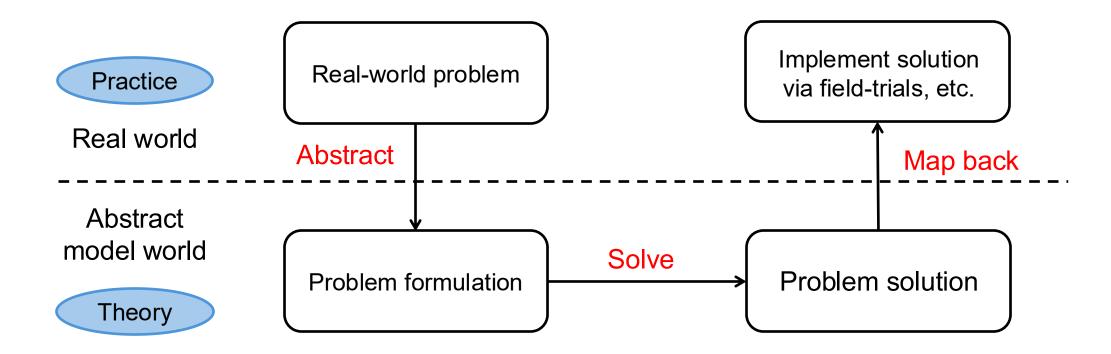
Test-and-Act: A recipe for learning-augmented algorithms inspired by sublinear thinking

UCSD CS Theory Lunch Dec 5, 2025

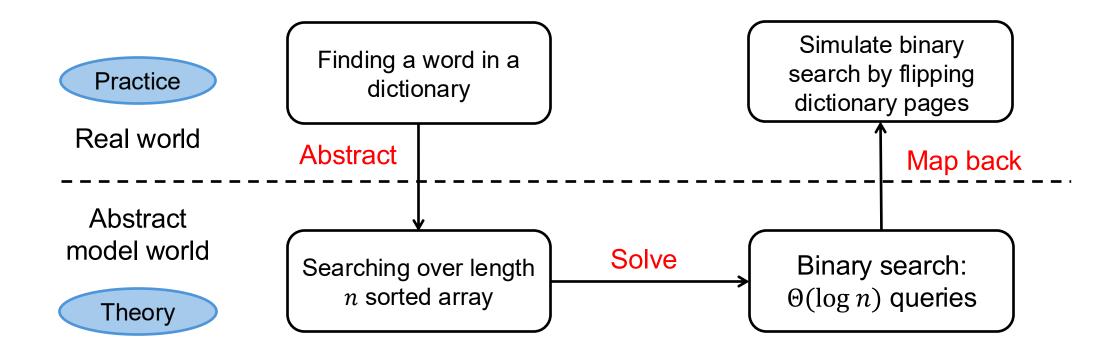
Davin Choo

Postdoctoral Fellow @ Harvard SEAS

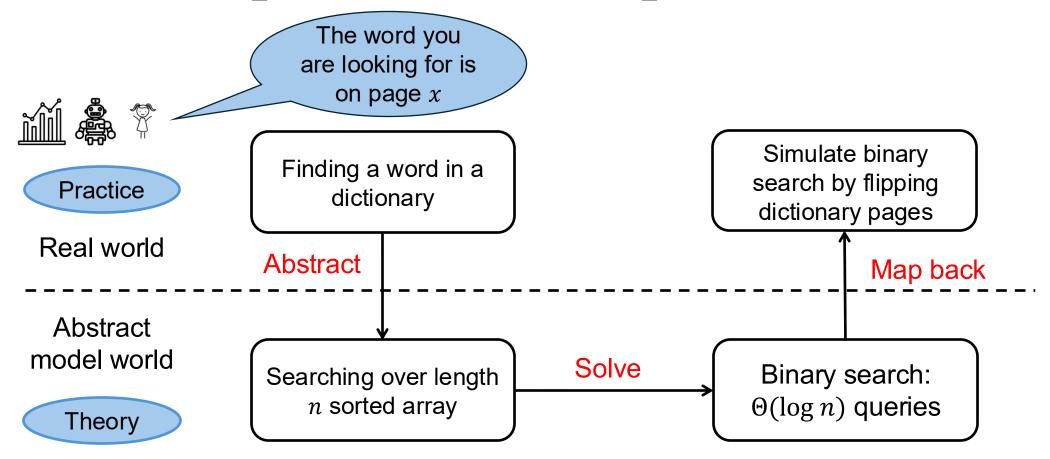
A general problem-solving paradigm



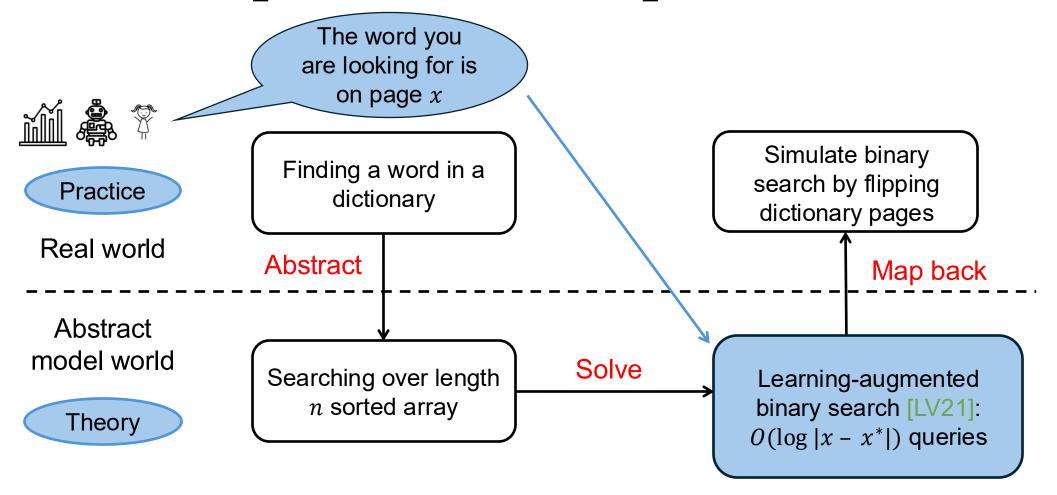
A general problem-solving paradigm



Learning-augmented algorithms are a way to harness imperfect instance-specific information



Learning-augmented algorithms are a way to harness imperfect instance-specific information

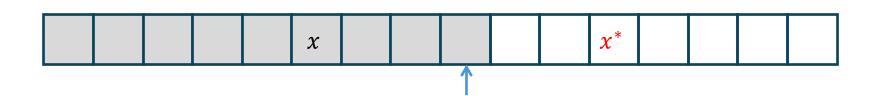


- Exponential search from x until we exceed x^*
- Binary search in between
- Each step takes $O(\log |x x^*|)$ queries

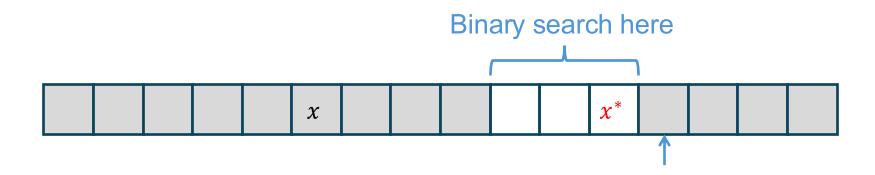
- Exponential search from x until we exceed x^*
- Binary search in between
- Each step takes $O(\log |x x^*|)$ queries

- Exponential search from x until we exceed x^*
- Binary search in between
- Each step takes $O(\log |x x^*|)$ queries

- Exponential search from x until we exceed x^*
- Binary search in between
- Each step takes $O(\log |x x^*|)$ queries



- Exponential search from x until we exceed x^*
- Binary search in between
- Each step takes $O(\log |x x^*|)$ queries



Evaluating learning-augmented algorithms

Desiderata

- Consistency: What is the performance when advice is "perfect"?
- Robustness: What is the performance when advice is "garbage"?
 - Ideally, similar performance as best advice-free baseline
- Smoothness: Performance interpolates between extremes of "perfect" and "garbage" advice
- All the other usual "nice-to-haves" in algorithm design of polynomial runtime, etc.

Evaluating learning-augmented algorithms

Desiderata

- Consistency: What is the performance when advice is "perfect"?
- Robustness: What is the performance when advice is "garbage"?
 - Ideally, similar performance as best advice-free baseline
- Smoothness: Performance interpolates between extremes of "perfect" and "garbage" advice
- All the other usual "nice-to-haves" in algorithm design of polynomial runtime, etc.

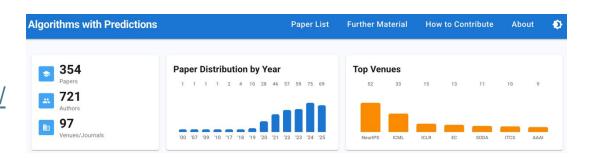
Searching in length n sorted array

- Performance metric of interest: Number of queries
- Best advice-free baseline: $\Theta(\log n)$ queries via binary search
- Learning-augmented binary search uses $O(\log |x x^*|)$ queries
 - Consistency: When $x = x^*$, only 1 query required
 - Robustness: When x is "garbage", we have $|x x^*| \le n$ always, so at most $O(\log n)$ queries

Landscape of learning-augmented algorithms

Relatively new field with lots of potential and unsolved problems!

- https://algorithms-with-predictions.github.io/
- Snapshot on Dec 4, 2025
- See also Chris's [HSSY24]



What is "learning-augmented"? (From my possibly limited viewpoint)

- Started from online algorithms where we make irrevocable decisions without knowing the future
- Predictions about the future can help circumvent standard hardness results in these settings
- "Learning-augmented" because predictions often from machine learning models
- Personally, I prefer the broader term "algorithms with imperfect advice" as useful instancespecific information could also come human expertise or domain knowledge

Test-and-Act framework

Insight: "Testing can be easier than learning"

- Developed as part of my PhD
- Idea: Design suitable testing subroutine to estimate advice quality, then react accordingly
- [CGB23] TestAndSubsetSearch: Reduce number of interventions for causal graph discovery
- [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching
- [BCGC24] TestAndOptimize: Improve sample complexity of learning multivariate Gaussians
- [BCGC25] TestAndOptimize: Improve sample complexity of learning product distributions

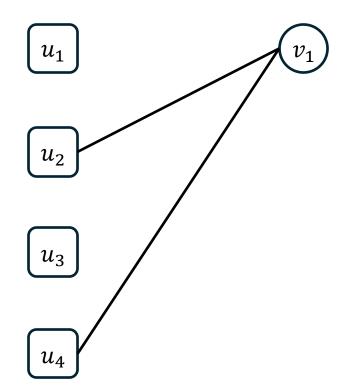
Bhattacharyya

Arnab

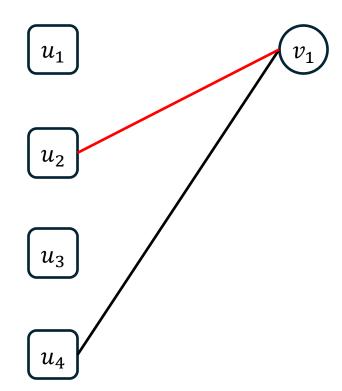
Themistoklis

Philips

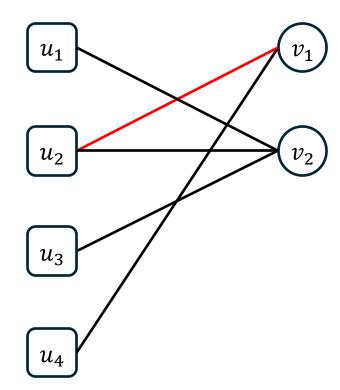
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



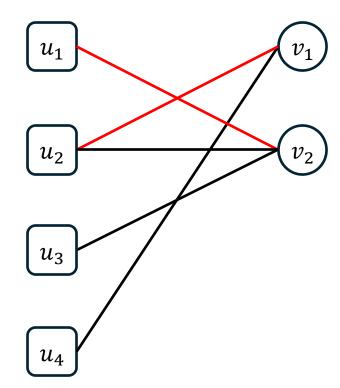
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



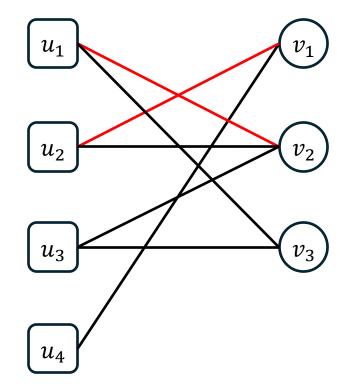
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



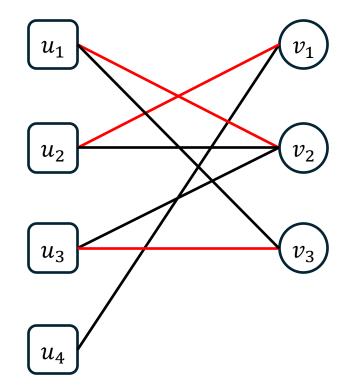
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



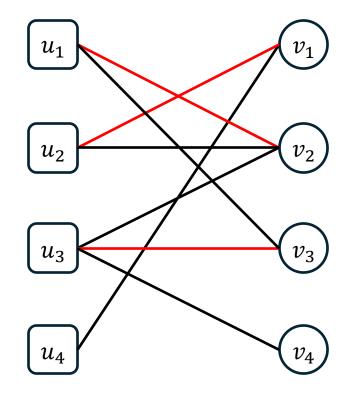
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



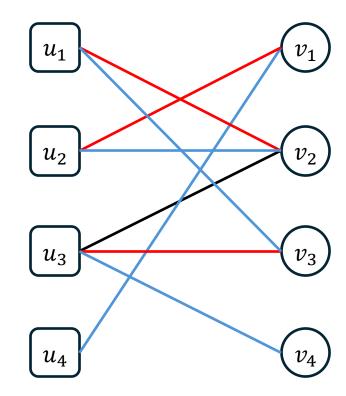
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



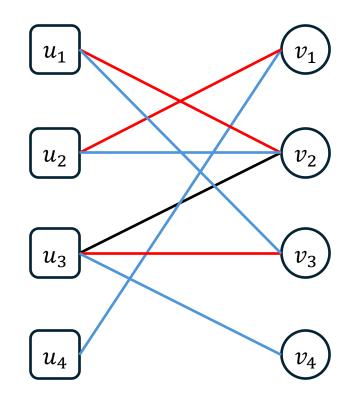
- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision



- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision
- Final offline graph $G^* = (U \cup V, E)$
 - $E = N(v_1) \cup \cdots \cup N(v_n)$
 - Maximum matching $M^* \subseteq E$ of size $|M^*| \le n$



- Offline set $U = \{u_1, ..., u_n\}$ fixed and known
- Online set $V = \{v_1, ..., v_n\}$ arrive one by one
- When an online vertex v_i arrives
 - $N(v_i)$ are revealed and we make <u>irrevocable</u> decision
- Final offline graph $G^* = (U \cup V, E)$
 - $E = N(v_1) \cup \cdots \cup N(v_n)$
 - Maximum matching $M^* \subseteq E$ of size $|M^*| \le n$
- Goal
 - Produce matching *M* maximizing competitive ratio $\frac{|M|}{|M^*|}$
 - Here, the ratio is 3/4
 - For this talk, suppose $|M^*| = n$



- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
 - Size of maximal matching is at least half of size of maximum matching

- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
 - Size of maximal matching is at least half of size of maximum matching
- Why is online bipartite matching hard?
 - Maximum bipartite matching is poly time computable...
 - But we don't know the future in the online setting!

- Any reasonable greedy algorithm has competitive ratio $\geq 1/2$
 - Size of maximal matching is at least half of size of maximum matching
- Why is online bipartite matching hard?
 - Maximum bipartite matching is poly time computable...
 - But we don't know the future in the online setting!

- Expected competitive ratio: $\min_{\substack{\mathcal{G}*\\ \text{sequence}}} \min_{\substack{\mathbf{V'} \text{s arrival}\\ \text{sequence}}} \frac{\text{(Expected) number of matches}}{n}$
- The Ranking algorithm [KVV90]
 - Pick a random permutation π over the offline vertices U
 - When vertex v_i arrive with $N(v_i)$, match v_i to the smallest indexed (w.r.t π) unmatched neighbor

	(Expected) Competitive ratio		
Deterministic algorithm	$\frac{1}{2}$		
Deterministic hardness	$\frac{1}{2}$		— Gre
Randomized algorithm	$1 - \frac{1}{e} [KVV90]$		
Randomized hardness	$1 - \frac{1}{e} + o(1)$ [KVV90]		— Ranl

Can we design an algorithm that is 1-consistent and $\left(1-\frac{1}{e}\right)$ -robust?

- Suppose we have instance-specific prediction / advice / side-information $\hat{\mathcal{G}}$ of \mathcal{G}^*
- Consistency: If $\hat{\mathcal{G}} = \mathcal{G}^*$, i.e., $\hat{\mathcal{G}}$ is "perfect", then competitive ratio is 1
- Robustness: If $\hat{\mathcal{G}}$ is "garbage", then competitive ratio is $1 \frac{1}{e}$

	(Expected) Competitive ratio	
Deterministic algorithm	$\frac{1}{2}$	
Deterministic hardness	$\frac{1}{2}$	Greedy
Randomized algorithm	$1 - \frac{1}{e} [KVV90]$	
Randomized hardness	$1 - \frac{1}{e} + o(1)$ [KVV90]	← Ranking

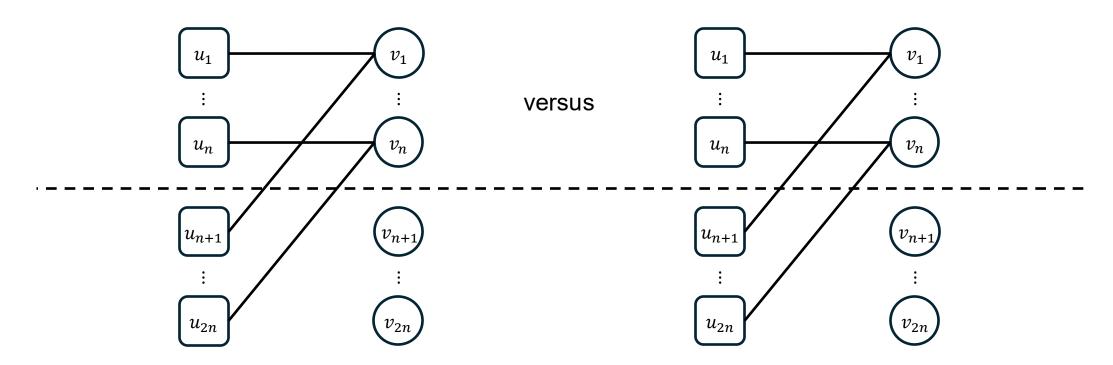
Prior attempts are <u>not</u> simultaneously 1-consistency and $\left(1-\frac{1}{e}\right)$ -robust

- [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
 - Random vertex arrivals and weighted edges. Require hyper-parameter to quantify confidence in advice, so their consistency/robustness tradeoffs are not directly comparable
- [ACI22] Prediction of vertex degrees $\hat{d}(u_1)$, ..., $\hat{d}(u_n)$ of the offline vertices in $\textbf{\textit{U}}$
 - Adversarial arrival model. Optimal under the Chung-Lu-Vu random graph model [CLV03], but unable to attain 1-consistency in general
- [JM22] Advice is a proposed matching for the first batch of arrived vertices
 - Two-staged arrival model [FNS21], where best possible robustness is ¾
 - For any $R \in [0, \frac{3}{4}]$, they can achieve consistency of $1 (1 \sqrt{1 R})^2$
- [LYR23] Augment any "expert algorithm" with a pre-trained RL model
 - For any $\rho \in [0,1]$, their method is ρ -competitive to the given "expert algorithm"

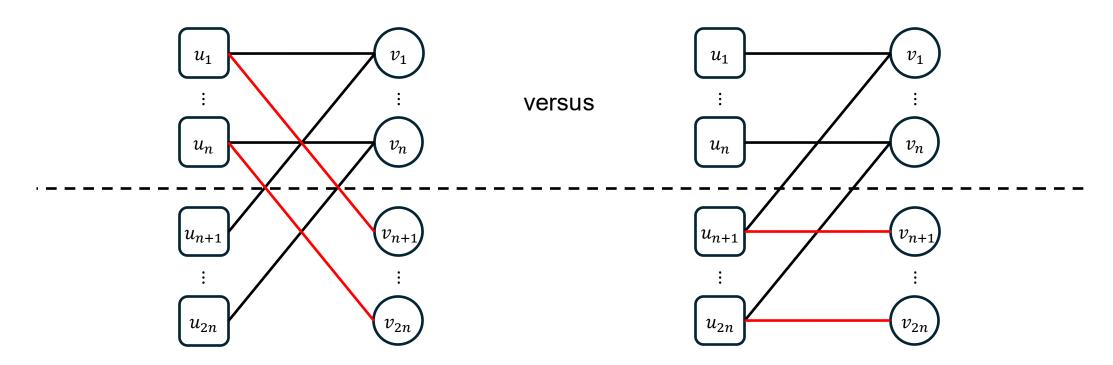
[CGLB24] Impossibility result: Under adversarial vertex arrivals, <u>no</u> algorithm can be both 1-consistent and $> \frac{1}{2}$ -robust, regardless of what advice is used.

- Extends to (1-a)-consistent and $(\frac{1}{2}+a)$ -robust, for any $a \in [0, \frac{1}{2}]$.
- Proof sketch (for a = 0 case):
 - Restrict G^* to be one of two possible graphs (next slide)
 - Any advice is equivalent to getting 1 bit of information
 - In first half of arrivals, no algorithm can distinguish between the two graphs
 - Any 1-consistent algorithm must behave as if the advice is perfect initially

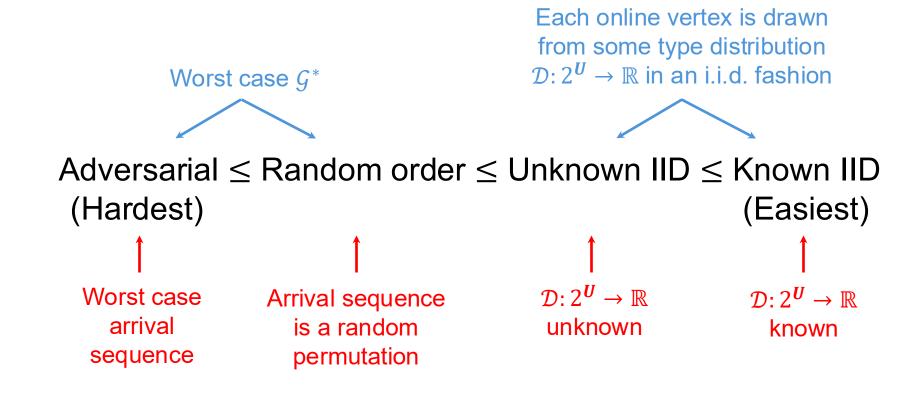
[CGLB24] Impossibility result: Under adversarial vertex arrivals, <u>no</u> algorithm can be both 1-consistent and $> \frac{1}{2}$ -robust, regardless of what advice is used.



[CGLB24] Impossibility result: Under adversarial vertex arrivals, <u>no</u> algorithm can be both 1-consistent and $> \frac{1}{2}$ -robust, regardless of what advice is used.



Hierarchy of arrival models



Online bipartite matching: random order arrival

	(Expected) Competitive ratio		
	Adversarial arrival	Random order arrival	
Deterministic algorithm	$\frac{1}{2}$	$1 - \frac{1}{e} [GM08] \qquad \longleftarrow$	Greedy
Deterministic hardness	$\frac{1}{2}$	$\frac{3}{4}$	
Randomized algorithm	$1 - \frac{1}{e} \approx 0.63 \text{ [KVV90]}$	0.696 [MY11]	Ranking
Randomized hardness	$1 - \frac{1}{e} + o(1)$ [KVV90]	0.823 [MGS12]	

- [KMT11] showed that Ranking cannot beat 0.727 in general
- So, new ideas are needed if you believe the "right bound" is 0.823

Learning-augmented online bipartite matching under random order arrival

Can we design an algorithm that is 1-consistent and $(1-\frac{1}{e})$ -robust?

- Suppose we have instance-specific prediction / advice / side-information $\hat{\mathcal{G}}$ of \mathcal{G}^*
- Consistency: If $\hat{\mathcal{G}} = \mathcal{G}^*$, i.e., $\hat{\mathcal{G}}$ is "perfect", then competitive ratio is 1
- Robustness: If $\hat{\mathcal{G}}$ is "garbage", then competitive ratio is β , where $0.696 \le \beta \le 0.823$

	(Expected) Competitive ratio		
	Adversarial arrival	Random order arrival	
Deterministic algorithm	$\frac{1}{2}$	$1 - \frac{1}{e} [GM08] \qquad \leftarrow$	Greedy
Deterministic hardness	$\frac{1}{2}$	$\frac{3}{4}$	
Randomized algorithm	$1 - \frac{1}{e} \approx 0.63 \text{ [KVV90]}$	0.696 [MY11] ←	Ranking
Randomized hardness	$1 - \frac{1}{e} + o(1)$ [KVV90]	0.823 [MGS12]	

Learning-augmented online bipartite matching under random order arrival

Can we design an algorithm that is 1-consistent and $(1-\frac{1}{e})$ -robust?

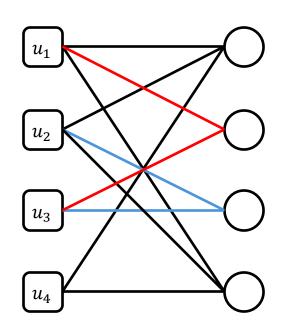
- Suppose we have instance-specific prediction / advice / side-information $\hat{\mathcal{G}}$ of \mathcal{G}^*
- Consistency: If $\hat{\mathcal{G}} = \mathcal{G}^*$, i.e., $\hat{\mathcal{G}}$ is "perfect", then competitive ratio is 1
- Robustness: If $\hat{\mathcal{G}}$ is "garbage", then competitive ratio is β , where $0.696 \le \beta \le 0.823$

[CGLB24] Under random order arrivals, there is an algorithm achieving competitive ratio interpolating between 1 and $\beta \cdot (1 - o(1))$, depending on advice quality

- So, we are simultaneously 1-consistent and $\beta \cdot (1 o(1))$ -robust
- Meta-algorithm that uses any Baseline that achieves β , e.g., use Ranking for Baseline

Realized type counts as advice

- Type of v_i = set of offline vertices in $N(v_i)$ that v_i is adjacent to [BKP20]
- True graph \mathcal{G}^* can be represented by integer vector $c^* \in \mathbb{N}^{2^n}$, indexed by all possible types 2^U
- Similarly, advice graph $\hat{\mathcal{G}}$ can be represented using $\hat{c} \in \mathbb{N}^{2^n}$

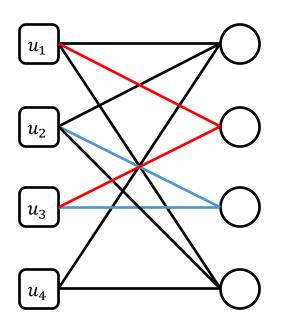


	Туре	c^*
	$\{u_1,u_2,u_4\}$	2
T^*	$\{u_1,u_3\}$	1
	$\{u_2,u_3\}$	1
	$2^{U} \setminus T^*$	0

Realized type counts as advice

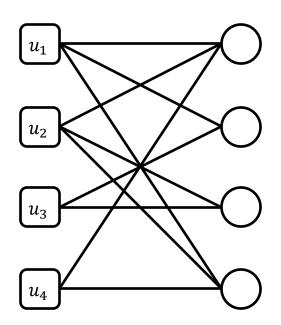
- Type of v_i = set of offline vertices in $N(v_i)$ that v_i is adjacent to [BKP20]
- True graph \mathcal{G}^* can be represented by integer vector $c^* \in \mathbb{N}^{2^n}$, indexed by all possible types 2^U
- Similarly, advice graph $\hat{\mathcal{G}}$ can be represented using $\hat{c} \in \mathbb{N}^{2^n}$
- Representation vectors c^* and \hat{c} are sparse with at most n non-zero entries
 - Let $T^* \subseteq 2^U$ be the subset of non-zero counts in c^*
 - Let $\hat{T} \subseteq 2^U$ be the subset of non-zero counts in \hat{c}
 - Then, $|T^*|, |\hat{T}| \le n \ll 2^{|U|} = 2^n$
 - Implication: Can represent using O(n) labels and numbers

- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.

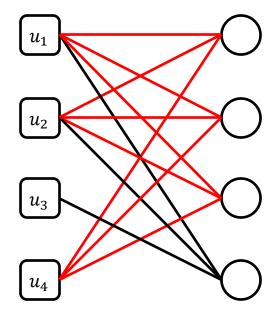


Туре	<i>c</i> *
$\{u_1,u_2,u_4\}$	2
$\{u_1,u_3\}$	1
$\{u_2, u_3\}$	1

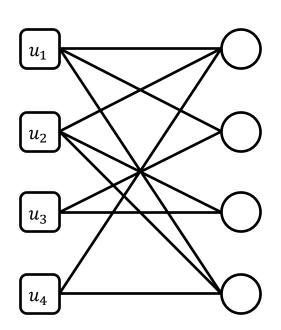
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



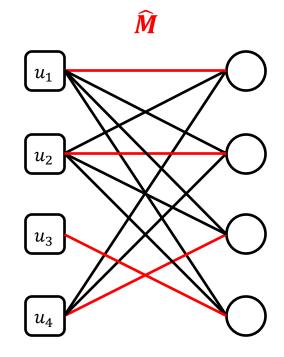
Туре	c^*	ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1, u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



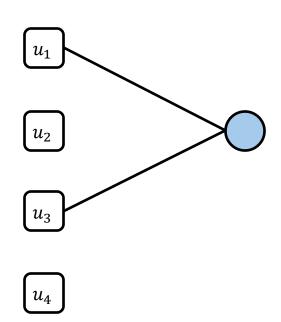
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



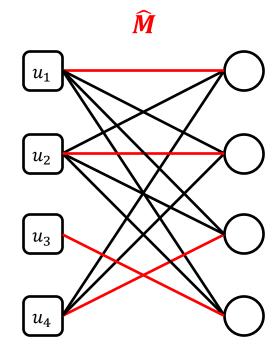
Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



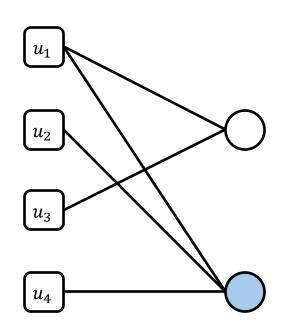
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



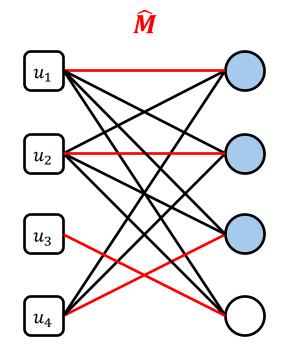
Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



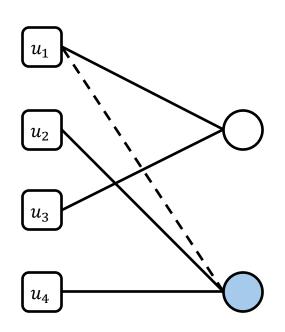
- Fix arbitrary maximum matching \widehat{M} defined by \widehat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



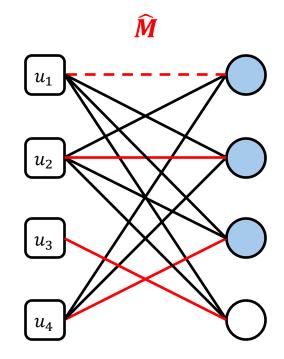
Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



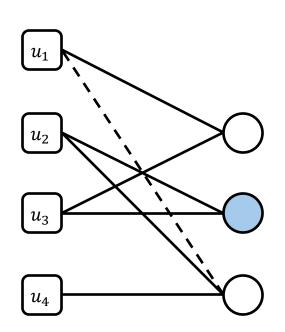
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



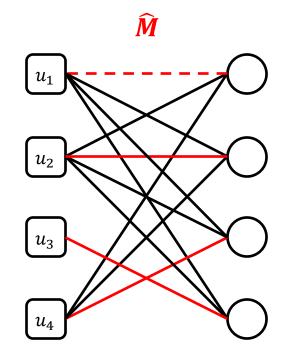
Туре	<i>c</i> *	ĉ
$\{u_1, u_2, u_4\}$	2	1 2
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



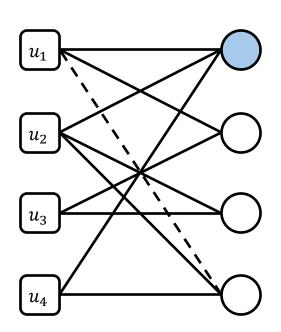
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



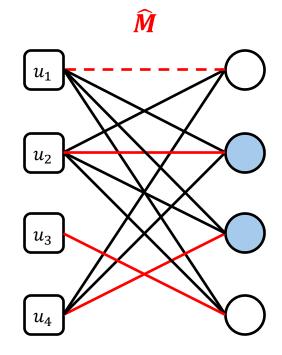
Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	1 2
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



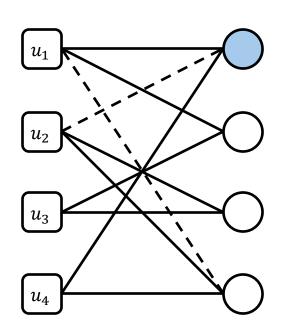
- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



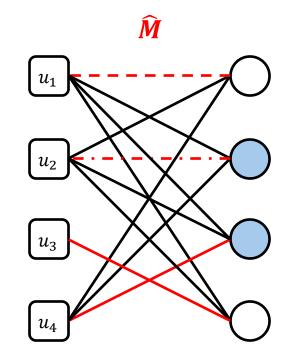
Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	% 2
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



- Fix arbitrary maximum matching $\widehat{\pmb{M}}$ defined by \hat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.

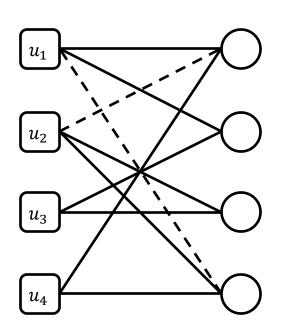


Туре	<i>c</i> *	ĉ
$\{u_1,u_2,u_4\}$	2	1/2
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1



The Mimic algorithm, i.e., "Blindly trust advice as much as possible"

- Fix arbitrary maximum matching \widehat{M} defined by \widehat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.



Туре	<i>c</i> *	Ĉ
$\{u_1,u_2,u_4\}$	2	3
$\{u_1,u_3\}$	1	0
$\{u_2,u_3\}$	1	0
$\{u_1,u_2,u_3\}$	0	1

Output matching size

$$2 = \left| \widehat{\boldsymbol{M}} \right| - \frac{\ell_1(c^*, \hat{c})}{2}$$

Error is "double counted" in ℓ_1

$$\ell_1(c^*, \hat{c})$$
= $|3 - 2| + |0 - 1|$
+ $|0 - 1| + |1 - 0|$
= 4

The Mimic algorithm, i.e., "Blindly trust advice as much as possible"

- Fix arbitrary maximum matching \widehat{M} defined by \widehat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.

Analysis

- $0 \le \ell_1(c^*, \hat{c}) \le 2n$ measures how close \hat{c} is to c^*
- By blindly following advice, Mimic gets a matching of size $|\widehat{M}| \frac{\ell_1(c^*,\hat{c})}{2}$
- Mimic beats an advice-free Baseline whenever $|\widehat{\pmb{M}}| \frac{\ell_1(c^*,\hat{c})}{2} > \beta \cdot n$

The Mimic algorithm, i.e., "Blindly trust advice as much as possible"

- Fix arbitrary maximum matching \widehat{M} defined by \widehat{c}
- Try to follow it as much as possible. If unable to mimic \widehat{M} , leave unmatched.

Analysis

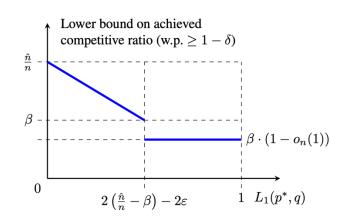
- $0 \le \ell_1(c^*, \hat{c}) \le 2n$ measures how close \hat{c} is to c^*
- By blindly following advice, Mimic gets a matching of size $|\widehat{M}| \frac{\ell_1(c^*,\hat{c})}{2}$
- Mimic beats an advice-free Baseline whenever $|\widehat{\pmb{M}}| \frac{\ell_1(c^*, \hat{c})}{2} > \beta \cdot n$
- For simplicity, let's suppose that $|\widehat{\mathbf{M}}| = n$ for this talk
 - Mimic beats an advice-free Baseline whenever $\frac{\ell_1(c^*,\hat{c})}{n} < 2 \cdot (1-\beta)$
 - Problem: We don't know $\ell_1(c^*,\hat{c})$ upfront!

Sublinear property testing to the rescue

- Define $p = \frac{c^*}{n}$ and $q = \frac{\hat{c}}{n}$ as distributions over the 2^{*U*} types
- [VV11, JHW18]: Can estimate $\ell_1(p,q)$ "well" using o(n) i.i.d. samples
 - To be precise, if p and q have domain size $r \le n$, then $\Theta\left(\frac{r}{\varepsilon^2 \log r}\right)$ i.i.d. samples are sufficient and necessary to estimate $\hat{\ell}_1$ such that $|\hat{\ell}_1 \ell_1(p,q)| \le \varepsilon$
 - c^* and \hat{c} can be defined over $|\hat{T}| + 1$ elements, with a not-in- \hat{T} bucket
- Some adjustments needed (included for completeness)
 - Random vertex arrivals are "sampling without replacement", but we can simulate i.i.d. samples by tracking what has arrived and "reusing" arrivals with probability proportional to number of arrivals
 - ℓ_1 estimator is in expectation, but can be made "with high probability"

[CGLB24] Under random order arrivals, there exists a meta-algorithm (TestAndMatch) that uses any Baseline (achieving β) and achieves competitive ratio interpolating between 1 and $\beta \cdot (1 - o(1))$, depending on advice quality

- The TestAndMatch algorithm
 - Fix any arbitrary maximum matching \widehat{M} on the graph defined by advice \widehat{c}
 - If $|\widehat{M}| \leq \beta \cdot n$, run the best advice-free Baseline on all arrivals
 - Otherwise, run Mimic while testing quality of \hat{c} by estimating $\ell_1(c^*,\hat{c})$
 - If test declares $\ell_1(c^*,\hat{c})$ is "large", use Baseline for remaining arrivals
 - Otherwise, continue using Mimic for remaining arrivals
- Analysis
 - If $\hat{\ell}_1 \lesssim 2(1-\beta)$, then TestAndMatch attains ratio of at least $1 \frac{\ell_1(c^*,\hat{c})}{2n}$
 - Otherwise, TestAndMatch attains ratio of at least $\beta \cdot (1 o(1))$



Test-and-Act framework

Insight: "Testing can be easier than learning"

- Idea: Design suitable testing subroutine to estimate advice quality, then react accordingly
- [CGB23] TestAndSubsetSearch: Reduce number of interventions for causal graph discovery
- [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching
 - No 1-consistent and $> \frac{1}{2}$ -robust algorithm under adversarial arrival
 - Meta-algorithm TestAndMatch interpolates between 1 and $\beta \cdot (1 o(1))$ under random order arrival
- [BCGG24] TestAndOptimize: Improve sample complexity of learning multivariate Gaussians
- [BCGG25] TestAndOptimize: Improve sample complexity of learning product distributions

Learning multivariate Gaussians

Producing a candidate distribution \hat{P} when drawing i.i.d. samples from $P = N(\mu, I)$

- PAC-learning [Val84]: We want $TV(\mathcal{P}, \hat{\mathcal{P}})$ to be small, with "good chance", using few samples
- For Gaussians with identity covariance, we just need good estimation $\hat{\mu}$ of the mean $\mu \in \mathbb{R}^d$

Learning and testing multivariate Gaussians

Producing a candidate distribution \hat{P} when drawing i.i.d. samples from $P = N(\mu, I)$

- PAC-learning [Val84]: We want $TV(\mathcal{P}, \hat{\mathcal{P}})$ to be small, with "good chance", using few samples
- For Gaussians with identity covariance, we just need good estimation $\hat{\mu}$ of the mean $\mu \in \mathbb{R}^d$

Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\hat{\mu}$

Idea: Empirical mean works

Quadratic gap!

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

- If $\|\mu\|_2 \le \varepsilon$, output Accept
- If $\|\mu\|_2 \ge 2\varepsilon$, output Reject
- Otherwise, decide arbitrarily
- Idea: Define statistic Z and threshold τ . Output "Accept" if $Z > \tau$, else output "Reject"

Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGG24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

- If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples
- Unfortunately, we do not know the advice quality

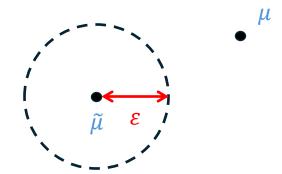
Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGC24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

- If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples
- Unfortunately, we do not know the advice quality
- Idea: Use tolerant testing to first estimate advice quality of $\tilde{\mu}$

"Guess and double"



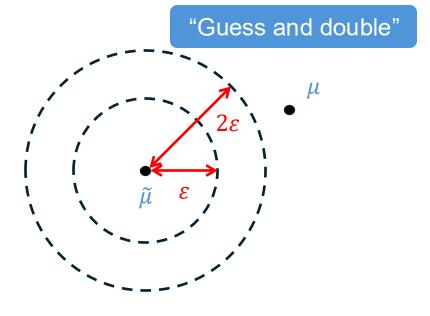
Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGG24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

• If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples

- Unfortunately, we do not know the advice quality
- Idea: Use tolerant testing to first estimate advice quality of $\tilde{\mu}$



Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

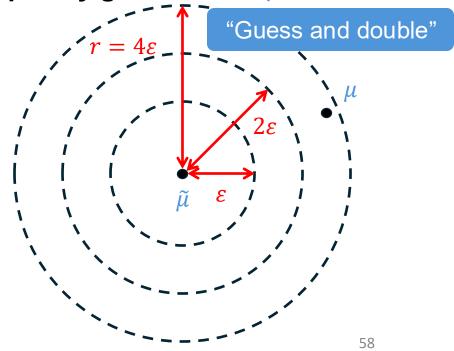
Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGG24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

• If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples

Unfortunately, we do not know the advice quality

• Idea: Use tolerant testing to first estimate advice quality of $\tilde{\mu}$



Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

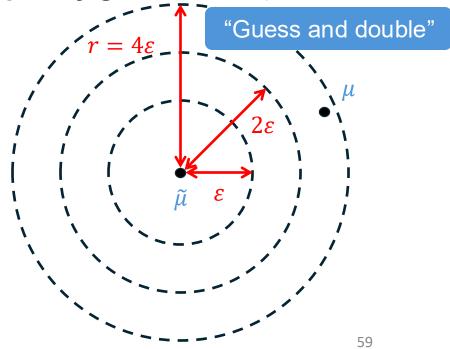
[BCGC24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

- If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples
- Unfortunately, we do not know the advice quality
- Idea: Use tolerant testing to first estimate advice quality of $\tilde{\mu}$, then run LASSO-style optimization to produce $\hat{\mu}$

$$\hat{\mu} = \operatorname{argmin}_{\|\beta\|_1 \le r} \sum_{i=1}^n \|x^{(i)} - \beta\|_2^2$$
samples

Polynomial time with overall sample complexity

$$\widetilde{\Theta}\left(\frac{\frac{d}{\varepsilon^2}\left(\min\left\{1,\frac{\|\mu-\widetilde{\mu}\|_1^2}{\varepsilon^2d}\right\}\right)\right)$$



Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGC24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

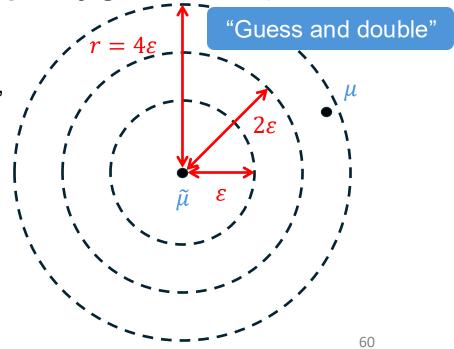
samples

- If $\ell_2(\mu, \tilde{\mu})$ is small enough, just output $\tilde{\mu}$ with zero samples
- Unfortunately, we do not know the advice quality
- Idea: Use tolerant testing to first estimate advice quality of $\tilde{\mu}$, then run LASSO-style optimization to produce $\hat{\mu}$

These
$$\ell_1$$
 are not typos.
$$\hat{\mu} = \operatorname{argmin}_{\|\beta\|_1 \le r} \sum_{i=1}^n \|x^{(i)} - \beta\|_2^2$$

Polynomial time with overall sample complexity

$$\widetilde{\Theta}\left(\frac{\frac{d}{\varepsilon^2}\left(\min\left\{1,\frac{\|\mu-\widetilde{\mu}\|_1^2}{\varepsilon^2d}\right\}\right)\right)$$



Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGG24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

- Why ℓ_1 -norm?
 - Short answer: It just pops out of analysis
 - Small ℓ_1 -norm \Rightarrow Difference is approximately sparse
 - Sample complexity is linear in sparsity, not in dimension d
 - If advice close in ℓ_2 -norm, linear $\Omega(d)$ sample complexity lower bounds apply unfortunately
- How to estimate ℓ_1 efficiently using ℓ_2 tolerant tester?
 - Naively using $||x||_2 \le ||x||_1 \le \sqrt{d} \cdot ||x||_2$ does not escape $\Omega(d)$ sample complexity
 - Idea: Exploit independence in the coordinates in the mean vector
 - Estimate ℓ_1 of length k chunks, then optimize the parameters in analysis
 - Similar idea works for covariance matrix
 - Disjoint principal submatrices define independent Gaussians of smaller dimensions

Learning Gaussians: $\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to produce " ε -good" $\widehat{\mu}$

Tolerant testing Gaussians: $\widetilde{\Theta}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$ i.i.d. samples from $N(\mu, I)$ to " ε -tolerant-test" μ

[BCGG24]: Efficient algorithm for improving sample complexity given advice $\tilde{\mu} \in \mathbb{R}^d$

Polynomial time with overall sample complexity

$$\widetilde{\Theta}\left(\frac{d}{\varepsilon^2}\left(\min\left\{1,\frac{\|\mu-\widetilde{\mu}\|_1^2}{\varepsilon^2d}\right\}\right)\right)$$

- When $\|\mu \tilde{\mu}\|_1 \ll \varepsilon \sqrt{d}$, sample complexity is sublinear in d
- $\Omega(d)$ samples unavoidable when $\|\mu \tilde{\mu}\|_1 \in \Omega(\varepsilon\sqrt{d})$
- Bound can be slightly parameterized, and similar idea works for non-identity covariance (with SDP instead of LASSO; matching lower bound exists)

Test-and-Act framework

Insight: "Testing can be easier than learning"

- Idea: Design suitable testing subroutine to estimate advice quality, then react accordingly
- [CGB23] TestAndSubsetSearch: Reduce number of interventions for causal graph discovery
- [CGLB24] TestAndMatch: Improve competitive ratio of online bipartite matching
 - No 1-consistent and $> \frac{1}{2}$ -robust algorithm under adversarial arrival
 - Meta-algorithm TestAndMatch interpolates between 1 and $\beta \cdot (1 o(1))$ under random order arrival
- [BCGG24] TestAndOptimize: Improve sample complexity of learning multivariate Gaussians
 - Use sublinear tolerant testing to estimate ℓ_1 -closeness of $\hat{\mu}$ and $\hat{\Sigma}$ to μ and Σ
 - Set up LASSO-style / SDP optimization constrained on ℓ_1
- [BCGG25] TestAndOptimize: Improve sample complexity of learning product distributions
 - Similar high-level idea as [BCGG24], but require additional unavoidable "balanced-ness" assumption

Test-and-Act: A recipe for learning-augmented algorithms inspired by sublinear thinking

Learning-augmented algorithms are a way to harness imperfect instancespecific information

- Metrics of interest: consistency, robustness, smoothness
- Useful instance-specific prediction / advice / side-information are often available in practice!
- Does your favorite problem have possibly useful advice? Let's talk ©

Test-and-Act framework

- Idea: Design suitable testing subroutine to estimate advice quality, then react accordingly
- Framework is broadly applicable whenever the problem setting enables "efficient testing"
- Exciting application of property testing and sublinear algorithms

Thank you for your kind attention!