Learning Probabilistic and Causal Models with(out) Imperfect Advice

PhD Defense 13 January 2025

Davin Choo National University of Singapore

How do we find words in a dictionary?

How do we find words in a dictionary?

Linear search O(n) pages

Binary search O(log n) pages

A general problem-solving framework

A general problem-solving framework

A general problem-solving framework

- Complex setting
- Many nuances
- Possibly unseen problem
 - **Real world**

model world

- Simplified setting
- Generic problem framing
- Many plug-and-play solution concepts

Two useful scientific models

1) Probabilistic models for predictive tasks

2) Causal models for understanding

interventional effects on systems

Side-information about problem instances

https://thenounproject.com/icon/statistics-7090732/, https://thenounproject.com/icon/girl-1257314/, https://thenounproject.com/icon/robot-7098785/, Ideogram on the prompt "A cartoon of a kid sitting at a desk in a library, with a friend standing beside him and a robot also standing beside him. The kid is looking through a large dictionary. The kid points to a word in the dictionary and the robot points to a page number in the dictionary. The background contains bookshelves filled with books." https://ideogram.ai/g/QIpUowELS3yRtzrVFmggxA/0

Side-information about problem instances

Main themes explored in my PhD thesis

Main themes explored in my PhD thesis

(I): Probabilistic models

- Classic results in statistics show asymptotic convergence of estimators in the limit of large data
- Probably Approximately Correct (PAC) learning model [Val84]
 - Given sample access to some underlying distribution \mathcal{P} , produce $\hat{\mathcal{P}}$ such that $\mathrm{TV}(\mathcal{P}, \hat{\mathcal{P}}) \leq \varepsilon$ with probability $\geq 1 \delta$

(I): Probabilistic models

- Classic results in statistics show asymptotic convergence of estimators in the limit of large data
- Probably Approximately Correct (PAC) learning model [Val84]
 - Given sample access to some underlying distribution \mathcal{P} , produce $\hat{\mathcal{P}}$ such that $\mathrm{TV}(\mathcal{P}, \hat{\mathcal{P}}) \leq \varepsilon$ with probability $\geq 1 \delta$
- Bayesian networks [Pea88]
 - Probabilistic graphical model commonly used to model beliefs
 - 2 parts: graph + conditional distributions for each vertex
 - $\approx 2^{n^2}$ candidate directed acyclic graphs (DAGs), one of which is \mathcal{G}^*

The ALARM network [BSCC89]

- Handcrafted Bayesian network encoding medical knowledge
- Purpose: Provide an alarm message for patient monitoring

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second European Conference on Artificial Intelligence in Medicine (AIME), 1989

The ALARM network [BSCC89]

A sample consultation

ALARM is a data-driven system. Simulating an anesthesia monitor, ALARM accepts a set of physiologic measurements. An example would be as follows: blood pressure 120/80 mmHg, heart rate 80/min, inspired oxygen concentration 50%, tidal volume 500 ml, respiratory rate 10/min, breathing pressure 50 mbar, and measured minute ventilation 1.2 1/min. These measurements are categorized into 'low', 'normal', 'high', etc. and text messages are generated when measurements are outside of their normal range. These messages will then appear in the *Warning* and *Caution* fields of the monitor depending on their importance (*Fig. 3*). In the given example, the high breathing pressure of 50 mbar imposes a direct danger to the patient and a warning is issued. The low minute ventilation is less immediate and is displayed as a caution only.

Fig. 3

ALARM simulates an anesthesia monitor. It takes patient measurements, displays warning and caution messages, and lists a differential diagnosis.

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second European Conference on Artificial Intelligence in Medicine (AIME), 1989

The ALARM network [BSCC89]

- Handcrafted Bayesian network encoding medical knowledge
- Purpose: Provide an alarm message for patient monitoring

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second European Conference on Artificial Intelligence in Medicine (AIME), 1989

(I): Probabilistic models

- Suppose data distribution $\mathcal P$ is described by Bayesian network
 - NP-hard to find "score maximizing" DAG from data [Chi96] and to decide whether ${\cal P}$ can be described by a DAG with p parameters [CHM04]
 - Even under the promise that *P* can be described by a DAG with p parameters, it is NP-hard to find such a parameter-bounded DAG [BCGM25]
 - We also have some PAC-style finite sample results in learning the structure and parameters of Bayesian network for *P* [BCG+22, DDKC23, CYBC24]
 - Insight: If network's in-degree is bounded, we can use less samples

[Chi96] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Lecture Notes in Statistics, vol 112, 1996

[CHM04] Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research (JMLR), 2004

[BCGM25] Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis. Learnability of Parameter-Bounded Bayes Nets. AAAI Conference on Artificial Intelligence (AAAI), 2025

[BCG+22] Amab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang. Learning Sparse Fixed-Structure Gaussian Bayesian Networks. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

[DDKC23] Yuval Dagan, Constantinos Daskalakis, Anthimos-Vardis Kandiros, Davin Choo. Learning and Testing Latent-Tree Ising Models Efficiently. Conference on Learning Theory (COLT), 2023

[<u>CYBC24</u>] Davin Choo, Joy Qiping Yang, Amab Bhattacharyya, Clément L. Canonne. *Learning bounded degree polytrees with samples*. International Conference on Algorithmic Learning Theory (ALT), 2024

Insight: If network's in-degree is bounded, we can use less samples

• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

$$\begin{array}{c} X_{1} \\ X_{2} \\ \vdots \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{6} \end{array} = \begin{pmatrix} x_{1} \\ x_{2} \\ a_{2,1} \\ a_{2,2} \\ a_{2,2} \\ a_{n,1} \\ a_{n,2} \\ a_{n,2} \\ x_{n} \\ \end{pmatrix} \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \\ \end{pmatrix} + \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{n} \\ \end{pmatrix} \\ X_{i} = \begin{cases} \eta_{i} + \sum_{X_{j} \in \operatorname{Pa}(X_{i})} a_{i,j} X_{j} & \text{if } \operatorname{Pa}(X_{i}) \neq \emptyset \\ \eta_{i} & \text{if } \operatorname{Pa}(X_{i}) = \emptyset \end{cases}$$

Insight: If network's in-degree is bounded, we can use less samples

• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

How many samples would we need to learn the coefficients and noise?

Insight: If network's in-degree is bounded, we can use less samples

• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

$$\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$$

 $X = AX + \eta$ $\Rightarrow X = (I_n - A)^{-1} \eta$ $\Rightarrow X \text{ is a multivariate Gaussian, in general}$ $\Rightarrow \text{Need } \widetilde{\Omega}\left(\frac{n^2}{\varepsilon^2}\right) \text{ i.i.d. samples to learn } X \text{ "}\varepsilon\text{-well"}$

A rough intuition: All n^2 covariance matrix entries "matter", in general

Insight: If network's in-degree is bounded, we can use less samples • Turns out $\tilde{O}\left(\frac{nd}{\epsilon^2}\right)$ samples suffice with just least squares at each node

$$\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} + \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$$

 $X = AX + \eta$ $\Rightarrow X = (I_n - A)^{-1}\eta$

 $\Rightarrow X$ is a multivariate Gaussian, in general

• Here, max in-degree $d = 2 \Rightarrow$ Need $\widetilde{\Omega}\left(\frac{n^2}{\varepsilon^2}\right)$ i.i.d. samples to learn X " ε -well"

A rough intuition: All n^2 covariance matrix entries "matter", in general

Main themes explored in my PhD thesis

Correlation does not imply causation

 The robbery rate per 100,000 residents in Alaska · Source: FBI Criminal Justice Information Services

 Average salary of full-time instructional faculty on 9-month contracts in degree-granting postsecondary institutions, by academic rank of Professor · Source: National Center for Education Statistics

2009-2021, r=0.922, r²=0.851, p<0.01 · tylervigen.com/spurious/correlation/2723

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*

• Causal effect estimation: Estimate $\mathcal{P}(Y = y \mid do(X = x))$

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*
 - Even with infinite observational data, can only determine causal graph up to some equivalence class where all conditional independence relations agree
 - Make distributional/structural assumptions or perform interventions/experiments!

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*
 - Even with infinite observational data, can only determine causal graph up to some equivalence class where all conditional independence relations agree
 - Make distributional/structural assumptions or perform interventions/experiments!

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*
 - Even with infinite observational data, can only determine causal graph up to some equivalence class where all conditional independence relations agree
 - Make distributional/structural assumptions or perform interventions/experiments!

• Want: Recover \mathcal{G}^* starting from partially oriented $\mathcal{E}(\mathcal{G}^*)$ from observational data

- Want: Recover \mathcal{G}^* starting from partially oriented $\mathcal{E}(\mathcal{G}^*)$ from observational data
- Interventions reveal arc orientations (incident arcs + Meek rules)
- Goal: Recover \mathcal{G}^* using as few interventions as possible

- Want: Recover \mathcal{G}^* starting from partially oriented $\mathcal{E}(\mathcal{G}^*)$ from observational data
- Interventions reveal arc orientations (incident arcs + Meek rules)
- Goal: Recover \mathcal{G}^* using as few interventions as possible
- We have some results regarding how to design algorithms to perform optimal adaptive interventions under various scenarios [<u>CSB22</u>, <u>CS23a</u>, <u>CGB23</u>, <u>CS23b</u>, <u>CS23c</u>, <u>CSU24</u>]
- Insight: Reduce to graph / set cover problem with specialized causal operations

[CSB22] Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Conference on Neural Information Processing Systems (NeurIPS), 2022.
[CS23a] Davin Choo, Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.
[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.
[CS23b] Davin Choo, Kirankumar Shiragur. New metrics and search algorithms for weighted causal DAGs. International Conference on Machine Learning (ICML), 2023.
[CS23c] Davin Choo, Kirankumar Shiragur. Adaptivity Complexity for Causal Graph Discovery. Conference on Uncertainty in Artificial Intelligence (UAI), 2023.
[CS24] Davin Choo, Kirankumar Shiragur, Caroline Uhler. Causal discovery under off-target interventions. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

A glimpse of [CSB22]

- Insight: Frame as graph problem with causal operations
- Known facts and observations (say n vertices)
 - Remove directed edges in essential graph \rightarrow chordal graph G
 - If G has no (undirected) edges, then whole graph is oriented
 - Intervention on vertex $v \rightarrow$ Orient all edges incident to v (possibly more)

A glimpse of [CSB22]

- Insight: Frame as graph problem with causal operations
- Known facts and observations (say n vertices)
 - Remove directed edges in essential graph \rightarrow chordal graph G
 - If G has no (undirected) edges, then whole graph is oriented
 - Intervention on vertex $v \rightarrow$ Orient all edges incident to v (possibly more)
- Chordal graph separators [GRE84]
 - $|A|, |B| \le \frac{|G|}{2}$ and C is a clique, i.e., $|C| \le \omega(G)$
 - Intervene on vertices in *C* one by one
 - Repeat $O(\log n)$ times $\rightarrow G$ will have no more edges
- We also show that this is optimal in worst case

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*
 - Even with infinite observational data, can only determine causal graph up to some equivalence class where all conditional independence relations agree
 - Make distributional/structural assumptions or perform interventions/experiments!
 - Causal effect estimation: Estimate $\mathcal{P}(Y = y \mid do(X = x))$
 - Typically, a 2-stage process: learn \mathcal{G}^* , then apply closed-form formulas

$$\mathcal{P}(E = e \mid do(D = d^*))$$

<u>Interventional query</u> What is probability of E = e when we fix $D = d^*$?

<u>Interventional query</u> What is probability of E = e when we fix $D = d^*$? Need to draw samples from interventional graph, i.e., perform experiment and measure

<u>Interventional query</u> What is probability of E = e when we fix $D = d^*$?

Just observational terms!

- Two fundamental problems in causal inference
 - Causal graph discovery: Recover true causal graph \mathcal{G}^*
 - Even with infinite observational data, can only determine causal graph up to some equivalence class where all conditional independence relations agree
 - Make distributional/structural assumptions or perform interventions/experiments!
 - Causal effect estimation: Estimate $\mathcal{P}(Y = y \mid do(X = x))$
 - Typically, a 2-stage process: learn \mathcal{G}^* , then apply closed-form formulas
 - [CSBS24] This is suboptimal as it may require strong assumptions and a lot of samples
 - Insight: "weak edges" shouldn't affect much for PAC-style results

[<u>CSBS24</u>] Davin Choo, Chandler Squires, Arnab Bhattacharyya, and David Sontag. *Probably approximately correct high-dimensional causal effect estimation given a valid adjustment set*. Under submission, 2024.

Insight: "weak edges" shouldn't affect much for PAC-style results

- Suppose we draw observational samples from this causal graph of binary variables and wish to estimate interventional effect $\mathcal{P}(Y = y \mid do(X = x^*))$
- Let's estimate $\mathcal{P}(y \mid do(x^*))$ via $\sum_s \mathcal{P}(y \mid x^*, z) \mathcal{P}(z)$ for some subset $Z \subseteq V$

Insight: "weak edges" shouldn't affect much for PAC-style results

- Suppose we draw observational samples from this causal graph of binary variables and wish to estimate interventional effect $\mathcal{P}(Y = y \mid do(X = x^*))$
- Let's estimate $\mathcal{P}(y \mid do(x^*))$ via $\sum_s \mathcal{P}(y \mid x^*, z) \mathcal{P}(z)$ for some subset $Z \subseteq V$
 - Valid when Z is $\{B, A_1, \dots, A_k\}$ or $\{A_1, \dots, A_k\}$ or $\{B\}$, for any underlying \mathcal{P}
 - {*B*} is the best: smaller set = less samples for an accurate estimate
 - But... we don't know the graph!

Insight: "weak edges" shouldn't affect much for PAC-style results

- Suppose we draw observational samples from this causal graph of binary variables and wish to estimate interventional effect $\mathcal{P}(Y = y \mid do(X = x^*))$
- Let's estimate $\mathcal{P}(y \mid do(x^*))$ via $\sum_{s} \mathcal{P}(y \mid x^*, z) \mathcal{P}(z)$ for some subset $Z \subseteq V$
 - Valid when Z is $\{B, A_1, \dots, A_k\}$ or $\{A_1, \dots, A_k\}$ or $\{B\}$, for any underlying \mathcal{P}
 - {*B*} is the best: smaller set = less samples for an accurate estimate
 - But... we don't know the graph!
- What CI tests + do-calculus that will validate the estimate?
 - "Markov blanket": $X \perp S \setminus V \mid S \rightarrow \text{Get } S = \{A_1, \dots, A_k\}$
 - "Screening set": $Y \perp S \setminus S' \mid X \cup S'$ and $X \perp S' \setminus S \mid S \to \text{Get } S' = \{B\}$

Insight: "weak edges" shouldn't affect much for PAC-style results

- Suppose we draw observational samples from this causal graph of binary variables and wish to estimate interventional effect $\mathcal{P}(Y = y \mid do(X = x^*))$
- Let's estimate $\mathcal{P}(y \mid do(x^*))$ via $\sum_s \mathcal{P}(y \mid x^*, z) \mathcal{P}(z)$ for some subset $Z \subseteq V$
 - Valid when Z is $\{B, A_1, \dots, A_k\}$ or $\{A_1, \dots, A_k\}$ or $\{B\}$, for any underlying \mathcal{P}
 - {*B*} is the best: smaller set = less samples for an accurate estimate
 - But... we don't know the graph!
- What CI tests + do-calculus that will validate the estimate?
 - "Markov blanket": $X \perp S \setminus V \mid S \rightarrow \text{Get } S = \{A_1, \dots, A_k\}$
 - "Screening set": $Y \perp S \setminus S' \mid X \cup S'$ and $X \perp S' \setminus S \mid S \to \text{Get } S' = \{B\}$
 - Approximate conditional independence test \rightarrow PAC estimate

Main themes explored in my PhD thesis

(III/IV/V): Algorithms with advice

- Two key performance measures
 - Consistency: If advice is "perfect", how good are things?
 - Robustness: If advice is "garbage", how bad are things?
- Challenge: We don't know how good the given advice is a priori!

Detour: Let's make a deal

- There are 10 numbers in the universe
 U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- There is an underlying process ${\mathcal P}$ that generates i.i.d. samples from U
 - i.e., We can observe a sequence such as 1, 6, 3, 6, 2, 8, 0, 3, 9, 5, 4, ...
- What property of \mathcal{P} will make this deal <u>profitable in expectation</u>?

Detour: Property testing land

- How to test if \mathcal{P} is the uniform distribution over U?
 - Say, we only care about constant success probability (can be amplified)
- Learning a ε -close $\hat{\mathcal{P}}$ then check: $\Theta\left(\frac{|U|}{\varepsilon^2}\right)$ i.i.d. samples from \mathcal{P}
- Uniformity testing requires $\Theta\left(\frac{\sqrt{|U|}}{\varepsilon^2}\right)$ i.i.d. samples from \mathcal{P} If \mathcal{P} is uniform, output YES w.p. $\geq \frac{2}{3}$ If \mathcal{P} is uniform, output YES w.p. $\geq \frac{2}{3}$ If \mathcal{P} is uniform, output YES w.p. $\geq \frac{2}{3}$
 - If \mathcal{P} is uniform, output YES w.p. $\geq \frac{2}{3}$ If \mathcal{P} is ε -far from uniform, output NO w.p. $\geq \frac{2}{3}$

21

- Many existing proofs for this bound. E.g., look at collisions in samples
- See also [Can22] for an excellent property testing survey

(III/IV/V): Algorithms with advice

- Two key performance measures
 - Consistency: If advice is "perfect", how good are things?
 - Robustness: If advice is "garbage", how bad are things?
- Challenge: We don't know how good the given advice is a priori!
- Insight: "Testing can be cheaper than learning" → TestAndAct
 - [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching (III)
 - [BCGG24] TestAndOptimize: Improve sample complexity of learning multivariate Gaussians (IV)
 - [CGB23] TestAndSubsetSearch: Reduce num of interventions required for causal graph discovery (V)

[CGLB24] Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bipartite matching with imperfect advice. International Conference on Machine Learning (ICML), 2024.

[BCGG24] Arnab Bhattacharyya, Davin Choo, Philips George John, and Themistoklis Gouleakis. Learning multivariate Gaussians with imperfect advice. Under submission, 2024.

[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.

- Gaussian estimation with i.i.d. samples
 - Given sample access to some underlying distribution \mathcal{P} , produce $\hat{\mathcal{P}}$ such that $\mathrm{TV}(\mathcal{P}, \hat{\mathcal{P}}) \leq \varepsilon$ with probability $\geq 1 \delta$

Probability mass, i.e. area under curve sums to 1

- Gaussian estimation with i.i.d. samples
 - Given sample access to some underlying distribution \mathcal{P} , produce $\hat{\mathcal{P}}$ such that $\mathrm{TV}(\mathcal{P}, \hat{\mathcal{P}}) \leq \varepsilon$ with probability $\geq 1 \delta$
- Useful to invoke Pinsker's inequality: $TV(\mathcal{P}, \hat{\mathcal{P}}) \leq \sqrt{\frac{1}{2}} \cdot KL(\mathcal{P}, \hat{\mathcal{P}})$
- For multivariate Gaussians over \mathbb{R}^d , $\operatorname{KL}(N(\mu_{\mathcal{P}}, \Sigma_{\mathcal{P}}), N(\mu_{\mathcal{Q}}, \Sigma_{\mathcal{Q}})) = \frac{1}{2} \cdot \left[\operatorname{Tr}(\Sigma_{\mathcal{Q}}^{-1}\Sigma_{\mathcal{P}}) - d + \ln\left(\frac{\det \Sigma_{\mathcal{Q}}}{\det \Sigma_{\mathcal{P}}}\right)\right]$
- So, we just need to upper bound KL by $arepsilon^2$

Insight: "Testing can be cheaper than learning"

• Let's consider the simple identity covariance setting

$$\mathrm{KL}(N(\boldsymbol{\mu}, \mathbf{I}_d), N(\widehat{\boldsymbol{\mu}}, \mathbf{I}_d)) = \frac{1}{2} \cdot \|\boldsymbol{\mu} - \widehat{\boldsymbol{\mu}}\|_2^2$$
 Linear in dimension d

• Empirical estimator is optimal: need $\widetilde{\Theta}\left(\frac{d}{\epsilon^2}\right)$ samples to get $KL \leq \epsilon^2$

Insight: "Testing can be cheaper than learning"

• Let's consider the simple identity covariance setting

$$\mathrm{KL}(N(\boldsymbol{\mu}, \mathbf{I}_d), N(\widehat{\boldsymbol{\mu}}, \mathbf{I}_d)) = \frac{1}{2} \cdot \|\boldsymbol{\mu} - \widehat{\boldsymbol{\mu}}\|_2^2$$
 Linear in dimension d

- Empirical estimator is optimal: need $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ samples to get $KL \le \varepsilon^2$
- Can we do better if someone proposes $\widetilde{\mu}$ as advice?
 - If $\widetilde{\mu} = \mu$, then 0 samples needed, but we cannot blindly trust it
 - W.L.O.G., can treat $\widetilde{\pmb{\mu}} = \pmb{0}_d$ by pre-processing the samples accordingly
 - Given samples $y_1, ..., y_n \sim \mathcal{P}$, consider $(y_1 \widetilde{\mu}), ..., (y_n \widetilde{\mu})$ instead
 - Once we obtain estimate $\widehat{\mu}$, output $\widehat{\mu} + \widetilde{\mu}$ instead

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$

Probabilistic models • (I) • (IV) • (IV) • (II) • (II) Causal models Algorithms with imperfect advice

Insight: "Testing can be cheaper than learning"

Each test uses $\tilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$, as compared to $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ for empirical estimator

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$

Each test uses $\tilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$, as compared to

Insight: "Testing can be cheaper than learning" $\widetilde{\Theta}\left(\frac{d}{s^2}\right)$ for empirical estimator

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$
 - For technical reasons, we need to estimate $\|\boldsymbol{\mu}\|_1$ with some λ instead
 - Then, using i.i.d. samples $y_1, ..., y_n$ from \mathcal{P} , solve LASSO in poly time:

$$\widehat{\boldsymbol{\mu}} = \operatorname{argmin}_{\|\boldsymbol{\beta}\|_{1} \leq \boldsymbol{r}} \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{y}_{i} - \boldsymbol{\beta}\|_{2}^{2}$$

- When $\|\boldsymbol{\mu}\|_1$ is sufficiently small, our method provably uses $\tilde{o}\left(\frac{d}{\varepsilon^2}\right)$
- Recall: Empirical estimator is optimal: need $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ samples to get $KL \le \varepsilon^2$

Each test uses $\tilde{\mathcal{O}}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$, as compared to

Insight: "Testing can be cheaper than learning" $\widetilde{\Theta}\left(\frac{d}{r^2}\right)$ for empirical estimator

- High-level idea
 - Use sublinear tolerant testing + exponential search to find r > 0 s.t. $\frac{r}{2} \le \|\mu\|_2 \le r$
 - Then, search within this radius to find a "good enough" $\widehat{\mu}$
 - For technical reasons, we need to estimate $\| \boldsymbol{\mu} \|_1$ with some λ instead
 - Then, using i.i.d. samples $y_1, ..., y_n$ from \mathcal{P} , solve LASSO in poly time:

$$\widehat{\boldsymbol{\mu}} = \operatorname{argmin}_{\|\boldsymbol{\beta}\|_{1} \leq \boldsymbol{r}} \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{y}_{i} - \boldsymbol{\beta}\|_{2}^{2}$$

- When $\|\boldsymbol{\mu}\|_1$ is sufficiently small, our method provably uses $\tilde{o}\left(\frac{d}{\varepsilon^2}\right)$
- Recall: Empirical estimator is optimal: need $\widetilde{\Theta}\left(\frac{d}{\epsilon^2}\right)$ samples to get $\mathsf{KL} \leq \epsilon^2$
- Remarks
 - Small $\|\mu\|_1$ here actually means small $\|\mu \widetilde{\mu}\|_1$ due to the pre-processing WLOG
 - We also need additional modifications tricks such as partitioning μ into different coordinates to estimate $\|\mu\|_1$, etc.
 - Similar idea work when the multivariate Gaussian has non-identity covariance matrix, but we use SDP instead of LASSO

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make irrevocable decision

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make irrevocable decision

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make irrevocable decision

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make irrevocable decision

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision
 - Final offline graph $G^* = (U \cup V, E)$
 - $E = N(v_1) \cup \cdots \cup N(v_n)$
 - Maximum matching $M^* \subseteq E$ of size $|M^*| = n^* \le n$

Insight: "Testing can be cheaper than learning"

- Online bipartite matching
 - Offline set $U=\ \{u_1,\ldots,u_n\}$ fixed and known
 - Online set $V=\ \{v_1,\ldots,v_n\}$ arrive one by one
 - When an online vertex \boldsymbol{v}_i arrives
 - $N(v_i)$ are revealed and we make irrevocable decision
 - Final offline graph $G^* = (U \cup V, E)$
 - $E = N(v_1) \cup \cdots \cup N(v_n)$
 - Maximum matching $M^* \subseteq E$ of size $|M^*| = n^* \le n$
 - Goal: Produce M maximizing competitive ratio $\frac{|M|}{|M^*|}$

V₁ u_1 V₂ u_3 U₄ V₄ Here, the ratio is 3/4

 U_1

U₂

U₃

 u_4

- Online bipartite matching with random arrival
 - Still worst-case final graph G^*
 - Online vertex sequence is random permutation of V
 - Ranking achieves comp. ratio of 0.696 [MY11]
 - No algorithm cannot beat comp. ratio of 0.823 [MGS12]
- What we show
 - Advice = Prediction \tilde{G} of G^*
 - When advice perfect ($\tilde{G} = G^*$), get comp. ratio 1
 - When advice bad, we get $\approx \beta$ (0.696 $\leq \beta \leq$ 0.823)

Insight: "Testing can be cheaper than learning"

- Online bipartite matching with random arrival
 - Still worst-case final graph G^*
 - Online vertex sequence is random permutation of V
 - Ranking achieves comp. ratio of 0.696 [MY11]
 - No algorithm cannot beat comp. ratio of 0.823 [MGS12]
- What we show
 - Advice = Prediction \tilde{G} of G^*
 - When advice perfect ($\tilde{G} = G^*$), get comp. ratio 1
 - When advice bad, we get $pprox \beta$ (0.696 $\leq \beta \leq$ 0.823)

Say, Baseline achieves this

 U_1

U₂

U₃

 U_4

[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011 [MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offline statistics. Mathematics of Operations Research, 2012

Insight: "Testing can be cheaper than learning"

• Realized type counts as advice

	Туре	(*
{u	I ₁ , u ₂ , u ₄ }		2
{ .	{u ₁ , u ₃ }		1
	{u ₂ , u ₃ }		1
	$2^{U} \setminus T^{*}$		0

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	С*	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	С*	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	C *	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Ŵ

 u_1 u_2

Туре	C *	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	c*	ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	c*	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	c*	ĉ
$\{u_1, u_2, u_4\}$	2	2
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Ŵ

Туре	C *	ĉ
$\{u_1, u_2, u_4\}$	2	2
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Ŵ

Туре	c *	ĉ
$\{u_1, u_2, u_4\}$	2	3 2
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Ŵ

Туре	c*	ĉ
$\{u_1, u_2, u_4\}$	2	1 1
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	с*	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Produced matching size

= 2

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	c *	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Produced matching size

= 2

$$L_1(c^*, \hat{c}) = |3 - 2| + |0 - 1| + |0 - 1| + |1 - 0| + 0 \dots$$

= 4

Insight: "Testing can be cheaper than learning"

• Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched

Туре	С*	ĉ
$\{u_1, u_2, u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2, u_3\}$	1	0
$\{u_1, u_2, u_3\}$	0	1

Produced matching size

$$= 2 = |\widehat{M}| - \frac{L_1(c^*, \widehat{c})}{2}$$
Error is "double counted" in L_1
 $L_1(c^*, \widehat{c})$
 $= |3 - 2| + |0 - 1|$
 $+|0 - 1| + |1 - 0| + 0 ...$
 $= 4$

Insight: "Testing can be cheaper than learning"

- Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched
- Analysis: $0 \le L_1(c^*, \hat{c}) \le 2n$ measures how close \hat{c} is to c^*
 - By blindly following advice, Mimic gets a matching of size $|\widehat{M}| \frac{L_1(c^*, \hat{c})}{2}$
 - Mimic beats an advice-free Baseline whenever $|\widehat{M}| \frac{L_1(c^*, \hat{c})}{2} > \beta \cdot n$

Insight: "Testing can be cheaper than learning"

- Mimic algorithm: Fix arbitrary maximum matching \widehat{M} defined by \widehat{c} and try to follow it as much as possible. If unable, leave unmatched
- Analysis: $0 \le L_1(c^*, \hat{c}) \le 2n$ measures how close \hat{c} is to c^*
 - By blindly following advice, Mimic gets a matching of size $|\widehat{M}| \frac{L_1(c^*, \hat{c})}{2}$
 - Mimic beats an advice-free Baseline whenever $|\widehat{M}| \frac{L_1(c^*, \widehat{c})}{2} > \beta \cdot n$
- Idea: Use Mimic when $L_1(c^*, \hat{c})$ low; otherwise use Baseline
- Problem: We don't know c^* , so cannot evaluate $L_1(c^*, \hat{c})$

Insight: "Testing can be cheaper than learning"

- Random arrival ordering = i.i.d. samples
- Use sublinear property testing to estimate $L_1(c^*, \hat{c}) \longleftarrow \equiv i.i.d.$ samples
 - Define $p = \frac{c^*}{n}$ and $q = \frac{\hat{c}}{n}$ as distributions over the 2^U types
 - [VV11, JHW18]: Can estimate $L_1(p,q)$ "well" using o(n) i.i.d. samples
 - Some adjustments needed to our problem setting, but it can be done

- TestAndMatch: Use Mimic or Baseline depending on $\hat{L}_1(c^*, \hat{c})$
 - Achieve comp. ratio at least $1 \frac{L_1(c^*,\hat{c})}{2n} \ge \beta$, when $\hat{L}_1(c^*,\hat{c})$ "small"
 - Achieve comp. ratio at least $\beta \cdot (1 o(1))$, when $\hat{L}_1(c^*, \hat{c})$ "large"
 - i.e., TestAndMatch is 1-consistent and $\beta \cdot (1 o(1))$ -robust

Probabilistic models • (I)

• (II)

• (V)

• (III)

Main themes explored in my PhD thesis

Beyond simple statistical or association relationships Especially important for systems that act on the Causality-aware environment and have impact AI/ML methods on real-world decisions Robberies in Alaska correlates with Professor salaries in the US Theory 128.7 114 9

> Occam's razor: Professors paid with stolen money?

Correlation Causation

\$139.6K

2019

2021

- Translate knowledge to benefit society
- Model and solve real-world problems in a principled
 - manner

Thank you to all my amazing collaborators during my PhD journey!

Thank you for your kind attention!

AI SINGAPORE

(I have been lucky to work on many interesting projects with these folks since Aug 2021. I have learnt a lot from them! Some of the works are not included in this talk or are upcoming submissions) 33