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https://huggingface.co/spaces/dalle-mini/dalle-mini on ñA thoughtful person stands at the edge of a futuristic cityscape, filled with intricate technology, complex networks, and interconnected systems. They gaze intently at a  

holographic globe that d isplays dynamic data, char ts, and code swirling around it, their  expression a mix of curiosity and determination as they ponder how to interact and take action in this complex worldò

The world is complex

ÅLearning a useful representation 
of the world from data is a 
cornerstone of scientific discovery 
and the driving force behind 
successful modern machine 
learning methods

ÅThis process often involves 
learning probabilistic models for 
predictive tasks and causal 
models to understand 
interventional effects on systems, 
which is crucial for informed 
downstream decision-making
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A general problem-solving framework
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Å Simplifiedsetting
Å Generic problem framing
ÅMany plug-and-play 

solution concepts

Å Complex setting
ÅMany nuances
Å Possibly unseen problem
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Side-information about problem instances
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page x
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Side-information about problem instances

Abstract 
model world

Real world
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page x

Algorithm with 
imperfect advice:

(̒log |x ς x*|) queries
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Main themes explored in my PhD
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(I): Probabilistic models

ÅClassic results in statistics show asymptotic convergence of 
ŜǎǘƛƳŀǘƻǊǎ ƛƴ ǘƘŜ άƛƴŦƛƴƛǘŜ Řŀǘŀέ ǊŜƎƛƳŜ

ÅProbably Approximately Correct (PAC) learning model [Val84]
ÅGiven sample access to some underlying distribution ע,

produce ע such that 46עȟע ‐ with probability ρ 

ÅBayesian networks [Pea88]
ÅProbabilistic graphical model commonly used to model beliefs

Å ς  candidate directed acyclic graphs (DAGs), one of which is ꞉z

[Val84] Leslie G Valiant. A theory of the learnable. 

Communications of the ACM, 1984.

[Pea88] Judea Pearl. Probabilistic reasoning in intell igent 

systems. Morgan Kaufmann, 1988. 5



The ALARM network [BSCC89] 

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second 

European Conference on Artificial Intell igence in Medicine (AIME), 1989

ÅHandcrafted Bayesian 
network encoding 
medical knowledge

ÅPurpose: Provide an 
alarm message for 
patient monitoring
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(I): Probabilistic models

ÅSuppose data distribution ע is described by Bayesian network
ÅNP-ƘŀǊŘ ǘƻ ŦƛƴŘ άǎŎƻǊŜ ƳŀȄƛƳƛȊƛƴƎέ 5!D ŦǊƻƳ Řŀǘŀ [Chi96] and to decide 

whether ע can be described by a DAG with p parameters [CHM04]

ÅEven under the promise that ע can be described by a DAG with p 
parameters, it is NP-hard to find such a parameter-bounded DAG [BCGM24]

ÅWe also have some PAC-style finite sample results in learning the structure 
and parameters of Bayesian network for ע [BCG+22, DDKC23, CYBC24]

ÅLƴǎƛƎƘǘΥ LŦ ƴŜǘǿƻǊƪΩǎ ƛƴ-degree is bounded, we can use less samples

[CYBC24] Davin Choo, Joy Qiping Yang, Arnab 

Bhattacharyya, Clément L. Canonne. Learning bounded 

degree polytrees with samples. International Conference 

on Algorithmic Learning Theory (ALT), 2024

[Chi96] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Lecture Notes in Statistics, vol 112, 1996

[CHM04] Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research (JMLR), 2004

[BCGM24] Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis. Learnability of Parameter-Bounded Bayes Nets. Structured Probabilistic Inference & Generative Modeling (ICML Workshop), 2024

[BCG+22] Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang. Learning Sparse Fixed-Structure Gaussian Bayesian Networks. International Conference on Artificial Intelligence and 

Statistics (AISTATS), 2024

[DDKC23] Yuval Dagan, Constantinos Daskalakis, Anthimos-Vardis Kandiros, Davin Choo. Learning and Testing Latent-Tree Ising Models Efficiently. Conference on Learning Theory (COLT), 2023
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Correlation does not imply causation

https://tylervigen.com/spurious/correlation/2723_robberies-in-alaska_correlates-with_professor-salaries-in-the-us

https://imgflip.com/memetemplate/327010423/Truck-teamwork

Correlation

Causation
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Correlation does not imply causation

Correlation

Causation

hŎŎŀƳΩǎ ǊŀȊƻǊΥ tǊƻŦŜǎǎƻǊǎ 
paid with stolen money?
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(II): Causal models

ÅTwo fundamental problems in causal inference
ÅCausal graph discovery: Recover true causal graph ꞉z
ÅEven with infinite observational data, can only determine causal graph up to some 

equivalence class where all conditional independence relations agree

ÅUse interventions!

ÅCausal effect estimation: Estimate עὣ ώ Ὠέὢ ὼ
ÅTypically, a 2-stage process: learn z꞉, then apply closed-form formulas

9
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Causal discovery via interventions
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?
?

Å Want: Recover ꞉  zstarting from partially oriented ꜡ ꞉z  from observational data
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Causal discovery via interventions

A B

E

CD F

Essential
graph ꜡ ꞉z

A B

E

CD F

?

?

Å Want: Recover ꞉  zstarting from partially oriented ꜡ ꞉z  from observational data
Å Interventions reveal arc orientations (incident arcs + Meek rules)
Å Goal: Recover ꞉z  using as few interventions as possible
Å We have some results regarding how to design algorithms to perform optimal adaptive 

interventions under various scenarios [CSB22, CS23a, CGB23, CS23b, CS23c, CSU24]
Å Insight: Can abstract and treat this as a graph problem with specialized causal operations

[CSB22] Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Conference on Neural Information Processing Systems (NeurIPS), 2022.

[CS23a] Davin Choo, Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.

[CS23b] Davin Choo, Kirankumar Shiragur. New metrics and search algorithms for weighted causal DAGs. International Conference on Machine Learning (ICML), 2023.

[CS23c] Davin Choo, Kirankumar Shiragur. Adaptivity Complexity for Causal Graph Discovery. Conference on Uncertainty in Artificial Intelligence (UAI), 2023.

[CSU24] Davin Choo, Kirankumar Shiragur, Caroline Uhler. Causal discovery under off-target interventions. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Ground truth 
causal graph ꞉ᶻ
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(II): Causal models

ÅTwo fundamental problems in causal inference
ÅCausal graph discovery: Recover true causal graph ꞉z
ÅEven with infinite observational data, can only determine causal graph up to some 

equivalence class where all conditional independence relations agree

ÅMake distributional/structural assumptions or perform interventions/experiments!

ÅCausal effect estimation: Estimate עὣ ώ Ὠέὢ ὼ
ÅTypically, a 2-stage process: learn z꞉, then apply closed-form formulas

11



Causal identification (the 2nd step)

Ὁע Ὡ ὨέὈ Ὠz Ὡ ὨέὨzע Ὡ ȿ Ὠzע  in general
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graph ꞉ ᶻ

Interventional
graph

Interventional query

What is probability of Ὁ Ὡ when we fix Ὀ Ὠᶻ?
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Ground truth 
graph ꞉ ᶻ

Interventional
graph

Interventional query

What is probability of Ὁ Ὡ when we fix Ὀ Ὠᶻ?
Need to draw samples from interventional 

graph, i.e., perform experiment and measure
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Causal identification (the 2nd step)

Ὁע Ὡ ὨέὈ Ὠz Ὡ ὨέὨzע  ὥ ὨὥעὩ Ὠzȟὥẗע᷿

A B

E

CD F

A B

E

CD F

Ground truth 
graph ꞉ ᶻ

Interventional
graph

Interventional query

What is probability of Ὁ Ὡ when we fix Ὀ Ὠᶻ?
Just observational terms!

Because of structure of ꞉z
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(II): Causal models

ÅTwo fundamental problems in causal inference
ÅCausal graph discovery: Recover true causal graph ꞉z
ÅEven with infinite observational data, can only determine causal graph up to some 

equivalence class where all conditional independence relations agree

ÅMake distributional/structural assumptions or perform interventions/experiments!

ÅCausal effect estimation: Estimate עὣ ώ Ὠέὢ ὼ
ÅTypically, a 2-stage process: learn z꞉, then apply closed-form formulas

Å[CSBS24] This is suboptimal as it may require strong assumptions and a lot of samples 

ÅLƴǎƛƎƘǘΥ άǿŜŀƪ ŜŘƎŜǎέ ǎƘƻǳƭŘƴΩǘ ŀŦŦŜŎǘ ƳǳŎƘ ŦƻǊ t!/-style results

[CSBS24] Davin Choo, Chandler Squires, Arnab Bhattacharyya, and David Sontag. Causal effect estimation via 

covariate adjustments without knowing an equivalent causal graph or relying on faithfulness. In preparation, 2024. 13



(III/IV/V): Algorithms with advice

ÅTwo key performance measures
Å/ƻƴǎƛǎǘŜƴŎȅΥ LŦ ŀŘǾƛŎŜ ƛǎ άǇŜǊŦŜŎǘέΣ Ƙƻǿ ƎƻƻŘ ŀǊŜ ǘƘƛƴƎǎΚ

ÅwƻōǳǎǘƴŜǎǎΥ LŦ ŀŘǾƛŎŜ ƛǎ άƎŀǊōŀƎŜέΣ Ƙƻǿ ōŀŘ ŀǊŜ ǘƘƛƴƎǎΚ

Å/ƘŀƭƭŜƴƎŜΥ ²Ŝ ŘƻƴΩǘ ƪƴƻǿ Ƙƻǿ ƎƻƻŘ ǘƘŜ ƎƛǾŜƴ ŀŘǾƛŎŜ ƛǎ ŀ ǇǊƛƻǊƛΗ
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5ŜǘƻǳǊΥ [ŜǘΩǎ ƳŀƪŜ ŀ ŘŜŀƭ

ÅThere are 10 numbers in the universe
U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

ÅThere is an underlying process ע that 
generates IID samples from U
ÅI.e., We can observe a sequence such as 
мΣ сΣ оΣ сΣ нΣ уΣ лΣ оΣ фΣ рΣ пΣ Χ

ÅWhat property of ע will make this deal 
profitable in expectation?

https://imgflip.com/memegenerator/309868304/Trade-Offer 15
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Detour: Property testing land

ÅHow to test if ע is the uniform distribution over U?
ÅSay, we only care about constant success probability (can be amplified)

ÅLearning a ‐-close ע then check: ɡ
ȿȿ

 IID samples from ע

ÅUniformity testing requires ɡ
ȿȿ

 IID samples from ע

ÅIf ע is uniform, output YES w.p. 

ÅIf ע is ‐-far from uniform, output NO w.p. 

ÅMany existing proofs for this bound. E.g., look at collisions in samples

ÅSee also [Can22] for an excellent property testing survey

[Can22] Clément L. Canonne. Topics and Techniques in Distribution Testing: A Biased but Representative Sample . Foundations and Trends® in Communications and Information Theory, 2022.

Allowed to output 
arbitrarily if not uniform, 
ȅŜǘ ƴƻǘ άŦŀǊ ŦǊƻƳ ǳƴƛŦƻǊƳέ

16
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ÅLƴǎƛƎƘǘΥ ά¢ŜǎǘƛƴƎ Ŏŀƴ ōŜ ŎƘŜŀǇŜǊ ǘƘŀƴ ƭŜŀǊƴƛƴƎέ  OTestAndAct
Å[CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching (III)

Å[BCGG24] TestAndScheffe: Improve sample complexity of learning multivariate Gaussians (IV)

Å[CGB23] TestAndSubsetSearch: Reduce num of interventions required for causal graph discovery (V)

[CGLB24] Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bipartite matching with imperfect advice. 

International Conference on Machine Learning (ICML), 2024.

[BCGG24] Arnab Bhattacharyya, Davin Choo, Philips George John, and Themistoklis Gouleakis. Learning multivariate Gaussians with imperfect 

advice. Under submission to Innovations in Theoretical Computer Science (ITCS), 2024.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on 

Machine Learning (ICML), 2023. 17



For the rest of this talk

18

[CGLB24] 

[BCGG24]

[CGB23]

[BCG+22], 

[DDKC23], 

[CYBC24], 

[BCGM24]

[CSB22], [CS23a], 

[CS23b], [CS23c], 

[CSU24], 

[CSBS24]



Online bipartite matching

ÅOffline set 5  ÕȟȣȟÕ  fixed and known

ÅOnline set 6  ÖȟȣȟÖ  arrive one by one

ÅWhen an online vertex Ö arrives
ÅIts neighbors .Ö  are revealed

ÅWe have a make an irrevocable decision whether, 
how, to match Ö to something in .Ö

ÅFinal offline graph 'ᶻ 5᷾6ȟ%
Å% .Ö ᷾Ễ᷾.Ö

ÅMaximum matching -z Ṗ% of size -z Îz Î

u1

u2

u3

u4
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Online bipartite matching

ÅOffline set 5  ÕȟȣȟÕ  fixed and known

ÅOnline set 6  ÖȟȣȟÖ  arrive one by one

ÅFinal offline graph 'ᶻ 5᷾6ȟ%
Å% .Ö ᷾Ễ᷾.Ö

ÅMaximum matching -z Ṗ% of size -z Îz Î

u1

u2

u3

u4

v1

v2

v3

v4Produce a matching - such that the resulting 

competitive ratio ᶻ is maximized

Goal of online bipartite matching problem

CƻǊ ǘƘƛǎ ǘŀƭƪΣ ƭŜǘΩǎ ǘǊŜŀǘ Îz Î

Here, the ratio is σȾτ
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What is known?

ÅWhy is online bipartite matching hard?
ÅaŀȄƛƳǳƳ ōƛǇŀǊǘƛǘŜ ƳŀǘŎƘƛƴƎ ƛǎ Ǉƻƭȅ ǘƛƳŜ ŎƻƳǇǳǘŀōƭŜΧ

Å.ǳǘ ǿŜ ŘƻƴΩǘ ƪƴƻǿ ǘƘŜ ŦǳǘǳǊŜ ƛƴ ǘƘŜ ƻƴƭƛƴŜ ǎŜǘǘƛƴƎΗ

u1

u2

v1

versus

u1

u2

v1
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ÅSize of maximal matching is at least half of size of maximum matching
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What is known?

[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

(Expected) Competitive ratio

Deterministic algorithm
ρ

ς

Deterministic hardness
ρ

ς

Randomized algorithm ρ     [KVV90]

Randomized hardness ρ Ïρ    [KVV90]

Greedy

Ranking

ÅThe Ranking algorithm [KVV90]
ÅPick a random permutation ʌ over the offline vertices 5

ÅWhen vertex Ö arrive with .Ö , match Ö to the smallest indexed (with 
respect to ʌ) unmatched neighbor

ÍÉÎÍÉÎ
  

%ØÐÅÃÔÅÄ ÎÕÍÂÅÒ ÏÆ ÍÁÔÃÈÅÓ

Îz
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What if there is additional side information?

ÅLearning-augmented algorithms
ÅDesigning algorithms using advice, predictions, etc.
Åɻ-consistent: ɻ-competitive with no advice error

Åɼ-robust: ɼ-competitive with any advice error

ÅExample: Binary search with advice
ÅWant to find a word in an Î page dictionary, say it is on page Øz

ÅClassical binary search: /ÌÏÇÎ queries possible and worst case necessary

ÅIf someone provides an advice page Ø, /ÌÏÇØz Ø  queries is possible

ÅIŜǊŜΣ άōŜǎǘ ǇƻǎǎƛōƭŜέ ƛǎ ŘƛǊŜŎǘƭȅ ƎƻƛƴƎ ǘƻ ǇŀƎŜ Øz

ÅSo, this algorithm is 1-consistent and /ÌÏÇÎ-robust since Øz Ø Î

A natural goal is to design an algorithm with  ρ 
while  being the best possible classically
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Example settings with side information

Offline vertices Online vertices Presence of edge Advice Error

Advertisers Ad slots
New ad slot fits the 
ŀŘǾŜǊǘƛǎŜǊǎΩ 

requirements
Historical data

Data may have 
noise, bias, etc.

Job opening Hiring company
!ǇǇƭƛŎŀƴǘΩǎ 

suitability for the 
job role

LinkedIn 
qualifications

May lie about 
credentials

Food bento boxes
Conference 
attendee

!ǘǘŜƴŘŜŜΩǎ ŘƛŜǘŀǊȅ 
options match the 

food type
Food preferences

May change mind if 
see a tastier option
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Takeaway: Advice can come in many forms. Nuances in 
problem dictate which kind of advice are practical and useful



Research question

ÅLŦ ǿŜ ƘŀǾŜ άǇŜǊŦŜŎǘ ƛƴŦƻǊƳŀǘƛƻƴέ ŀōƻǳǘ 'ᶻ, can we get ὲ matches?

ÅAlso, we know that Ranking achieves competitive ratio of ρ

Can we get an algorithm that is both

ρ-consistent and ρ -robust?

22



Prior related attempts

Å[AGKK20] Prediction on edge weights adjacent to 6 under an optimal offline matching
ÅRandom vertex arrivals and weighted edges
ÅRequire hyper-parameter to quantify confidence in advice, so their consistency/robustness 

tradeoffs are not directly comparable

Å[ACI22] Prediction of vertex degrees ÄÕ ȟȣȟÄÕ  of the offline vertices in 5
ÅAdversarial arrival model
ÅOptimal under the Chung-Lu-Vu random graph model [CLV03]
ÅUnable to attain 1-consistency in general

Å[JM22] Advice is a proposed matching for the first batch of arrived vertices
ÅTwo-staged arrival model [FNS21], where best possible robustness is ϶

ÅFor any 2ᶰπȟ϶ , they can achieve consistency of ρ ρ ρ 2

Å[LYR23] !ǳƎƳŜƴǘ ŀƴȅ άŜȄǇŜǊǘ ŀƭƎƻǊƛǘƘƳέ ǿƛǘƘ ŀ ǇǊŜ-trained RL model
ÅFor any ʍɴ πȟρ, their method is ʍ-ŎƻƳǇŜǘƛǘƛǾŜ ǘƻ ǘƘŜ ƎƛǾŜƴ άŜȄǇŜǊǘ ŀƭƎƻǊƛǘƘƳέ

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurIPS), 2020

[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022

[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003

[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurIPS), 2022

[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.

[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023 23
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Do not yield an algorithm that is both

ρ-consistent and ρ -robust
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Our first main result

ÅExtends to ρ Á-consistent and Á-robust, for any Áɴ πȟϵ

ÅProof sketch (for Á π case):
ÅRestrict 'z to be one of two possible graphs (next slide)
ÅAny advice is equivalent to getting 1 bit of information

ÅIn first  arrivals, no algorithm can distinguish between the two graphs

ÅAny 1-consistent algorithm must behave as if the advice is perfect initially 

With adversarial vertex arrivals, no algorithm can be both

ρ-consistent and  -robust, regardless of advice

Impossibility result (Informal)

24



With adversarial vertex arrivals, no algorithm can be both
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Impossibility result (Informal)
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ρ-consistent and  -robust, regardless of advice

Impossibility result (Informal)

u1
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v1

v2
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u1
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Hierarchy of arrival models [M13]

Adversarial  Random order  Unknown IID  Known IID

EasierHarder

Easier models can achieve 
higher competitive ratios

[M13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science, 2013 26



Hierarchy of arrival models [M13]

Adversarial  Random order  Unknown IID  Known IID

Worst case 'z

Worst case 
arrival sequence

Arrival 
sequence is a 

random 
permutation

Each online vertex is drawn 
from some type distribution 
ȡ꜠ς ᴼᴙ in an IID fashion

ȡ꜠ς ᴼᴙ 
unknown

ȡ꜠ς ᴼᴙ 
known
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What is known?

Adversarial  Random order  Unknown IID  Known IID

(Expected) Competitive ratio

Adversarial arrival Random order arrival

Deterministic 
algorithm

ρ

ς
ρ  [GM08]

Deterministic 
hardness

ρ

ς

σ

τ

Randomized 
algorithm

ρ  [KVV90] πȢφωφ [MY11]

Randomized 
hardness

ρ Ïρ [KVV90] πȢψςσ [MGS12]

Greedy

Ranking

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to Adwords. Symposium on Discrete Algorithms (SODA), 2008

[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011

[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offl ine statistics. Mathematics of Operations Research, 2012 27



Research question

ÅLet  ŘŜƴƻǘŜ ǘƘŜ άōŜǎǘ ǇƻǎǎƛōƭŜ ŎƻƳǇŜǘƛǘƛǾŜ Ǌŀǘƛƻέ

ÅOur first result says: This is not possible for adversarial arrivals!

ÅWhat about random order arrivals?

Can we get an algorithm that is both ρ-consistent and ρ -robust?



Adversarial  Random order  Unknown IID  Known IID
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Our second main result

ÅOur method is a meta-algorithm that uses any Baseline that achieves 

ÅSo, we are simultaneously 1-consistent and ẗρ έρ -robust

ÅFor random arrival model, we know that πȢφωφ πȢψςσ

With random order, there is an algorithm achieves competitive ratio 

interpolating between 1 and ẗρ έρ , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both ρ-consistent and ρ -robust?



e.g. use 
Ranking
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Realized type counts as advice

ÅClassify online vertex in 'ᶻ 5᷾6ȟ% based on their types
ÅType of Ö is the set of offline vertices in .Ö  are adjacent to [BKP20]

ÅDefine integer vector Ãᶻᶰᴓ  indexed by all possible types ς
ÅÃz Ô = Number of times the type Ôɴ ς  occurs in 'z

ÅDefine 4ᶻṖς  as the subset of non-zero counts in Ãᶻ

ÅNote: 4z ÎḺς ς

ÅAdvice is simply an estimate vector Ã which approximates Ãᶻ

ÅLet 4 be non-zero counts in Ã. Similarly, we have 4 Î

ÅCan represent Ã using /Î labels and numbers

[BKP20] Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study of algorithms for online bipartite matching. Journal of Experimental Algorithmics (JEA), 2020 30
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Realized type counts as advice

u1

u2

u3

u4

Type Ãz

ÕȟÕȟÕ ς

ÕȟÕ ρ

ÕȟÕ ρ

ς 4ʌz π

4z

Here, 4z σḺς ρφ
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The Mimic algorithm

ÅAlgorithm
ÅFix any arbitrary maximum matching - on the graph defined by advice Ã

ÅTry to mimic edge matches in - while tracking the types of each arrival

ÅIf unable to mimic, leave arrival unmatched

ÅAnalysis
Åπ , ÃzȟÃ ςÎ measures how close Ã is to Ãz

ÅBy blindly following advice, Mimic gets a matching of size -
ȟz

ÅMimic beats an advice-free Baseline whenever -
ȟz

ɼẗÎ

u1

u2

u3

u4

Type Ãz

ÕȟÕȟÕ ς

ÕȟÕ ρ

ÕȟÕ ρ
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The Mimic algorithm
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9ǊǊƻǊ ƛǎ άŘƻǳōƭŜ 
ŎƻǳƴǘŜŘέ ƛƴ ,
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The Mimic algorithm

ÅAlgorithm
ÅFix any arbitrary maximum matching - on the graph defined by advice Ã

ÅTry to mimic edge matches in - while tracking the types of each arrival

ÅIf unable to mimic, leave arrival unmatched

ÅAnalysis
Åπ , ÃzȟÃ ςÎ measures how close Ã is to Ãz

ÅBy blindly following advice, Mimic gets a matching of size -
ȟz

ÅMimic beats an advice-free Baseline whenever -
ȟz

ɼẗÎ

ÅMimic beats an advice-free Baseline whenever 
ȟz

ςρ ɼ

CƻǊ ǘƘƛǎ ǘŀƭƪΣ ƭŜǘΩǎ ǘǊŜŀǘ - Î
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How to test advice quality?

ÅDefine Ð
ᶻ

 and Ñ  as distributions over the ς  types

Å[VV11, JHW18]: Can estimate , ÐȟÑ "well" using ÏÎ IID samples

ÅTo be precise, if Ð and Ñ have domain size Ò Î, then ɡ  IID samples 

sufficient and necessary to estimate , such that , , ÐȟÑ ʀ

ÅÃz and Ã can be defined over 4 ρ ŜƭŜƳŜƴǘǎ ǿƛǘƘ ŀ άƴƻǘ ƛƴ 4έ ōǳŎƪŜǘ

Insight: Use sublinear property testing to estimate , ÃzȟÃ!
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How to test advice quality?

ÅDefine Ð
ᶻ

 and Ñ  as distributions over the ς  types

Å[VV11, JHW18]: Can estimate , ÐȟÑ άǿŜƭƭέ ǳǎƛƴƎ ÏÎ IID samples
ÅSome adjustments needed to apply this property testing idea to our online 

bipartite matching setup, but it can be done (talk to me to find out more)

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.

[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. IEEE Transactions on Information Theory, 2018.

Insight: Use sublinear property testing to estimate , ÃzȟÃ!
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The TestAndMatch algorithm

ÅAlgorithm
ÅFix any arbitrary maximum matching - on the graph defined by advice Ã

ÅRun Mimic while testing quality of Ã by estimating , ÃzȟÃ

ÅIf test declares , ÃzȟÃ ƛǎ άƭŀǊƎŜέΣ ǳǎŜ Baseline for remaining arrivals

ÅOtherwise, continue using Mimic for remaining arrivals

ÅAnalysis

ÅIf ,Ṃςρ ɼ, then TestAndMatch attains ratio of at least ρ 
ȟz

ÅOtherwise, TestAndMatch attains ratio of at least ɼẗρ Ïρ
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Our second main result

ÅOur method is a meta-algorithm that uses any Baseline that achieves 

ÅSo, we are simultaneously 1-consistent and ẗρ έρ -robust

ÅFor random arrival model, we know that πȢφωφ πȢψςσ

With random order, there is an algorithm achieves competitive ratio 

interpolating between 1 and ẗρ έρ , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both ρ-consistent and ρ -robust?
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