (AIME), 1989




The ALARM networkSCC89]

VENTMACH
VENTTUBE

A sample consultation | [ DISCONNECT |

ALARM is a data-driven system. Simulating an anesthesia monitor, ALARM accepts
a set of physiologic measurements. An example would be as follows: blood pressure INTUBATION
120/80 mmHg, heart rate 80/min, inspired oxygen concentration 50%, tidal vol- !

ume 500 ml, respiratory rate 10/min, breathing pressure 50 mbar, and measured
minute ventilation 1.2 1/min. These measurements are categorized into 'low’,
‘normal’, 'high’, etc. and text messages are generated when measurements are [UNT
| FIO2 |

outside of their normal range. These messages will then appear in the Warning
and Caution fields of the monitor depending on their importance (Fig. 3). In the
given example, the high breathing pressure of 50 mbar imposes a direct danger to
the patient and a warning is issued. The low minute ventilation is less immediate
and is displayed as a caution only.

| MINVOL | _ | VENTALY |

- - .3 FANESTH | EXPCO2
VENT PRES HIGH 0.92 KINKED TUBE ALARM simulates an anesthe- ~——_
Lk 0.18INS.ANES/ANALGESIA | |  sta moniir. I takes patient
R TVOLLOW 0.07 ONE SIDED INTUB Bl o s
0.05 ANAPHYLAXIS i sages, and lists a differential
diagnosis. [PUT HR | ERRCAUTER |

co[” [HRBP| |HRSAT| |HREKG |

| KINKEDTUBE

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second

European Conference on Artificial Intelligence in Medicine (AIME), 1989



(1): Probabilistic models

ASuppose data distributios is described by Bayesian network
ANPKI NR (2 FAYR daod2NB onbdahdftddecidg 3¢ 5
whethery can be described by a DAG with p parametersVi04]

AEven under the promise that can be described by a DAG with p
parameters, it is Nfhard to find such a parametdrounded DAG2C5 V24

AWe also have some PAG/le finite sample results in learning the structure
and parameters of Bayesian network forBOG+22, DDE23, CYBC24]

[Chi96] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Lecture Notes in Statistics, vol 112, 1996

[CHMO04] Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research (JMLR), 2004

[BCGM24] Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis. Learnability of Parameter-Bounded Bayes Nets. Structured Probabilistic Inference & Generative Modeling ICML Workshop), 2024
[BCG+22] Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang. Learning Sparse Fixed-Structure Gaussian Bayesian Networks. International Conference on Attificial Intelligence and
Statistics (AISTATS), 2024

[DDKC23] Yuval Dagan, Constantinos Daskalakis, Anthimos-Vardis Kandiros, Davin Choo. Learnlng and Testing Latent-Tree Ismg Models Efficiently. Conference on Learning Theory (COLT), 2023
[CYBC24] Davin Choo, Joy Qiping Yang, Arnab K

Bhattacharyya, Clément L. Canonne. Learning bounded
degree polytrees with samples. International Conference
on Algorithmic Learning Theory (ALT), 2024




Correlation does not iImply causation

Robberies in Alaska L N ;
correlates with L , :
Professor salaries in the US —

128.7 $139.6K  *
o 1149 $137.3K
< o
S 1011 $135.0K
2 <
Q
Q
T 87 $132.6K

74 $130.3K
I I I I I I 1
2009 2011 2013 2015 2017 2019 2021

& The robbery rate per 100,000 residents in Alaska - Source: FBI Criminal
Justice Information Services

®— Average salary of full-time instructional faculty on 9-month contracts in
degree-granting postsecondary institutions, by academic rank of Professor -
Source: National Center for Education Statistics

2009-2021, r=0.922, r>=0.851, p<0.01 - tylervigen.com/spurious/correlation/2723



https://tylervigen.com/spurious/correlation/2723_robberies-in-alaska_correlates-with_professor-salaries-in-the-us
https://imgflip.com/memetemplate/327010423/Truck-teamwork
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(11): Causal models
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ACausal graph discovery: Recover true causal graph
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(11): Causal models

ATwo fundamental problems in causal inference

ACausal graph discovery: Recover true causal graph

A Even with infinite observational data, can only determine causal graph up to some
equivalence class where all conditional independence relations agree

A Make distributional/structural assumptions or perform interventions/experiments!




Causal discovery via interventions

Essential
graph. (: )
A Want: Recover * starting frompartially oriented (: *) from observational data

Ground truth
causal graph *
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Causal discovery via interventions

Ground truth
causal graph *

Essential
graph. (: 9)

A Want: Recover * starting frompartially oriented (: *) from observational data
A Interventions reveal arc orientations( + Meek ruleg
A Goal: Recover * using as few interventions as possible

A We have some results regarding how to design algorithms to perform optimal adaptive
interventions under various scenarigs

Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Conference on Neural Information Processing Systems (NeurlPS), 2022.
Davin Choo, Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. International Conference on Attificial Intelligence and Statistics (AISTATS), 2023.

Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.

Davin Choo, Kirankumar Shiragur. New metrics and search algorithms for weighted causal DAGs. International Conference on Machine Learning (ICML), 2023.

Davin Choo, Kirankumar Shiragur. Adaptivity Complexity for Causal Graph Discovery. Conference on Uncertainty in Artificial Intelligence (UAI), 2023.

Davin Choo, Kirankumar Shiragur, Caroline Uhler. Causal discovery under off-target interventions. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.



(11): Causal models

ATwo fundamental problems in causal inference

AcCausal effect estimation: Estimayg®d 0| Q&N @
A Typically, a Ztage process: leamn”, then apply closedorm formulas




Causal identification (the'@step)

Interventional
graph

Ground truth
graph: °

v(O QQ¢0 qQ

Interventional query
What is probability oD ‘Qwhen we fixO 'Q?




Causal identification (the'@step)

Interventional
graph

Ground truth
graph: °

| 1 | 1
V(O QQe0 Q v(QQeqQ vV 'Qs'd in general

Interventional query Need to draw samples from interventional
What is probability oD ‘Qwhen we fixO 'Q? graph, i.e., perform experiment and measure




Causal identification (the'@step)

Interventional
graph

Ground truth
graph: *
Because of structure of

v(O QQ¢0 qQ v(Q'Qed LV QO tY@Q®

Interventional query
What is probability oD ‘Qwhen we fixO 'Q?

Just observational terms!



(11): Causal models

ATwo fundamental problems in causal inference

AcCausal effect estimation: Estimayg®d 0| Q&N @
A Typically, a Ztage process: leamn”, then apply closedorm formulas
A [CSBS24This is suboptimal as it may require strong assumptions and a lot of samples

[CSBS24] Davin Choo, Chandler Squires, Amab Bhattacharyya, and David Sontag. Causal effect estimationvia |
covariate adjustments without knowing an equivalent causal graph or relying on faithfulness. In preparation, 2024. L



(11/IVIV): Algorithms with advice

ATwo key performance measures

Al 2yaraiSyoey LT ROAOS Aa GLISNFSOG¢
Aw2o0dzaldySaay LT IROAOS A& a3IFNDFISeX
Al KIFfftSyaSy 2SS R2y Qi 1y2¢ Kz2g¢g 32




ATRADE OFFERA

5S02dzNY [ S

I receive: you receive:

$1 $11 if you

AThere are 10 numbers in the universg guess the next
Uu={0,1, 2,3,4,5,6,7, 8, 9} number correctly

AThere is an underlying processthat

generates IID samples from U

Al.e., We can observe a sequence such :
M2Z C2 02 C2 H2X2 VY2

AWhat property ofv will make this dea
profitable in expectation?



https://imgflip.com/memegenerator/309868304/Trade-Offer

Detour: Property testing land

AHow to test ifv is the uniform distribution over U?
A Say, we only care about constant success probability (can be amplified)

ALearninga--closey then checky ( ) lID samples frony

AUniformity testingrequiresg (V S) lID samples fronv
_ _ Allowed to output
Alfy is uniform, output YE®.p. - —>  anbitrarily if not uniform,
Alf v is--far from uniform, output NO w.p. - esu y2u ath N

AMany existing proofs for this bound. E.g., ook at collisions in samples
ASee also for an excellent property testing survey

Clément L. Canonne. Topics and Techniques in Distribution Testing: A Biased but Representative Sample. Foundations and Trends® in Communications and Information Theory, 2022.
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(11/IVIV): Algorithms with advice

Algorithms with
imperfect advice

ALYAAIKOGY a¢Saidiy3a OloyTestAldAcDK S | LIS
A [OGLB24TestAndMatchlmprove competitive ratio of online bipartite matching (111)

A [BOGG 24 TestAndScheffdmprove sample complexity of learning multivariate Gaussians (1V)
A [OGB23[TestAndSubsetSearcReduce num of interventions required for causal graph discovery (V)

[CGLB24] Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bipartite matching with imperfect advice.
International Conference on Machine Learning (ICML), 2024.

[BCGG24] Arnab Bhattacharyya, Davin Choo, Philips George John, and Themistoklis Gouleakis. Learning multivariate Gaussians with imperfect
advice. Under submission to Innovations in Theoretical Computer Science (ITCS), 2024.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on
Machine Learning (ICML), 2023.




For the rest of this talk

| Algorithms with

imperfect advice



Online bipartite matching
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Online bipartite matching

AOffline set5 OB D fixed and known

AOnlinese  OM hO arrive one by one

AWhen an online verte® arrives
Alts neighbors (O) are revealed

AWe must makq an irrevocable dec_i_sion whether, an
how, to matchO to something in (O)
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Online bipartite matching

AOfflinesets  OM O fixed and known
AOnlinese  OM hO arrive one by one

AWhen an online verte®© arrives

Alts neighbors (O) are revealed

AWe must makq an irrevocable dec_i_sion whether, an
how, to matchO to something in (O)




Online bipartite matching

AOfflinesets  OM MO fixed and known n

AOnlinese  OM hO arrive one by one

AWnhen an online verte® arrives Uy

Alts neighbors (O) are revealed

AWe must make an irrevocable decision whether, an[z
3

how, to matchO to something in (O)
AFinal offline graph* 5° 6%

Avn . (O) E° . (@) Us

AMaximum matching =P %ofsize] | 17 1



Online bipartite matching

AOfflinesets  OM O fixed and known o "
AOnlinese  OM hO arrive one by one
AFinal offline graph® 5 6h% Us '/ v
An .O) E° .(O) e
AMaxi hi P %of si [
aximum matching oof size|- | 0 @

Goal of online bipartite matching proble
Produce a matching such that the resulting Ua

. 1. .
Competltlve rathﬁ iIsmaximized Here’ the ratio i©ft
[ )
)




What is known?

AWhy is online bipartite matching hard?
Aal EAYdzZY O0ALI NIGAGS YIGOKAY3 Aa L2t @
A.dzi 6S R2y Qi 1y2¢6 GKS TFdzidzNBE Ay (KS

Versus
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What is known?

AWhy is online bipartite matching hard?
Aal EAYdzZY O0ALI NIGAGS YIGOKAY3 Aa L2t @
A.dzi 6S R2y Qi 1y2¢6 GKS TFdzidzNBE Ay (KS

AAny reasonable greedy algorithm has competitive ratip¢
A Size of maxnal matching is at least half of size of mmxim matching

u; (W Uy

Versus

s () U O,




What is known? .. ., weossosismeioscas

I ET1 EI |

_ (Expected) Competitive ratio

Deterministic algorithm g Greedy
Deterministic hardness g

Randomized algorithm p - [KW90] <«——— Ranking
Randomized hardness p - I p [KVWIO0]

ATheRankinalgorithm[K\/\/90]
APick a random permutation over the offline vertice$

AWnhen vertexO arrive with. (O), matchO to the smallest indexed (with
respect ton) unmatched neighbor

[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990



What if there I1s additional side information?

ALearningaugmented algorithms

ADesigning algorithms using advice, predictions, etc.
A | -consistent:| -competitive with no advice error
A 1 -robust: 1 -competitive with any advice error

A natural goal is to design an algorithm with p

whileT being the best possible classically

21



Example settings with side information

New agl glo:[ fits,the A
Advertisers Ad slots I RS NIl A a SHiskoi@zal data
requirements

Data may have
noise, bias, etc.

' LILX A O yu Qa :
: . T LinkedIn May lie about
Job opening Hiring company suitability for the e )
) gualifications credentials
job role
I 4 A w X -~ . N\
Conference - Ut SY RS emal Rt ©U b N May change mind if
Food bento boxes options match the  Food preferences . ;
attendee see a tastier option

food type



Example settings with side information

Takeaway Advice can come in many forms. Nuances |

problem dictate which kind of advice are practical and use

21



Research guestion

ALF 6S KIF @S & LISNF S QOcan we get ghatdifds?i A 2 v

AAlso, we know thaRankingachieves competitive ratio gf -

Can we get an algorithm that is both

p-consistent anc(p —)-robust’?




Prior related attempts

Prediction on edge weights adjacent@aunder an optimal offline matching
A Random vertex arrivals and weighted edges

A Require hypeparameter to quantify confidence in advice, so their consistency/robustness
tradeoffs are not directly comparable

Prediction of vertex degreesO )8 hA(O ) of the offline vertices irb
A Adversarial arrival model
A Optimal under the ChunguVVu random graph modéi
A Unable to attain iconsistency in general

Advice is a proposed matching for the first batch of arrived vertices
A Twostaged arrival modél , where best possible robustnessis

A For any2 ¥ [11fp ], they can achieve consistencymf (p  Vp 2)
| dz3YSyd Fye aSELIS NArainedRE IO KY £ g AlK

A For anym¥  1ip , their method iswO2 YLISGA GA S G2 GKS 3IA GBSy a&SELS

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learmed advice. Neural Information Processing Systems (NeurIPS), 2020

Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurlPS), 2022
Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurlPS), 2022
Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.
Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023



Prior related attempts

Donot yield an algorithm that is both

p-consistent anc(p — )-robust

. LIS

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurlPS), 2020
[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022

[CLVO3] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

[IM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurlPS), 2022

[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.

[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023 23



Our first main result

Impossibility result (Informal)

With adversarial vertex arrivals, no algorithm can be both
p-consistent and - -robust, regardless of advice

AExtends top A -consistent anc(— A)-robust, for anyAN [10E ]

AProof sketch (foA Ttcase):
ARestrict * to be one of two possible graphs (next slide)
AAnyadvice is equivalent to getting 1 bit of information

Aln first- arrivals, no algorithm can distinguish between the two graphs
AAny 1-consistent algorithm must behave as if the advice is perfect initially
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Hierarchy of arrival models|13]

Harder > [Easler

Adversarial Random order Unknown IID Known IID

Easier models can achieve
higher competitive ratios

[M13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science, 2013



Hierarchy of arrival models|13]

Each online vertex is drawn
from some type distribution
Worst case ° " dg © ainan lID fashion

Adversarial Random order Unknown IID Known IID

I I I I

Worst case Arrival " d O A "d O s«
arrival sequence  sequence is a unknown known
random

permutation



What is known?

Adversarial Random order Unknown IID Known IID

(Expected) Competitive ratio

Adversarial arrival Random order arrival

Deterministic P )

algorithm C Greedy p -[GMO8]
Deterministic P o

hardness C z
Randomized _ :

algorithm p -[Kvwo0] Ranking  m@® wiMy1l]
Randomized .

hardness P I p [KVVO0] & ¢ 01GS12]

[GMO8] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to Adwords. Symposium on Discrete Algorithms (SODA), 2008
[MY11] Mohammad Mahdian and Qiqgi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011
[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offline statistics. Mathematics of Operations Research, 2012



Research guestion

Can we get an algorithm that is bgthconsistent anc( P —)-robust?

Alett RSYy20S (GKS aoSaid LRaaraoftsS 0O2Y
AOur first result says: This is not possible for adversarial arrivals!
AWhat about random order arrivals?

Adversarial Random order Unknown IID Known IID

28



Our second main result

Can we get an algorithm that is bgthconsistent anc( P —)-robust?

{ Goal achievable in random order (Inform%x"

With random order, there is an algorithm achieves competitive rati
interpolating between 1 and 't'(p é(p)), depending on advice qualit

AOur method is a metalgorithm that uses angaselinghat achieves$

ASo, we are simultaneouslycbnsistent and t(p £(p))-robust

_ e.g. use
AFor random arrival model, we know tha@® w @ | T ¢ o

Ranking

29



Realized type counts as advice

AClassify online vertex in’ 5° 6% based on their types
AType ofO is the set of offline vertices in(O) are adjacent td

ADefine integer vecto”A N & indexed by all possible types
AR (O = Number of times the typ& ¢ occursin °

ADefine4” P ¢ as the subset of nemero counts ik
ANote:]14”] TL ¢! ¢

Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study of algorithms for online bipartite matching. Journal of Experimental Algorithmics (JEA), 2020



Realized type counts as advice

AClassify online vertex in’ 5° 6% based on their types
AType ofO is the set of offline vertices in(O) are adjacent td

ADefine integer vecto”A N & indexed by all possible types
AR (O = Number of times the typ& ¢ occursin °

ADefine4” P ¢ as the subset of nemero counts ik
ANote:]14”] TL ¢! ¢

AAdvice is simply an estimate vectéwhich approximateg\
ALet4 be nonzero counts ifA Similarly, we havpt| 1
AcCan represenfusing/ (1) labels and numbers



Realized type counts as advice

4 — C~)v~ p

Us o
O o P
Uy cC M4 Tt




TheMimic algorithm

AAlgorithm
AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched

s

ondm q

@)

0 p

Us o
oo p
Uy



TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched
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TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival

AIf unable to mimic, leave arrival unmatched

U3
- N}

--

~

R

o

onod 0 0
ono P 0
oMo Tl 1




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival

AIf unable to mimic, leave arrival unmatched

U3
- N}

--

~

R

o

onod 0 0
ono P 0
oMo Tl 1




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched

s B

~

R

o C 3

onod 0 0

ono P 0

Uy O  m 1 Us




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

m -- Uy
oMM
U, u,
0]76) 0 0
Us X n Us
Ooho p 0
Uy oMM T 1 Uy




TheMimic algorithm

AAlgorithm
AFix any arbitrary maximum matchirgon the graph defined by advide

ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched )

" --
O
Uz
Onh P 0
Us o
Ooho p 0
Uy OmOh

@)

@)
=
[ERN




TheMimic algorithm

AAlgorithm
AFix any arbitrary maximum matchirgon the graph defined by advide

ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched )

" --
O

U, / ¢
Onh P 0

Us
Ooho p 0

Uy OmOh 1

@)

o
=]




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide

ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched

o -- Uy
& O G /
u, S U,
o 0
Us . Us
O 0
Uy 0):0]:0) 1 Uy




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

--
ofielie A

0

o
°

0

ono P 0

- N} o

@)
=

1




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

--
ofielie // .

0

o
°

0

ono P 0

- N} o

@)
=

1




TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

Uy -- Produced matching size

O

R

onod 0 0

o

Us
Ooho p 0
Uy Omh Tt 1



TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

Uy -- Produced matching size

O

R

o P ’ (BB

o

u
- 6 p 0 o ¢l |t pl
Uy O m 1 Im pl [p ™ T8

T



TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
AlIf unable to mimic, leave arrival unmatched

Uy -- Produced matchlng size

h

ofie =24 | N
NN 9 NNE NJ A
O2dzy i SR

~

R

o P ° (BB

o

u
- 6 p 0 o ¢l Im pl
Uy O m 1 Im pl [p ™ T8

T



TheMimic algorithm

AAlgorithm
AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched

AAnalysis

Ant , (AR) ¢ Tmeasures how closAis to A

ABy blindly following advicéjimic gets a matching of size |
( Zﬁ) A

AMimic beats an advicéree BaselineNhenever|- |



TheMimic algorithm

AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ATry to mimic edge matches in while tracking the types of each arrival
Alf unable to mimic, leave arrival unmatched

AAnalysis
Ant , (AR) ¢ Tmeasures how closAis to A
ABy blindly following advicéjimic gets a matching of size | (h)

(h) r il

AMimic beats an advicéree BaselineNhenever|- |
( z

~

h)

AMimic beats an advicéree Baselinavhenever

[ ]

CpP I




How to test advice quality?

Insight Use sublinear property testing to estimate(A hA)!

ADefineb —andN - as distributions over the types
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Insight Use sublinear property testing to estimate(A hA)!

ADefineD —andN - as distributions over the types
AlVV11, JHW18Can estimate (BiN) & ¢ St € (1)dHa dayiies

ASome adjustments needed apply this property testing idea to our online
nipartite matching setupbut it can be doneiallk to me to find out more)

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.
[JHW 18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L, distance. IEEE Transactions on Information Theory, 2018.
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AAlgorithm

AFix any arbitrary maximum matchirgon the graph defined by advide
ARunMimicwhile testing quality oAby estimating (A
Alftestdeclares (A A & & f | BhE&E rerdainig arrivals
AOtherwise, continue usinlylimic for remaining arrivals

AAnalysis
Alf, Mc(p r),thenTestAndMatchattains ratio of at leasp
AOtherwise, TestAndMatctattains ratio of atleast t (p  1(p))
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Our second main result

Can we get an algorithm that is bgthconsistent anc( P —)-robust?

[ Goal achievable in random order (Inform%l}

With random order, there is an algorithm achieves competitive rati
interpolating between 1 and t(p  €(p)), depending on advice qualit

AOur method is a metalgorithm that uses angaselinghat achieves$

ASo, we are simultaneouslycbnsistent and t(p £(p))-robust
AFor random arrival model, we know tha@® w ¢ | T ¢ o
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-

Let,

A At leastp

[ Goal achievable in random order (Inform%il)

~

be estimate of (Ah) from 1 (1) vertex arrivalsTestAndMatch

achieves a competitive ratio of at least
(D) when, aaYlffé

A Atleastr i(p T(p)) ,when, af | NBHS¢

\_

i.e., TestAndMatchs Zconsistent ang t(p 1 (p))-robust
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