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How do we find words in a dictionary?

ChatGPT on the prompt “Generate me a cartoon kid finding a word in a dictionary” 1
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A general problem-solving framework

Abstract 
model world

Real world

• Simplified setting
• Generic problem framing
• Many plug-and-play 

solution concepts

• Complex setting
• Many nuances
• Possibly unseen problem

Two useful scientific models

1) Probabilistic models for predictive tasks

2) Causal models for understanding 

interventional effects on systems
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Side-information about problem instances
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https://thenounproject.com/icon/statistics-7090732/, https://thenounproject.com/icon/girl-1257314/ , https://thenounproject.com/icon/robot-7098785/, Ideogram on the prompt ”A cartoon of a kid 
sitting at a desk in a library, with a friend standing beside him and a robot also standing beside him. The kid is looking through a large dictionary. The kid points to a word in the dictionary and 
the robot points to a page number in the dictionary. The background contains bookshelves filled with books.” https://ideogram.ai/g/QIpUowELS3yRtzrVFmggxA/0

It’s on 
page x
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Main themes explored in my PhD thesis

4



Main themes explored in my PhD thesis

4



(I): Probabilistic models

• Classic results in statistics show asymptotic convergence of 
estimators in the limit of large data

• Probably Approximately Correct (PAC) learning model [Val84]
• Given sample access to some underlying distribution 𝒫,

produce 𝒫 such that TV 𝒫, 𝒫 ≤ 𝜀 with probability ≥ 1 − 𝛿
• Bayesian networks [Pea88]

• Probabilistic graphical model commonly used to model beliefs
• ≈ 2𝑛2  candidate directed acyclic graphs (DAGs), one of which is 𝒢∗

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 1984.

Probability mass, 
i.e. area under 

curve sums to 1
Domain 𝒳
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(I): Probabilistic models

• Classic results in statistics show asymptotic convergence of 
estimators in the limit of large data

• Probably Approximately Correct (PAC) learning model [Val84]
• Given sample access to some underlying distribution 𝒫,

produce 𝒫 such that TV 𝒫, 𝒫 ≤ 𝜀 with probability ≥ 1 − 𝛿
• Bayesian networks [Pea88]

• Probabilistic graphical model commonly used to model beliefs
• 2 parts: graph + conditional distributions for each vertex
• ≈ 2𝑛2

 candidate directed acyclic graphs (DAGs), one of which is 𝒢∗

[Pea88] Judea Pearl. Probabilistic reasoning in intell igent systems. Morgan Kaufmann, 1988. 5



The ALARM network [BSCC89] 

[BSCC89] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief network. Second 
European Conference on Artificial Intell igence in Medicine (AIME), 1989

• Handcrafted Bayesian 
network encoding 
medical knowledge

• Purpose: Provide an 
alarm message for 
patient monitoring
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(I): Probabilistic models

• Suppose data distribution 𝒫 is described by Bayesian network
• NP-hard to find “score maximizing” DAG from data [Chi96] and to decide 

whether 𝒫 can be described by a DAG with p parameters [CHM04]
• Even under the promise that 𝒫 can be described by a DAG with p 

parameters, it is NP-hard to find such a parameter-bounded DAG [BCGM25]
• We also have some PAC-style finite sample results in learning the structure 

and parameters of Bayesian network for 𝒫 [BCG+22, DDKC23, CYBC24]
• Insight: If network’s in-degree is bounded, we can use less samples

[CYBC24] Davin Choo, Joy Qiping Yang, Arnab 
Bhattacharyya, Clément L. Canonne. Learning bounded 
degree polytrees with samples. International Conference 
on Algorithmic Learning Theory (ALT), 2024

[Chi96] David Maxwell Chickering. Learning Bayesian networks is NP-complete. Lecture Notes in Statistics, vol 112, 1996
[CHM04] Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research (JMLR), 2004
[BCGM25] Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis. Learnability of Parameter-Bounded Bayes Nets. AAAI Conference on Artificial Intelligence (AAAI), 2025
[BCG+22] Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang. Learning Sparse Fixed-Structure Gaussian Bayesian Networks. International Conference on Artificial Intelligence and 
Statistics (AISTATS), 2022
[DDKC23] Yuval Dagan, Constantinos Daskalakis, Anthimos-Vardis Kandiros, Davin Choo. Learning and Testing Latent-Tree Ising Models Efficiently. Conference on Learning Theory (COLT), 2023
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A glimpse of [BCG+22]

Insight: If network’s in-degree is bounded, we can use less samples
• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

X1 X2

X6

X4X3 X5
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A glimpse of [BCG+22]

Insight: If network’s in-degree is bounded, we can use less samples
• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

How many samples would we need to learn the coefficients and noise? 

X1 X2

X6

X4X3 X5
𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 𝐗𝟓 𝐗𝟔

Sample 1 1.24 1.08 0.229 -0.846 0.307 1.201

Sample 2 -0.614 0.552 0.758 1.77 1.646 0.375

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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A glimpse of [BCG+22]

Insight: If network’s in-degree is bounded, we can use less samples
• Suppose we get i.i.d. samples from a linear DAG with Gaussian noise

𝑿 = 𝑨𝑿 + 𝜼
⇒ 𝑿 = 𝑰𝑛 − 𝑨 −1𝜼
⇒ 𝑿 is a multivariate Gaussian, in general

⇒ Need ෩Ω 𝑛2

𝜀2  i.i.d. samples to learn 𝑿 “𝜀-well”

X1 X2

X6

X4X3 X5

A rough intuition: All 𝑛2 covariance matrix entries “matter”, in general
8



A glimpse of [BCG+22]

Insight: If network’s in-degree is bounded, we can use less samples

• Turns out ෨𝑂 𝑛𝑑
𝜀2  samples suffice with just least squares at each node

• Here, max in-degree 𝑑 = 2

𝑿 = 𝑨𝑿 + 𝜼
⇒ 𝑿 = 𝑰𝑛 − 𝑨 −1𝜼
⇒ 𝑿 is a multivariate Gaussian, in general
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Main themes explored in my PhD thesis
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Correlation does not imply causation

https://tylervigen.com/spurious/correlation/2723_robberies-in-alaska_correlates-with_professor-salaries-in-the-us
https://imgflip.com/memetemplate/327010423/Truck-teamwork

Correlation

Causation
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(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Use interventions!
• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))

• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas
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(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!
• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

Temperature Altitude

?

?

If we change 
altitude, 

temperature 
changes

If we change 
temperature, 

altitude
changes
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Causal discovery via interventions

Ground truth 
causal graph 𝒢∗

A B

E

CD F

Essential
graph ℰ 𝒢∗

A B

E

CD F

?

??

?
?

• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data

12
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• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data
• Interventions reveal arc orientations (incident arcs + Meek rules)
• Goal: Recover 𝒢∗ using as few interventions as possible

Ground truth 
causal graph 𝒢∗

A B

E

CD F

A B

E

CD F

A B

E

CD F

A B

E

CD F→ ← 

12



Causal discovery via interventions

A B

E

CD F

Essential
graph ℰ 𝒢∗

A B

E

CD F

?

?

• Want: Recover 𝒢∗ starting from partially oriented ℰ 𝒢∗  from observational data
• Interventions reveal arc orientations (incident arcs + Meek rules)
• Goal: Recover 𝒢∗ using as few interventions as possible
• We have some results regarding how to design algorithms to perform optimal adaptive 

interventions under various scenarios [CSB22, CS23a, CGB23, CS23b, CS23c, CSU24]
• Insight: Reduce to graph / set cover problem with specialized causal operations

[CSB22] Davin Choo, Kirankumar Shiragur, Arnab Bhattacharyya. Verification and search algorithms for causal DAGs. Conference on Neural Information Processing Systems (NeurIPS), 2022.
[CS23a] Davin Choo, Kirankumar Shiragur. Subset verification and search algorithms for causal DAGs. International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.
[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on Machine Learning (ICML), 2023.
[CS23b] Davin Choo, Kirankumar Shiragur. New metrics and search algorithms for weighted causal DAGs. International Conference on Machine Learning (ICML), 2023.
[CS23c] Davin Choo, Kirankumar Shiragur. Adaptivity Complexity for Causal Graph Discovery. Conference on Uncertainty in Artificial Intelligence (UAI), 2023.
[CSU24] Davin Choo, Kirankumar Shiragur, Caroline Uhler. Causal discovery under off-target interventions. International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Ground truth 
causal graph 𝒢∗
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A glimpse of [CSB22]

• Insight: Frame as graph problem with causal operations
• Known facts and observations (say n vertices)

• Remove directed edges in essential graph → chordal graph 𝐺
• If 𝐺 has no (undirected) edges, then whole graph is oriented
• Intervention on vertex v → Orient all edges incident to v (possibly more)

• Chordal graph separators [GRE84]
• 𝐴 , 𝐵 ≤ 𝐺

2
 and 𝐶 is a clique, i.e., 𝐶 ≤ 𝜔(𝐺)

• Intervene on vertices in 𝐶 one by one
• Repeat 𝑂 log 𝑛  times → 𝐺 will have no more edges

• We also show that this is optimal in worst case

A B

E

CD F

A B

E

CD F

A B

E

CD F

A B

E

CD F→ → 

Essential graphs from earlier slides
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A glimpse of [CSB22]

• Insight: Frame as graph problem with causal operations
• Known facts and observations (say n vertices)

• Remove directed edges in essential graph → chordal graph 𝐺
• If 𝐺 has no (undirected) edges, then whole graph is oriented
• Intervention on vertex v → Orient all edges incident to v (possibly more)

• Chordal graph separators [GRE84]
• 𝐴 , 𝐵 ≤ 𝐺

2
 and 𝐶 is a clique, i.e., 𝐶 ≤ 𝜔(𝐺)

• Intervene on vertices in 𝐶 one by one
• Repeat 𝑂 log 𝑛  times → 𝐺 will have no more edges

• We also show that this is optimal in worst case

[GRE83] John R. Gilbert, Donald J. Rose, Anders Edenbrandt. A Separator Theorem for Chordal Graphs. SIAM Journal on Algebraic Discrete Methods, 1984.

BA C
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(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!
• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))

• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas

14



Causal identification (the 2nd step)

𝒫 𝐸 = 𝑒 𝑑𝑜(𝐷 = 𝑑∗)) = 𝒫 𝑒 𝑑𝑜(𝑑∗)) ≠ 𝒫(𝑒 | 𝑑∗) in general

A B

E

CD F

A B

E

CD F

Ground truth 
graph 𝒢∗

Interventional
graph

Interventional query
What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗?
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graph 𝒢∗

Interventional
graph

Interventional query
What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗?

Need to draw samples from interventional 
graph, i.e., perform experiment and measure

15



Causal identification (the 2nd step)

𝒫 𝐸 = 𝑒 𝑑𝑜(𝐷 = 𝑑∗)) = 𝒫 𝑒 𝑑𝑜(𝑑∗)) = ∫ 𝒫(𝑒  𝑑∗, 𝑎 ⋅ 𝒫 𝑎  𝑑𝑎 

A B

E

CD F

A B

E

CD F

Ground truth 
graph 𝒢∗

Interventional
graph

Interventional query
What is probability of 𝐸 = 𝑒 when we fix 𝐷 = 𝑑∗? Just observational terms!

Because of structure of 𝒢∗
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(II): Causal models

• Two fundamental problems in causal inference
• Causal graph discovery: Recover true causal graph 𝒢∗

• Even with infinite observational data, can only determine causal graph up to some 
equivalence class where all conditional independence relations agree

• Make distributional/structural assumptions or perform interventions/experiments!
• Causal effect estimation: Estimate 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥))

• Typically, a 2-stage process: learn 𝒢∗, then apply closed-form formulas
• [CSBS24] This is suboptimal as it may require strong assumptions and a lot of samples 
• Insight: “weak edges” shouldn’t affect much for PAC-style results

[CSBS24] Davin Choo, Chandler Squires, Arnab Bhattacharyya, and David Sontag. Probably approximately 
correct high-dimensional causal effect estimation given a valid adjustment set. Under submission, 2024. 16



A glimpse of [CSBS24]

Insight: “weak edges” shouldn’t affect much for PAC-style results
• Suppose we draw observational samples from this causal graph of binary 

variables and wish to estimate interventional effect 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥∗))
• Let’s estimate 𝒫 𝑦 𝑑𝑜(𝑥∗)) via ∑𝑠 𝒫(𝑦 𝑥∗, 𝑧 𝒫 𝑧  for some subset 𝑍 ⊆ 𝑉

• Valid when 𝑍 is 𝐵, 𝐴1, … , 𝐴𝑘  or 𝐴1, … , 𝐴𝑘  or 𝐵 , for any underlying 𝒫
• 𝐵  is the best: smaller set = less samples for an accurate estimate
• But… we don’t know the graph!

• What CI tests + do-calculus that will validate the estimate?
• “Markov blanket”: 𝑋 ⫫ 𝑆\V | 𝑆 → Get 𝑆 = 𝐴1, … , 𝐴𝑘
• “Screening set”: 𝑌 ⫫ 𝑆\𝑆′ | 𝑋 ∪ 𝑆′ and 𝑋 ⫫ 𝑆′\𝑆 | 𝑆 → Get 𝑆′ = 𝐵
• Approximate conditional independence test → PAC estimate

𝑉 excludes 𝑋 and 𝑌

17



A glimpse of [CSBS24]

Insight: “weak edges” shouldn’t affect much for PAC-style results
• Suppose we draw observational samples from this causal graph of binary 

variables and wish to estimate interventional effect 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥∗))
• Let’s estimate 𝒫 𝑦 𝑑𝑜(𝑥∗)) via ∑𝑠 𝒫(𝑦 𝑥∗, 𝑧 𝒫 𝑧  for some subset 𝑍 ⊆ 𝑉

• Valid when 𝑍 is 𝐵, 𝐴1, … , 𝐴𝑘  or 𝐴1, … , 𝐴𝑘  or 𝐵 , for any underlying 𝒫
• 𝐵  is the best: smaller set = less samples for an accurate estimate
• But… we don’t know the graph!

• What CI tests + do-calculus that will validate the estimate?
• “Markov blanket”: 𝑋 ⫫ 𝑆\V | 𝑆 → Get 𝑆 = 𝐴1, … , 𝐴𝑘
• “Screening set”: 𝑌 ⫫ 𝑆\𝑆′ | 𝑋 ∪ 𝑆′ and 𝑋 ⫫ 𝑆′\𝑆 | 𝑆 → Get 𝑆′ = 𝐵
• Approximate conditional independence test → PAC estimate

𝑉 excludes 𝑋 and 𝑌

17



A glimpse of [CSBS24]

Insight: “weak edges” shouldn’t affect much for PAC-style results
• Suppose we draw observational samples from this causal graph of binary 

variables and wish to estimate interventional effect 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥∗))
• Let’s estimate 𝒫 𝑦 𝑑𝑜(𝑥∗)) via ∑𝑠 𝒫(𝑦 𝑥∗, 𝑧 𝒫 𝑧  for some subset 𝑍 ⊆ 𝑉

• Valid when 𝑍 is 𝐵, 𝐴1, … , 𝐴𝑘  or 𝐴1, … , 𝐴𝑘  or 𝐵 , for any underlying 𝒫
• 𝐵  is the best: smaller set = less samples for an accurate estimate
• But… we don’t know the graph!

• What CI tests + do-calculus that will validate the estimate?
• “Markov blanket”: 𝑋 ⫫ 𝑆\V | 𝑆 → Get 𝑆 = 𝐴1, … , 𝐴𝑘
• “Screening set”: 𝑌 ⫫ 𝑆\𝑆′ | 𝑋 ∪ 𝑆′ and 𝑋 ⫫ 𝑆′\𝑆 | 𝑆 → Get 𝑆′ = 𝐵
• Approximate conditional independence test → PAC estimate

𝑉 excludes 𝑋 and 𝑌

17



A glimpse of [CSBS24]

Insight: “weak edges” shouldn’t affect much for PAC-style results
• Suppose we draw observational samples from this causal graph of binary 

variables and wish to estimate interventional effect 𝒫 𝑌 = 𝑦 𝑑𝑜(𝑋 = 𝑥∗))
• Let’s estimate 𝒫 𝑦 𝑑𝑜(𝑥∗)) via ∑𝑠 𝒫(𝑦 𝑥∗, 𝑧 𝒫 𝑧  for some subset 𝑍 ⊆ 𝑉

• Valid when 𝑍 is 𝐵, 𝐴1, … , 𝐴𝑘  or 𝐴1, … , 𝐴𝑘  or 𝐵 , for any underlying 𝒫
• 𝐵  is the best: smaller set = less samples for an accurate estimate
• But… we don’t know the graph!

• What CI tests + do-calculus that will validate the estimate?
• “Markov blanket”: 𝑋 ⫫ 𝑆\V | 𝑆 → Get 𝑆 = 𝐴1, … , 𝐴𝑘
• “Screening set”: 𝑌 ⫫ 𝑆\𝑆′ | 𝑋 ∪ 𝑆′ and 𝑋 ⫫ 𝑆′\𝑆 | 𝑆 → Get 𝑆′ = 𝐵
• Approximate conditional independence test → PAC estimate

𝑉 excludes 𝑋 and 𝑌

17



Main themes explored in my PhD thesis
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(III/IV/V): Algorithms with advice

• Two key performance measures
• Consistency: If advice is “perfect”, how good are things?
• Robustness: If advice is “garbage”, how bad are things?

• Challenge: We don’t know how good the given advice is a priori!

19



Detour: Let’s make a deal

• There are 10 numbers in the universe
U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• There is an underlying process 𝒫 that 
generates i.i.d. samples from U

• i.e., We can observe a sequence such as 
1, 6, 3, 6, 2, 8, 0, 3, 9, 5, 4, …

• What property of 𝒫 will make this deal 
profitable in expectation?

https://imgflip.com/memegenerator/309868304/Trade-Offer 20
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Detour: Property testing land

• How to test if 𝒫 is the uniform distribution over U?
• Say, we only care about constant success probability (can be amplified)

• Learning a 𝜀-close 𝒫 then check: Θ |𝑈|
𝜀2  i.i.d. samples from 𝒫

• Uniformity testing requires Θ |𝑈|
𝜀2  i.i.d. samples from 𝒫

• If 𝒫 is uniform, output YES w.p. ≥ 2
3

• If 𝒫 is 𝜀-far from uniform, output NO w.p. ≥ 2
3

• Many existing proofs for this bound. E.g., look at collisions in samples
• See also [Can22] for an excellent property testing survey

[Can22] Clément L. Canonne. Topics and Techniques in Distribution Testing: A Biased but Representative Sample . Foundations and Trends® in Communications and Information Theory, 2022.

Allowed to output 
arbitrarily if not uniform, 

yet not “far from uniform”
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(III/IV/V): Algorithms with advice

• Two key performance measures
• Consistency: If advice is “perfect”, how good are things?
• Robustness: If advice is “garbage”, how bad are things?

• Challenge: We don’t know how good the given advice is a priori!
• Insight: “Testing can be cheaper than learning” → TestAndAct

• [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching (III)
• [BCGG24] TestAndOptimize: Improve sample complexity of learning multivariate Gaussians (IV)
• [CGB23] TestAndSubsetSearch: Reduce num of interventions required for causal graph discovery (V)

[CGLB24] Davin Choo, Themistoklis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bipartite matching with imperfect advice. 
International Conference on Machine Learning (ICML), 2024.
[BCGG24] Arnab Bhattacharyya, Davin Choo, Philips George John, and Themistoklis Gouleakis. Learning multivariate Gaussians with imperfect 
advice. Under submission, 2024.
[CGB23] Davin Choo, Themistoklis Gouleakis, Arnab Bhattacharyya. Active causal structure learning with advice. International Conference on 
Machine Learning (ICML), 2023. 22



A glimpse of [BCGG24]

Insight: “Testing can be cheaper than learning”
• Gaussian estimation with i.i.d. samples

• Given sample access to some underlying distribution 𝒫,
produce 𝒫 such that TV 𝒫, 𝒫 ≤ 𝜀 with probability ≥ 1 − 𝛿

• Useful to invoke Pinsker’s inequality: TV 𝒫, 𝒫 ≤ 1
2

⋅ KL 𝒫, 𝒫

• For multivariate Gaussians over ℝ𝑑, 

KL 𝑁 𝝁𝒫, 𝚺𝒫 , 𝑁(𝝁𝒬, 𝚺𝒬) =
1
2

⋅ Tr 𝚺𝒬
−1𝚺𝒫 − 𝑑 + ln

det 𝚺𝒬

det 𝚺𝒫
• So, we just need to upper bound KL by 𝜀2

Probability mass, 
i.e. area under 

curve sums to 1
Domain 𝒳
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A glimpse of [BCGG24]

Insight: “Testing can be cheaper than learning”
• Let’s consider the simple identity covariance setting

KL 𝑁 𝝁, 𝐈𝑑 , 𝑁 ෝ𝝁, 𝐈𝑑 =
1
2

⋅ 𝝁 − ෝ𝝁 2
2

• Empirical estimator is optimal: need ෩Θ 𝑑
𝜀2  samples to get KL ≤ 𝜀2

• Can we do better if someone proposes 𝝁 as advice?
• If 𝝁 = 𝝁, then 0 samples needed, but we cannot blindly trust it
• W.L.O.G., can treat 𝝁 = 𝟎𝑑 by pre-processing the samples accordingly

• Given samples 𝒚𝟏, … , 𝒚𝒏 ∼ 𝒫, consider 𝒚𝟏 − 𝝁 , … , 𝒚𝒏 − 𝝁  instead
• Once we obtain estimate ෝ𝝁, output ෝ𝝁 + 𝝁 instead

Linear in dimension d
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A glimpse of [BCGG24]
Insight: “Testing can be cheaper than learning”

• High-level idea
• Use sublinear tolerant testing + exponential search to find 𝑟 > 0 s.t. r

2
≤ 𝝁 2 ≤ 𝑟

• Then, search within this radius to find a “good enough” ෝ𝝁
• For technical reasons, we need to estimate 𝝁 1 with some 𝜆 instead
• Then, using i.i.d. samples 𝒚1, … , 𝒚𝑛 from 𝒫, solve LASSO in poly time:

ෝ𝝁 =  argmin 𝜷 1≤𝑟
1
𝑛 

𝑖=1

𝑛

𝒚𝑖 − 𝜷 2
2

• When 𝝁 1 is sufficiently small, our method provably uses 𝑜 𝑑
𝜀2

• Recall: Empirical estimator is optimal: need ෩Θ 𝑑
𝜀2  samples to get KL ≤ 𝜀2

• Remarks
• Small 𝝁 1 here actually means small 𝝁 − 𝝁 1 due to the pre-processing WLOG
• We also need additional modifications tricks such as partitioning 𝝁 into different coordinates to estimate 𝝁 1, etc.
• Similar idea work when the multivariate Gaussian has non-identity covariance matrix, but we use SDP instead of LASSO
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Each test uses ෨𝒪 𝑑
𝜀2 , as compared to 

෩Θ 𝑑
𝜀2  for empirical estimator
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A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Online bipartite matching

• Offline set U =  {u1, … , un} fixed and known
• Online set V =  {v1, … , vn} arrive one by one
• When an online vertex vi arrives

• N vi  are revealed and we make irrevocable decision

u1

u2

u3

u4

v1

23
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• Offline set U =  {u1, … , un} fixed and known
• Online set V =  {v1, … , vn} arrive one by one
• When an online vertex vi arrives

• N vi  are revealed and we make irrevocable decision
• Final offline graph 𝐺∗ = (U ∪ V, E)

• E = N v1 ∪ ⋯ ∪ N vn
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n

• Goal: Produce M maximizing competitive ratio M
M∗

u1

u2

u3

u4

v1

v2

v3

v4

Here, the ratio is 3/4
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A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Online bipartite matching with random arrival

• Still worst-case final graph 𝐺∗

• Online vertex sequence is random permutation of V
• Ranking achieves comp. ratio of 0.696 [MY11]
• No algorithm cannot beat comp. ratio of 0.823 [MGS12]

• What we show
• Advice = Prediction ෨𝐺 of 𝐺∗

• When advice perfect ( ෨𝐺 = 𝐺∗), get comp. ratio 1
• When advice bad, we get ≈ 𝛽 (0.696 ≤ 𝛽 ≤ 0.823)

u1

u2

u3

u4

23
[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011
[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offl ine statistics. Mathematics of Operations Research, 2012
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Say, Baseline achieves this



A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Realized type counts as advice

u1

u2

u3

u4

Type c∗

{u1, u2, u4} 2

{u1, u3} 1

{u2, u3} 1

2U ∖ T∗ 0

T∗
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A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Mimic algorithm: Fix arbitrary maximum matching M defined by ොc 

and try to follow it as much as possible. If unable, leave unmatched

u1

u2

u3

u4

Type c∗ ොc

{u1, u2, u4} 2 3

{u1, u3} 1 0

{u2, u3} 1 0

{u1, u2, u3} 0 1

25
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Insight: “Testing can be cheaper than learning”
• Mimic algorithm: Fix arbitrary maximum matching M defined by ොc 

and try to follow it as much as possible. If unable, leave unmatched
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= 2 = L1 c∗,ොc
2

L1 c∗, ොc  
= 3 − 2 + 0 − 1  
 + 0 − 1 + 1 − 0   
= 4 
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Error is “double 
counted” in L1
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A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Mimic algorithm: Fix arbitrary maximum matching M defined by ොc 

and try to follow it as much as possible. If unable, leave unmatched
• Analysis: 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size M − L1 c∗,ොc
2

• Mimic beats an advice-free Baseline whenever M − L1 c∗,ොc
2

> β ⋅ n

• Idea: Use Mimic when L1 c∗, ොc  low; otherwise use Baseline
• Problem: We don’t know c∗, so cannot evaluate L1 c∗, ොc

26



A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Mimic algorithm: Fix arbitrary maximum matching M defined by ොc 

and try to follow it as much as possible. If unable, leave unmatched
• Analysis: 0 ≤ L1 c∗, ොc ≤ 2n measures how close ොc is to c∗

• By blindly following advice, Mimic gets a matching of size M − L1 c∗,ොc
2

• Mimic beats an advice-free Baseline whenever M − L1 c∗,ොc
2

> β ⋅ n

• Idea: Use Mimic when L1 c∗, ොc  low; otherwise use Baseline
• Problem: We don’t know c∗, so cannot evaluate L1 c∗, ොc

26



A glimpse of [CGLB24]

Insight: “Testing can be cheaper than learning”
• Use sublinear property testing to estimate L1 c∗, ොc

• Define p = c∗

n
 and q = ොc

n
 as distributions over the 2U types

• [VV11, JHW18]: Can estimate L1 p, q  “well” using o n  i.i.d. samples
• Some adjustments needed to our problem setting, but it can be done

• TestAndMatch: Use Mimic or Baseline depending on L1 c∗, ොc
• Achieve comp. ratio at least 1 − L1 c∗,ොc

2n
≥ β, when L1 c∗, ොc  “small”

• Achieve comp. ratio at least β ⋅ 1 − o 1 , when L1 c∗, ොc  “large”
• i.e., TestAndMatch is 1-consistent and β ⋅ 1 − o 1 -robust

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.
[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. IEEE Transactions on Information Theory, 2018.

Random arrival ordering 
≡ i.i.d. samples
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Main themes explored in my PhD thesis

[CGLB24] 

[BCGG24]

[CGB23]

[BCG+22], 
[DDKC23], 
[CYBC24], 
[BCGM25]

[CSB22], [CS23a], 
[CGB23], [CS23b], 
[CS23c], [CSU24], 

[CSBS24]
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Research vision:
Principled algorithms with real-world impact

32

Causality-aware
AI/ML methods

Applying 
insights to 
real-world 
problems

Theory Practice

Algorithms with 
imperfect advice
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Causality-aware
AI/ML methods

Applying 
insights to 
real-world 
problems

Theory Practice

Algorithms with 
imperfect advice

• Beyond simple statistical or 
association relationships

• Especially important for 
systems that act on the 
environment and have impact 
on real-world decisions



Research vision:
Principled algorithms with real-world impact

32

Causality-aware
AI/ML methods

Applying 
insights to 
real-world 
problems

Theory Practice

Algorithms with 
imperfect advice

• Translate knowledge to 
benefit society

• Model and solve real-world 
problems in a principled 
manner

ChatGPT on the prompt “Generate me a picture of using AI/ML to benefit society” 32



Research vision:
Principled algorithms with real-world impact

32

Causality-aware
AI/ML methods

Applying 
insights to 
real-world 
problems

Theory Practice

Algorithms with 
imperfect advice

Other problem 
domains beyond 
online algorithms 

and improving 
competitive ratios. 

What “advice” 
makes sense?

How to elicit and 
incorporate human 

knowledge in a 
principled manner? 

Experts can be 
confidently wrong



Thank you to all my amazing collaborators during my PhD journey!

Thank you for your kind attention!

(I have been lucky to work on many interesting projects with these folks since Aug 2021. I have learnt a lot from them! Some of the works are not included in this talk or are upcoming submissions) 33
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