
Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Who am I?

• Ex-TJC Student (CG24/07) 

• IT Club Secretary 
(while it was under Mr Low Chang Hong) 

• Currently in NUS 

• Computer Science and Mathematics DDP



Computational Thinking
!

• Logical Thinking 

• Modelling 

• Decomposition 

• Pattern recognition 

!

!

• Pattern generalisation 

• Abstraction 

• Algorithmic Thinking 

• Efficiency



In-class Exercise 
Travel Agency



Travel Agency
Given!

A list of tourists, each with places they want to visit 

!

To do!

Charter bus rides for them so each tours get to see 
all of their places



Tourism Spots in Singapore
• Botanical Gardens 

• Gardens by the Bay 

• Marina Bay Sands 

• Sentosa Island 

• Jurong Bird Park 

• Singapore Flyer 

• Universal Studios SIngapore 

• Clarke Quay

http://commons.wikimedia.org/wiki/File:Merlion_Sentosa.jpg



Tourists
!

• Amy 

• Ben 

• Charlie 

• Dominic 

!

• Emma 

• Felicia 

• Ginna 

• Harry



Question

• Do location names matter? 

• Do tourist names matter? 

• Do tourist genders matter?



Tourism Spots in Singapore
• Botanical Gardens [BG] 

• Gardens by the Bay [GB] 

• Marina Bay Sands [MBS] 

• Sentosa Island [SI] 

• Jurong Bird Park [JBP] 

• Singapore Flyer [SF] 

• Universal Studios SIngapore [USS] 

• Clarke Quay [CQ]

http://commons.wikimedia.org/wiki/File:Merlion_Sentosa.jpg



Tourists
!

• Amy [A] 

• Ben [B]!

• Charlie [C]!

• Dominic [D]!

!

• Emma [E] 

• Felicia [F] 

• Ginna [G] 

• Harry [H]



Tourists’ Plans
BG GB MBS SI JBP SF USS CQ

A ✓ ✓ ✓

B ✓ ✓ ✓

C ✓ ✓ ✓

D ✓ ✓ ✓

E ✓ ✓ ✓

F ✓ ✓ ✓

G ✓ ✓

H ✓ ✓



Tourists’ Plans
BG GB MBS SI JBP SF USS CQ

A ✓ ✓ ✓

B ✓ ✓ ✓

C ✓ ✓ ✓

D ✓ ✓ ✓

E ✓ ✓ ✓

F ✓ ✓ ✓

G ✓ ✓

H ✓ ✓



Tourists’ Plans
BG GB MBS SI JBP SF USS CQ

A ✓ ✓ ✓

B ✓ ✓ ✓

C ✓ ✓ ✓

D ✓ ✓ ✓

E ✓ ✓ ✓

F ✓ ✓ ✓

G ✓ ✓

H ✓ ✓



Tourists’ Plans
BG GB MBS SI JBP SF USS CQ

A ✓ ✓ ✓

B ✓ ✓ ✓

C ✓ ✓ ✓

D ✓ ✓ ✓

E ✓ ✓ ✓

F ✓ ✓ ✓

G ✓ ✓

H ✓ ✓



Solution #1
• Singapore 1-Day Tour 

• Put all tourists in 1 bus 

• Visit all 8 places in 1 day 

• Pros 

• Works - 1 bus, 1 day 

• Cons 

• Tourists unhappy: Too rushed. No time to see anything!



Solution #2
• Constraint 1: Each tourist visits at most 1 place/day 

• Singapore Buffet-style tour 

• Schedule 8 buses to each location every day 

• Tourists pick which bus to take each day 

• Pros 

• Works - At most 3 days to complete all plans 

• Cons 

• Boss unhappy: Wasteful! 24 bus trips.



Solution #3
• Constraint 1: Each tourist visits at most 1 place/day 

• Constraint 2: Send at most 1 bus to each place 

• Singapore 8-day tour 

• Schedule 1 bus to a different location each day 

• Tourists pick which day to take the bus 

• Pros 

• Works - At most 8 bus trips 

• Cons 

• Tourists unhappy: 8 days needed. At least 5 wasted days



Moral of the Story

• Don’t work in a travel agency 

• Just kidding 

• Solutions to real world problems are affected by all 
stakeholders



Hands on

• Constraint 1: Each tourist visits at most 1 place/day 

• Constraint 2: Send at most 1 bus to each place 

• Constraint 3: Minimise number of days



Hands on

• How many days did you use? 

• How did you come up with the solution? 

• What if I increase the number of attractions to 100? 

• What if I increase the number of tourists to 100?



Graph Model Approach
• What is a graph? 

!

!

!

!

• Nope

http://www.wolframalpha.com/input/?i=sin+x%2C+cos+x!
http://www.wolframalpha.com/input/?i=random+pokemon+curve



Graph Model Approach
• What is a model? 

!

!

!

!

• Similar

http://math.nie.edu.sg/ame/matheduc/tme/tmeV6_2/05-Yan%20KC%20Final%20version.pdf



Graph Model Approach
• A mathematical model G = (V, E) 

• Nodes/Vertices (V) 

• Edges (E) 

• In our case: 

• V = Attractions 

• E = Conflicts

GB

BG

JBP



Hands on
Draw the constraint graph



Constraint Graph
GBBG

MBS

SI

JBPSF

CQ

USS



Constraint Graph
GBBG

MBS

SI

JBPSF

CQ

USS



Constraint Graph
GBBG

MBS

SI

JBPSF

CQ

USS



Constraint Graph
GBBG

MBS

SI

JBPSF

CQ

USS



Re-arranging…

GBBG

MBS

SI

JBP

SF

CQ

USS



Graph Model
• Usage 

• Easy to read constraint 

• (Or the lack of it) 

• Claim 

• Colour the vertices. Adjacent vertices not same colour 

• # colours used = # days needed 

• Same color = Visit on same day



Possible solution

GBBG

MBS

SI

JBP

SF

CQ

USS

Day 1 - JBP, MBS 
!
Day 2 - BG, SI 
!
Day 3 - CQ, USS 
!
Day 4 - GB, SF



Questions

• Does the ordering of the colours matter? 

• How do we get the list of tourists on each bus?



Models

Actual Problem Actual Solution

Model Problem Model Solution
Known methods

???



Models

Bend Steel Bar Bent Steel Bar
???

http://youtu.be/MkibO5PdAiI?t=29s



Models

Bend Steel Bar Bent Steel Bar

Physics Model Calculated heat!
and pressure points

Apply Heat and Pressure

???



Models

Bus Scheduling Bus Schedule

Constraint!
Graph

Vertex!
Colouring

Colour graph

???



Exam Scheduling

Given!

A list of students, each with subjects that they take 

!

To do!

Plan the exam times and dates for the school



Fighting fish
Given!

A list of fish, each with a list of other fish which they 
will fight with 

!

To do!

Use as little bowls to hold all the fish



Models
Exam Scheduling!

Fighting Fish
Exam Schedule!

Fish Bowls

Constraint!
Graph

Vertex!
Colouring

Colour graph

???



Math to Wolfram

http://www.wolframalpha.com



Wolfram’s TED talk

19min 19sec



Lessons Learnt
• Abstraction 

• Remove useless information that don’t help in solving 
the problem (e.g. names) 

• Simplify if possible 

• Real world problems are usually subject to many 
constraints 

• Models are helpful 

• Grants you access to well-known problems/solutions



Palindromes
• What are palindromes? 

• It is the same thing when you read it both forwards and 
backwards 

• Are these strings palindromes? 

• 121 

• ASDF 

• ASDFDSA 

• 1



Homework
1) Palindromes 

Given a string,  
How do you check if it is a palindrome? 

!

2) Read this and tell me the moral of the story: 

http://www.comp.nus.edu.sg/~leonghw/Courses/
cattywampus.html



If you are interested…
• Topics covered: 

• Abstraction 

• Modelling 

• Graph Theory 

• Graph colouring



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Homework

2) What is the moral of the Cattywampus story? 

1) Palindromes 

• It is the same thing when you read it both 
forwards and backwards 

Given a string,  
How do you check if it is a palindrome?



Discussion

• Are the steps provided by your classmates 
unambiguous/clear? 

• Can you use their steps to check if something is a 
palindrome? Let’s try…



Next few sessions might feel like this

The Karate Kid (2010) 
4min 19sec

https://www.youtube.com/watch?v=hkORWn_wbcY



But there are good reasons…

The Karate Kid (2010) 
1min 53sec https://www.youtube.com/watch?v=T10ycFr770g



Goal of next few sessions

• Teach you the basics and foundations (Important!) 

• A step into understanding the world of Computer 
Science 

• The core of Computer Science is “Algorithms”



Algorithms
• Google’s definition 

!

!

• Properties 

• Well defined (i.e. not ambiguous) 

• Finite/Fixed number of steps



Algorithm Examples
• Cooking 

1. Preheat oven to 350℃ 

2. Sift together flour, cocoa, baking soda and 1 
tsp salt 

3. Beat in eggs and vanilla 

4. …



Algorithm Examples
• Giving directions to a tourist (or Google Maps) 

1. Go straight until you reach “XXX Drive” 

2. Make a left turn and walk straight to bus stop 
#55423 

3. Take bus 42 for 9 stops 

4. …



What’s “wrong” with the examples?

• Too verbose 

• Different people have different  
“levels of understanding” 

• We need a model of how things(in our case, 
computers) work before we can provide an 
appropriate algorithm at a “suitable level”



Dijkstra’s algorithm 
(Can you understand this?)

http://en.wikipedia.org/wiki/Dijkstra's_algorithm



Pseudocode

• “Language” of algorithms 

• Used to describe an algorithm in 
“fairly standardised method” (there are variants) 

• Similar to programming code but is 
programming language agnostic



Pseudocode
• Simple building blocks 

1. Numbering 

2. Comments 

3. Assignment 

4. Print/Return 

5. Conditionals (if-else) 

6. Repetition (while-loops) 

7. Function calls



1. Numbering

ALGORITHM_A (<Inputs>) 

1. Do A  

2. Do B  

3. Do C  

END



2. Comments

ALGORITHM_A (<Inputs>) 

1. Do A // This helps others 

2. Do B // to understand 

3. Do C // what you wrote 

END



3. Assignment

ALGORITHM_A (<Inputs>) 

1. X ← 3 

2. Do B 

3. Do C 

END

X 3

X 3



4. Print/Return

PLUS_ONE (A) 

1. X ← 1 + A 

2. PRINT “Hello” 

3. RETURN X 

END

Example: 
PLUS_ONE(2) 
 
Shows: “Hello” 
Returned: 3

Just visual display. 
Cannot be 

used further

Can still 
be used

Question: 
PLUS_ONE(PLUS_ONE(2)) returns ___?



5. Conditionals

If __________, then __________ 

Otherwise, __________

Condition
Condition!

is met
Condition!
not met



5. Conditionals

If __________, then __________ 

Otherwise, __________

it rains today
Natalie will!

bring umbrella
Natalie will!

wear sunglasses



5. Conditionals

If __________, then __________ 

Otherwise, __________

Yun Feng is!
hungry

Yun Feng!
will eat

<Blank>



5. Conditionals
IS_EVEN (N) 

1. IF (A % 2 == 0) 

2.         RETURN TRUE 

3. ELSE  

4.         RETURN FALSE 

5. END IF  

END

X == Y!
returns TRUE, if X is equal to Y!
returns FALSE, otherwise!
!
Convention (Why == instead of =)!
In programming, = denotes ←

Condition

Example: 

IS_EVEN (5) returns ___? 

IS_EVEN (4) returns ___?



5. Conditionals

Nested Conditionals 

If (A and B), then ____. 

If (A and ¬B), then ____. 

Otherwise (i.e. ¬A), ____.

Condition 2Condition 1



NESTED_IF_ALGO () 

1. IF (A) 

2.     IF (B) 

3.         ____ 

4.     ELSE 

5.         ____ 

6.     END IF 

7. ELSE 

8.     ____ 

9. END IF 

END

5. Conditionals

} Check 
Conditional 2



6. Repetition
SAY_HI_N_TIMES (N) 

1. WHILE (N != 0) 

2.     PRINT “HI” 

3.     N ← N - 1 

4. END WHILE  

END

Condition
X != Y!
returns TRUE, if X is not equal to Y!
returns FALSE, otherwise!
!
Convention!
! represents “not”/negation

Example: 

SAY_HI_N_TIMES (1) returns ___? 

SAY_HI_N_TIMES (5) returns ___? 

SAY_HI_N_TIMES (-1) returns ___?



6. Repetition
SAY_HI_N_TIMES (N) 

1. WHILE (N > 0) 

2.     PRINT “HI” 

3.     N ← N - 1 

4. END WHILE  

END

Condition

Choice of condition!
MATTERS!

Example: 

SAY_HI_N_TIMES (1) returns ___? 

SAY_HI_N_TIMES (5) returns ___? 

SAY_HI_N_TIMES (-1) returns ___?



6. Repetition
SAY_HI_N_TIMES (N) 

1. WHILE (N ≥ 1) 

2.     PRINT “HI” 

3.     N ← N - 1 

4. END WHILE  

END

Condition
(N != 0)!

vs.!
(N > 0)!

vs.!
(N ≥ 1)

Assumption!
MATTERS!

Example: 

SAY_HI_N_TIMES (1) returns ___? 

SAY_HI_N_TIMES (5) returns ___? 

SAY_HI_N_TIMES (-1) returns ___?



Math Joke

• An empty kettle is on the stove, how do you boil 
water? 
 
 

• An empty kettle is on the floor, how do you boil 
water?



7. Function Calls
MAKE_EVEN (N) 

1. IF (!IS_EVEN(N)) 

2.     RETURN (N + 1) 

3. ELSE 

4.     RETURN N 

5. END IF 

END

MAKE_EVEN (N) 

1. IF (!IS_EVEN(N)) 

2.     RETURN PLUS_ONE(N) 

3. ELSE 

4.     RETURN N 

5. END IF 

END



Learning Points
• Pick your conditions carefully 

• Be lazy. Re-use previous solutions! 

• Don’t repeat work 

• Don’t reinvent the wheel 

• Unless your wheel is better (Prove it) 

• Decompose/Break down large problems into smaller, 
more manageable parts



Dijkstra’s algorithm 
(How about now?)

http://en.wikipedia.org/wiki/Dijkstra's_algorithm



Factorial
• Definition: 

• n! = n * (n-1) * (n-2) * … * 1 

• Is there a pattern here?  
Can we break down the definition into smaller, 
easier parts? 

• 0! = 1, 1! = 1 

• n! = n * (n-1)!

Base case

Recursive case



Hands on
• How would you implement Factorial in Pseudocode? 

FACTORIAL(n) 

• Example: 

• FACTORIAL(0) = 1 

• FACTORIAL(1) = 1 

• FACTORIAL(3) = 6

Recall: 
n! = n * (n-1) * (n-2) * … * 1 
n! = n * (n-1)!



Factorial
FACTORIAL(n) 

1. result ← 1 

2. WHILE (n ≥ 1) 

3.     result ← result * n 

4.     n ← n - 1 

5. END WHILE 

6. RETURN result 

END

Question: 
What if I change to > ? 

Will it work?

Which definition is this using?

Recall: 
n! = n * (n-1) * (n-2) * … * 1 
n! = n * (n-1)!

Can we use the other one?



Factorial
FACTORIAL(n) 

1. IF (n == 0 OR n == 1) 

2.     RETURN 1 

3. ELSE 

4.     RETURN n * FACTORIAL(n-1) 

5. END IF 

END

Question: 
What if I change to “AND” ? 

Will it work?

Recall: 
n! = n * (n-1) * (n-2) * … * 1 
n! = n * (n-1)!



Model of Computer
• No “intermediate” memory 

• Use variables (boxes) to hold data 

• A single variable can hold 1 value 

• Overwritten when asked to store another value 

• Instructions are executed sequentially 
(i.e. step by step, unless loop or function call) 

• Index numbering start from 0 (why: Binary numbers)



Abstraction!
Circuitry

Bits

Assembly language

Human readable 
programming languages

Pseudocode

Current flows, resistors, NAND gates

0’s and 1’s (like in the Matrix)

MIPS / ARM architecture 
(PUSH, MOV, etc)

Java, C++, Python, JS, etc

What we are currently doing



SWAP
We want to swap the values of 2 variables,  

how do we do it?

2 3

A B

3 2

A B



Sequences / Arrays
• A contiguous (joined-up) chain of variables (boxes) 

• Values are referenced by 1 name (chain’s name) 
and the index (position in the chain) 

• Example:

LEN(SEQ) = 6 
SEQ[0] = 4 
SEQ[1] = 3 
SEQ[2] = 2 

// Length of SEQ 
SEQ[3] = 7 
SEQ[4] = 3 
SEQ[5] = 6

4 3 2 7 3 6SEQ



Hands on
• How would you implement Swap in an array in 

Pseudocode? 

SWAP(SEQ, i, j) 

• Example: 

 SEQ = [A, B, C, D, E] 
 SWAP(SEQ, 1, 4) 
 SEQ = [A, E, C, D, B]



SWAP

SWAP (SEQ, i, j) 

1. SEQ[i] ← SEQ[j] 

2. SEQ[j] ← SEQ[i] 

END

Does this work? 
!

Why / Why not?



SWAP
SWAP (SEQ, i, j) 

1. temp ← SEQ[i] 

2. SEQ[i] ← SEQ[j] 

3. SEQ[j] ← temp 

END

i … j ……SEQ

temp

temp i

j … j ……SEQ

j … i ……SEQ

1.

2.

3.

temp

SEQ[i]SEQ[j]

1.

2.

3.



Discussion

• SWAP(SEQ, i, j) == SWAP(SEQ, j, i) ? 

• Symmetric in 2nd and 3rd input parameters 

• What other kinds of operations/functions are 
symmetric? 

• ADD(i, j), MULTIPLY(i, j)



Hopefully, you will be like…

https://www.youtube.com/watch?v=84VtdVK2a0A

Kung Fu Panda (2008) 
4min 12sec



One last thing for today



FIND_MAX
• Idea: Find largest value in an array of numbers 

• Example: 4 3 2 7 3 6SEQ
Largest value = 7 
Largest index = 3

-4 3 2 -7 3 -6SEQ
Largest value = 3 

Largest index = 1 or 4?



FIND_MAX

• Should FIND_MAX return: 

• “largest value”, or 

• “index of largest value”? 

• Why?



Homework
1) Find recipe of favourite food (as per the survey!) 

Write algorithm so that a computer/automated chef can 
understand it. 
(Use repetitions and function calls where suitable!) 

2) Write pseudocode of FIND_MAX(SEQ), 
which returns the first index of the largest value 

FIND_MAX(SEQ)!

1. …!

END



If you are interested…
• Topics covered: 

• Pseudocode Structure 

• Working model of a computer 

• Arrays 

• Factorial, Swap, Find_max



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Homework

Present your pseudocode for MULTIPLY(A, B)  
using only additions 

May assume that A and B are both natural numbers



Multiply
• Definition: 

• A*B = A + A + … + A (B times) 

• Is there a pattern here?  
Can we break down the definition into smaller, 
easier parts? 

• A*1 = A 

• A*B = A + (A * (B-1))

Base case

Recursive case



Multiply
MULTIPLY(A, B) 

1. result ← 0 

2. WHILE (B ≥ 1) 

3.     result ← result + A 

4.     B ← B - 1 

5. END WHILE 

6. RETURN result 

END

Question: 
What if I change to > ? 

Will it work?

Which definition is this using?

Recall: 
A*B = A + A + … + A 
A*B = A + (A * (B-1))

Can we use the other one?



Multiply
MULTIPLY(A, B) 

1. IF (B == 1) 

2.     RETURN A 

3. ELSE 

4.     RETURN A + MULTIPLY(A, B-1) 

5. END IF 

END
Recall: 
A*B = A + A + … + A 
A*B = A + (A * (B-1))



Continuing from last week…

Let’s finish off the material from last week,  
and then we’ll start on Javascript! 

(if time permits)



FIND_MAX
• Idea: Find largest value in an array of numbers 

• Example: 4 3 2 7 3 6SEQ
Largest value = 7 
Largest index = 3

-4 3 2 -7 3 -6SEQ
Largest value = 3 

Largest index = 1 or 4?



Find Max
FIND_MAX(SEQ) 

1. currentMax ← -∞;  maxIndex ← -1; i ← 0 

2. WHILE (i < LEN(SEQ)) 

3.     IF (SEQ[i] > currentMax) 

4.         currentMax ← SEQ[i]; maxIndex ← i 

5.     END IF 

6.     i ← i+1 

7. END WHILE 

8. RETURN maxIndex 

END

Question: 
What if I change to ≤ ? 

Will it work?

4 3 2 7 3 6SEQ

-4 3 2 -7 3 -6SEQ

Question: 
What if I want the last index? 

What if I want all indices?



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Why Javascript (JS)

• Every modern browser comes with a javascript 
compiler 

• Supports multiple programming paradigms 

• You can use it to make interesting web applications 
or make your websites more interesting  
(together with HTML and CSS)



Working environments

• Chrome developer console  

• Collabedit (http://collabedit.com) 

• Notepad / Any text editors



Chrome Developer Console



Collabedit



Collabedit



Collabedit



Collabedit



Syntax vs. Semantics

• Syntax 

• “Grammar structure” 

• Semantics 

• Meaning



Syntax vs. Semantics
• John ate a hotdog 

• Syntax 

• John [Noun], ate [verb], hotdog [Noun] 

• Sentence Form: <Noun> <Verb> <Noun> 

• Semantics 
 
 
 

http://www.culinate.com/articles/opinion/diet_for_children



Syntax vs. Semantics
• “Store the value 3 into the variable (box) X” 

• Syntax 

• X ← 3 (Pseudocode) 

• var X = 3; (Javascript) 

• Semantics

X 3

X 3



Basic Javascript Syntax
• Simple building blocks 

1. Numbering 

2. Comments 

3. Assignment 

4. Print/Return 

5. Conditionals (if-else) 

6. Repetition (while-loops) 

7. Function calls

From 
Pseudocode 

slides



2. Comments 
3. Assignments



4. Print/Return

Print
Returned

Print

Print
Returned



5. Conditionals

Pseudocode Javascript

Returns 
nothing



6. Repetition

Pseudocode Javascript

Returns 
nothing

Prints 5 times

Caused my Chrome to hang



7. Function Calls

Pseudocode Javascript



MULTIPLY(A,B) in JS

Pseudocode

Javascript 
(Collabedit)

Javascript 
(Chrome)

Testing…



MULTIPLY(A,B) in JS

Pseudocode

Javascript 
(Collabedit)

Javascript 
(Chrome)

Testing…



Sequences/Arrays in JS

Pseudocode

Javascript

“Out of bounds”



Homework
Write Javascript code for: 
FACTORIAL(N) and SWAP(SEQ, i, j) 

• Both versions of Factorial, so 3 codes in total 

• Make sure it works 

• Try on some simple test cases 

• Check output by hand 

• Email me your code in “.txt” format by 
Sunday 23rd Feb 2014



If you are interested…

• Topics covered: 

• Syntax vs. Semantics 

• Basic Javascript syntax



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Plans for today
• Recap some basic Javascript 

• Practice, practice, practice! 

• Learn Binary Search 

• Update on interesting problem set: 

• Currently still in talks to with Professor Martin 
Henz and his team on getting hold of it



Homework
Write Javascript code for:  
FACTORIAL(N) and SWAP(SEQ, i, j) 

• Both versions of Factorial, so 3 codes in total 

• Make sure it works 

• Try on some simple test cases 

• Check output by hand



Questions asked

• How to type Javascript 

• Chrome console vs. Collabedit vs. Notepad 

• Syntax (Review in a bit) 

• How to test



Method 1 (Collabedit)

1. Type in Collabedit 

2. Copy the entire function 

3. Open Chrome console 

4. Paste into Chrome console



Method 2 (Notepad)

1. Type in Notepad 

2. Copy the entire function 

3. Open Chrome console 

4. Paste into Chrome console



Method 3 (Console)

1. Open Chrome console 

2. Type in Chrome console 

3. Use Shift+Enter to go to the next line of your code



Things to remember
• Use “1 tab” or “4 spaces” to indent your code 

• Improve readability 

• Curly braces “{“ and “}” 

• “var” 

• Capitalisation makes a difference 

• Don’t type the numberings in JS! 

• That’s for line referencing purposes



Basic Javascript Syntax
• Simple building blocks 

1. Numbering 

2. Comments 

3. Assignment 

4. Print/Return 

5. Conditionals (if-else) 

6. Repetition (while-loops) 

7. Function calls

From 
Pseudocode 

slides



2. Comments 
3. Assignments



4. Print/Return

Print
Returned

Print

Print
Returned



5. Conditionals

Pseudocode Javascript

Returns 
nothing



6. Repetition

Pseudocode Javascript

Returns 
nothing

Prints 5 times

Caused my Chrome to hang



7. Function Calls

Pseudocode Javascript



Hands on
• Pair up and code up: 

• Factorial  
(Iterative version) 

• Factorial  
(Recursive version) 

• Swap (Given SEQ, i, j) 

!

• Pairs 

• Wee Teck, Taha 

• Leng Ze, Natalie 

• Nicolas, Yun Fen

Those who did, guide those who didn’t. 
Don’t just type for them



How to test
• Suppose you coded up function fun() 

• Create “test cases” 

• Pick <{inputs}, output>. Check output by hand. 

• Run fun(inputs) in console 

• Does it return output? 

• If yes, it passed this test case. But not necessarily correct. 

• If not, it is definitely wrong.



Example

• factorial(3) = 6 

• <{inputs}, output> = <{3}, 6> 

• swap([1, 2, 3], 0, 1) returns [2, 1, 3] 

• <{inputs}, output> = <{[1, 2, 3], 0, 1}, [2, 1, 3]>



Binary Search
• Recall what is an array/sequence 

• Assume it is sorted in some fixed order 

• “Ascending”, based on some measure 

• Question: 
Is “x” in the array? 
If yes, give me its index  
If no, tell me it is not in the array.



Binary Search
• Examples 

• Searching in a dictionary 

• Searching in a telephone book 

• Searching in a list of names in a class roster 

• Etc…



Hands on
• Question: 

Is “x” in the array? 
If yes, give me its index 
If no, tell me it is not in the array.  

• Find the following words in the dictionary: 

1. Pseudocode 

2. Algorithm 

3. Binary



Ideas?
1. Flip from front to end 

• Very slow. Worst case: Need to check all entries 

2. Flip to some kind of pre-partitioned index and search 
within that section 

• Need to pre-process before hand 

• Still bad if partitions are huge 

3. Binary search



Binary Search (Idea)
• If array is only length 1, check directly if x is there 

• Otherwise: 

• Look at middle of array, is x there? 

• If yes, done 

• If no, ask whether x should be in left or right half? 

• Consider searching in that half



Hands on

Formulate the pseudocode of 
Binary Search



Binary Search
BINARY_SEARCH (arr, L, R, x)!

1. IF (L > R)!

2.     RETURN -1                                                                   // Typical index value to denote failure!

3. END IF!

4. middle ← ⌈(L + R) / 2⌉                                                     // Calculate the middle page (round up)!

5. IF (arr[middle] == x)                                                           // Suppose every page has only 1 name!

6.     RETURN middle                                                            // Return page number!

7. ELSE IF (arr[middle] > x)                                                   // If middle page is “too large”!

8.     RETURN BINARY_SEARCH (arr, L, middle-1, x)         // Recurse on left half!

9. ELSE                                                                                  // If middle page is “too small”!

10.     RETURN BINARY_SEARCH (arr, middle+1, R, x)        // Recurse on right half!

11. END IF!

END



Homework
Write Javascript code for: 
BINARY_SEARCH (arr, L, R, x) 

• 1 code in total 

• Make sure it works 

• Start early! 

• Specify and show at least 3 test cases 

• Email me your code in “.txt” format by 
Sunday 2nd Mar 2014



If you are interested…

• Topics covered: 

• Revision of “Basic Javascript syntax” 

• Basic “test case” testing technique 

• Binary Search



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Mini-test next Wed 
12th March

• 45 minutes, at the start, before we begin on Runes 

• Takes only ~10 minutes if you know your stuff 

• Review what you have learnt so far 

• How to read & write Pseudocode 

• How to read & write Javascript code / 
Translate from Pseudocode 

• Recursion vs. Iteration



Plans for today

• Binary search. Everyone practice. 

• Recursive solutions 

• Iterative solutions



Binary Search (Idea)
• If array is only length 1, check directly if x is there 

• Otherwise: 

• Look at middle of array, is x there? 

• If yes, done 

• If no, ask whether x should be in left or right half? 

• Consider searching in that half



Binary Search
BINARY_SEARCH (arr, L, R, x)!

1. IF (L > R)!

2.     RETURN -1                                                                   // Typical index value to denote failure!

3. END IF!

4. middle ← ⌈(L + R) / 2⌉                                                     // Calculate the middle page (round up)!

5. IF (arr[middle] == x)                                                           // Suppose every page has only 1 name!

6.     RETURN middle                                                            // Return page number!

7. ELSE IF (arr[middle] > x)                                                   // If middle page is “too large”!

8.     RETURN BINARY_SEARCH (arr, L, middle-1, x)         // Recurse on left half!

9. ELSE                                                                                  // If middle page is “too small”!

10.     RETURN BINARY_SEARCH (arr, middle+1, R, x)        // Recurse on right half!

11. END IF!

END



Recursive solutions
• Idea: Solve smaller parts, combine to form solution  

• Components 

• Base case (BC) 

• Recursive case (RC) 

• Identify the BC and RC in the following examples



Recursion Examples



Recursion Examples

http://linoit.com/entry/image/2182225

Canteen queue



Recursion Examples

https://www.youtube.com/watch?v=aNQV45Wichw 
http://upload.wikimedia.org/wikipedia/commons/7/7f/Floral_matryoshka_set_1.JPG 

Sesame Street - Russian Dolls (1-10) Russian Dolls



Recursion Examples

Pseudocode for Multiply(A,B)



Recursion Examples
BINARY_SEARCH (arr, L, R, x)!

1. IF (L > R)!

2.     RETURN -1                                                                   // Typical index value to denote failure!

3. END IF!

4. middle ← ⌈(L + R) / 2⌉                                                     // Calculate the middle page (round up)!

5. IF (arr[middle] == x)                                                           // Suppose every page has only 1 name!

6.     RETURN middle                                                            // Return page number!

7. ELSE IF (arr[middle] > x)                                                   // If middle page is “too large”!

8.     RETURN BINARY_SEARCH (arr, L, middle-1, x)         // Recurse on left half!

9. ELSE                                                                                  // If middle page is “too small”!

10.     RETURN BINARY_SEARCH (arr, middle+1, R, x)        // Recurse on right half!

11. END IF!

END



Iterative solutions
• Idea: Repeat step by step until termination  

• Components 

• Iterating variable(s) 

• Terminating condition 

• Identify the components in the following examples



Iteration Examples

http://linoit.com/entry/image/2182225

Doing a worksheet of N problems



Iteration Examples

Pseudocode for Multiply(A,B)



Iteration Examples

http://linoit.com/entry/image/2182225

Canteen queue of N people



Recursion vs. Iteration

• Recursion is performed iteratively in a computer 

• This means:  
Anything written in recursion form can be re-
written in an equivalent iteration form 

• Recursion form may be more intuitive, natural and/
or easier to understand than it’s iterative form



Hands on

• Do it together on screen 

• Both recursive and iterative solutions 

• Remember testing



Hands on
• addOne(x)  

• addition(A,B) using addOne(x). result = A + B 

• subtractOne(x) using addOne(x). result = A + B 

• subtract(A,B) using subtractOne(x). result = A - B 

• multiply(A,B) using addition(A,B). result = A * B 

• Challenge: divide(A,B,n). result = A/B 
(where n is number of digits of answer)



Power
• Also called exponentiation 

• power(A,B) = AB 

• E.g. 

• power(2,5) = 32 

• power(10,3) = 1000



Power

• power(A,B) = AB 

• A*A*…*A (B times) 

• A * power(A, B-1) 

• Which is recursive, which is iterative? What are the 
components?



Homework
Write Javascript code for: POWER (A, B) 

• Both versions of power, so 2 codes in total 

• Make sure it works 

• Start early! 

• Specify and show at least 3 test cases 

• Email me your code in “.txt” format by  
Sunday 9th Mar 2014



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Mini-test 
12th March

45 minutes, at the start, before we begin on Runes 

Takes only ~10 minutes if you know your stuff



Runes Problem Set
• Adapted from NUS Course:  

CS1101S Programming Methodology 

• First semester CS course that selected few go through 

• Javascript implementation of Runes  
(Credit: Professor Martin Henz and his team) 

• Modified slides from CS1101S  
(Credit: Professor Ben Leong) 

• Quite a fair bit of things to cover.  
Please be more responsive and active in hands on.



Function
• A.k.a. “Procedure” 

• Computers follow instructions exactly 

• Associates a name to a sequence of operations 

• e.g. 

• function addOne(x) { return x+1; } 

• function ASDF(x) { return x+1; } 

• These 2 functions are given different names but perform the 
exact same operations



Functional Abstraction
• Treat functions as “black box” 

• You only need to know what it does 

• You don’t have to know how it does it 
 
 
 
 
 
 
 

FunctionInputs Output



Abstract Environment
• Previous weeks: 

• Numbers 

• Mathematical functions 

• Next few sessions: 

• Pictures! (“Runes”)



Elements of Programming

• Primitives 
• Combination 
• Abstraction



Primitives

show(rcross_bb)



Primitives

show(sail_bb)



Primitives

show(corner_bb)



Primitives

show(nova_bb)



Primitives

show(heart_bb)



Primitives

show(circle_bb)



Primitives

show(ribbon_bb)



Primitives

show(black_bb)



Primitives

show(blank_bb)



Primitives

show(pentagram_bb)



Wait…
• What does show do? 

• Take in an image and display it on Firefox 

• How is show implemented? 

• We don’t care. We don’t need to know 

• “Functional abstraction”



How to get “clear” the box?

clear_all()



Rotating 90° clockwise
show(quarter_turn_right(sail_bb)) 

!

!

!

!

Operation Rune

Original Result

quarter_turn_rightImage
Image 

(Rotated 90° clockwise)



Rotating 180°?
function rotate180(img) { 
 return quarter_turn_right(quarter_turn_right(img)); 
} 

show(rotate180(sail_bb)); 

!

!

!

!

Original Result



Rotating 90° left?
• Do we need a new primitive function? 

• What can we make use of?  
 
 
 
 
 
 

quarter_turn_rightImage
Image 

(Rotated 90° clockwise)

function quarter_turn_left(img) { 
 return __________________; 
}



Combining using stack
show(stack(sail_bb, nova_bb)) 

!

!

!

!

stack2 Images
Image 

(Pic 1 on top of Pic 2)

Resultsail_bb nova_bb

Op Rune 2Rune 1



Hands on
How do we do this?  

(Put one rune beside another) 
 
 
 
 
 
 

Use quarter_turn_left, quarter_turn_right, stack! 

Resultsail_bb nova_bb



Beside

sail_bb Resultnova_bb

function beside(pic1, pic2) { 
 return quarter_turn_left(stack(quarter_turn_right(pic1), 
             quarter_turn_right(pic2))); 
} 
show(beside(pic1, pic2));



Multiple Stacking
show(stack(sail_bb, stack(heart_bb, nova_bb))) 

!

!

!

!

sail_bb
Result

heart_bb

Op Rune 2Rune 1

nova_bb

Rune 1 Rune 2Op

1/2
1/4
1/4



Multiple Beside 

Same as multiple stack!



New Pattern

function make_cross(pic) { 
 return stack(beside(quarter_turn_right(pic), 
         rotate180(pic)), 
       beside(pic, 
        quarter_turn_left(pic))); 
}



New Pattern
show(make_cross(rcross_bb)) 

!
!
!
!
!
!
!
!

show(make_cross(nova_bb))



Repeating Patterns
show(make_cross(make_cross(nova_bb)) 

 
 
 
 
 

 
 
 

var myPic = make_cross(nova_bb)  
show(make_cross(myPic))

OR



Repeating Patterns

What if we want more than just repeating once? 

!

Recursion / Iteration!  



Hands on

• repeat_pattern(n, pat, rune) 

• n = Number of times to apply pattern 

• pat = pattern to repeat 

• rune = image to apply pattern on



Repeating Patterns

Recursive solution 

function repeat_pattern(n, pat, rune) {  
 if (n == 0) { 
  return rune; 
 } else { 
  return pat(repeat_pattern(n-1, pat, rune));  
 } 
}



Repeating Patterns
Iterative solution 

function repeat_pattern(n, pat, pic) { 
 var result = pic; 
 while (n > 0) { 
  result = pat(result); 
  n = n-1; 
 } 
 return result; 
}



Recall…
show(stack(sail_bb, stack(heart_bb, nova_bb))) 

!

!

!

!

Op Rune 2

Result

Rune 1

1/2

Rune 1 Rune 2

We want equal 
splitting for all rows! 

!

New primitive: 
stack_frac

1/4
1/4

Op



stack_frac
show(stack_frac(1/4, sail_bb, nova_bb)) 

!

!

!

!

sail_bb

Result

nova_bb

Op Rune 2Rune 1frac

frac

1 - frac



Stack 3 rows evenly
  show(stack_frac(1/3,  
        rcross_bb, 
        stack(rcross_bb, rcross_bb))) 

!

!

!

!

rcross_bb Result

Op frac

1/3

2/3

Rune 2Rune 1Op

1/2



Hands on

• stackn(n, rune) 

• n = Number of times to stack 

• rune = image to stack 

• Each rune height is 1/n of the entire height



Stack n rows evenly
Recursive solution 

function stackn(n, rune) { 
 if (n == 1) { 
  return rune; 
 } else { 
  return stack_frac(1/n, 
         rune, 
         stackn(n-1, rune)); 
 } 
}



Stack n rows evenly
Iterative solution 

function stackn(n, rune) { 
 var result = rune; 
 var current_frac = 1; 
 while (current_frac <= n) { 
  result = stack_frac(1/current_frac, rune, result); 
  current_frac = current_frac + 1; 
 } 
 return result; 
}



Functional Abstraction

No idea how a picture is 
represented



Functional Abstraction

No idea how the operations 
do their work



Functional Abstraction

Yet we can build 
complex pictures



That’s it?

Nope! 
More cool stuff in next session



Homework
• Refer to handout for quick reference 

• Download the Runes zipped folder from Dropbox 
(refer to slides behind for the following functions) 

• mosaic(rune1, rune2, rune3, rune4) 

• simple_fractal(rune) 

• fractal(rune, n) 

• Email me your code in “.txt” format by 
Sunday 15th Mar 2014



Instructions on doing HW
• Don’t touch anything except ctc.js 

• Fill in the functions in ctc.js (Using notepad) 

• Save your changes 

• Open ctc.html using Firefox / Refresh after changes 

• Open Firefox console 

• Test!



Reminder

No session next week (19th March) 

Next session will be 26th March (Wed)



mosaic(rune1, rune2, rune3, rune4)

rune4

rune3

rune1

rune2



mosaic(rcross_bb, sail_bb, corner_bb, nova_bb)

rune4

rune3

rune1

rune2

Rune 1 Rune 2 Rune 3 Rune 4



mosaic(rcross_bb, sail_bb, corner_bb, nova_bb)



simple_fractal(rune)

rune

rune

rune

1/2

1/2

1/21/2



simple_fractal(make_cross(rcross_bb))

rune

rune

rune

1/2

1/2

1/21/2

Rune



simple_fractal(make_cross(rcross_bb))



fractal(rune, 3)

fractal(rune, 2) 1/2

1/2

1/2

fractal(rune, 2)

rune

1/2



fractal(rune, 3)

fractal(rune, 2)

1/2

fractal(rune, 2)

1/(22) 1/(22)

rune

1/2

1/(22)

1/(22)

1/(22)

1/(22)



fractal(rune, 4)

fractal(rune, 3) 1/2

1/2

1/2

fractal(rune, 3)

rune

1/2



fractal(rune, n)

fractal(rune, n-1) 1/2

1/2

1/2

fractal(rune, n-1)

rune

1/2



fractal(make_cross(rcross_bb), 2)
Rune n

simple_fractal(rune) = fractal(rune, 2)



fractal(make_cross(rcross_bb), 3)
Rune n



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Welcome back!

• Hope you enjoyed your holidays! 

• Any interesting stories to share with the class? ;) 

• What have we done so far? 

• What will we be doing next?



Modelling

• Basic graph model 

• Modelling real life problems into numbers



Problem solving techniques

• Iteration 

• Recursion 

• Abstraction / Decomposition of large problems



Technical knowledge
• How to read and write 

• Pseudocode 

• Basic Javascript 

• What’s “testing”, and how to do it 

• Data structure: Array



Specific algorithms

• Factorial 

• Swap 

• Find max 

• Binary Search



Recap Learning Objectives
• When given a problem, know how to get started 

• “So what did you learn?” 

• Life is complex 

• Manage complexity!!

• Basic programming skills to implement solutions 

• Programming is the language of the future



Ready for next term?

• Compulsory 

• Basic sorting 

• Topics by voting 

• Vote later today



Today’s Plans

• Finish up on Runes 

• Share some technical interview questions 

• Vote on topics 

• Starts after sorting



Homework
• Refer to handout for quick reference 

• Download the Runes zipped folder from Dropbox 
(refer to slides behind for the following functions) 

• mosaic(rune1, rune2, rune3, rune4) 

• simple_fractal(rune) 

• fractal(rune, n) 

• Email me your code in “.txt” format by 
Sunday 15th Mar 2014



mosaic(rcross_bb, sail_bb, corner_bb, nova_bb)

rune4

rune3

rune1

rune2

Rune 1 Rune 2 Rune 3 Rune 4



fractal(rune, n)

fractal(rune, n-1) 1/2

1/2

1/2

fractal(rune, n-1)

rune

1/2



Persian rug / carpets

http://en.wikipedia.org/wiki/Persian_carpet



How do we build this?

Apply what you have learnt!

Break!
it!

down!
into 

smaller!
parts!
that 
you 

know 
how 
to 

solve!

persian(rune, n)

n = 5



What small part do you 
know how to solve?

make_cross

stacking: stack_frac, stackn

rotating: quarter_turn_left, quarter_turn_right



Decomposition the problem

How do we split this?



Decomposition #1

How do we split this?

What 
do 
we 
use 

here?



Decomposition #2

How do we split this?

What 
do 
we 
use 

here?



Creating 3D Objects

• Use greyscale to represent depth 

• Surface = Black  
Maximum depth = White 

• Closer to you = Blacker  
Further from you = Whiter



Creating 3D Objects

means
1/2
1/2



Creating 3D Objects
• overlay(sail_bb, heart_bb)



Of course there’s 
overlay_frac

frac
1 - frac



Creating 3D Objects
• overlay_frac(1/3, sail_bb, heart_bb)



Other cool stuff you can do

• anaglyph E.g. anaglyph(sail_bb) 

• http://en.wikipedia.org/wiki/Anaglyph_3D 

• stereogram E.g. stereogram(sail_bb) 

• http://en.wikipedia.org/wiki/Stereogram 

• hollusion E.g. hollusion(sail_bb)



Challenge

• What cool pictures can you make using the 
available runes and functions? 

• Refer to CS1101S AY2013/2014 Rune Contest 
slides



Technical interviews
• Interview where tech companies test interviewees 

on how “zai” they are. E.g. Google, Microsoft, etc. 

• Quite interesting sometimes. Like brainteasers. 

• Usually can learn some interesting stuff from the 
questions 

• Now let’s look at some actual technical interview 
questions



Swapping without temp
• Recall your swapping code 

     ! swap(a,b) {  
! ! ! ! ! ! ! var temp = a; 
! ! ! ! ! ! ! a = b; 
! ! ! ! ! ! ! b = temp; 
! ! ! ! ! ! } 

• How to swap without creating/using a temporary 
variable?



Swapping without temp
• Solution #1 (Addition and subtraction) 

    swap(a,b) {  
! ! ! ! ! a = a+b; // a now holds a+b 
! ! ! ! ! b = a-b; // b now holds a  
! ! ! ! ! a = a-b; // a now holds b 
! ! ! ! }



Swapping without temp
• Solution #2 (XOR) 

• What is XOR? 

• Exclusive-OR 

• 0 XOR 1 = 1 XOR 0 = 1 

• 0 XOR 0 = 1 XOR 1 = 0



Swapping without temp
• Solution #2 (XOR) 

   swap(a,b) {  
! ! ! ! a = a XOR b; // a now holds a XOR b 
! ! ! ! b = a XOR b; // b now holds a  
! ! ! ! a = a XOR b; // a now holds b 
! ! ! } 

• Same idea, replace +, - with XOR



Quicksort
• “Write quicksort” on a whiteboard (cannot test) 

• Actual interview question from Microsoft 

• One of my professor used to work in Microsoft 

• This was one often common interview questions 

• What’s this “quicksort”? 

• A sorting algorithm 
(not basic, but it’s quick. Can guess from name right?)



Find median in 
2 sorted arrays

• Recall binary search 

• Given sorted array is sorted, find element X 

• Median (vs. Mean vs. Mode) 

• “Center” element. Left side size = Right side size 

• Now: 

• Given 2 sorted arrays find middle element

3 types of 
“average”



Find median in 
2 sorted arrays

• Given 2 sorted arrays find middle element of all 
elements 

• Easy (but slow) solution 

• Combine both array into new array newArr 

• Sort 

• Return newArr[size/2] 

• Apply binary search simultaneously on both arrays!

how do you know what’s “slow”?



Why am I sharing these?

• Simple mathematical properties like XOR are 
surprisingly powerful 

• Cryptography uses a lot of XORs… 

• You are actually learning actual useful stuff here 

• Know how to make use and combine things you 
have learnt (This applies to everything in life!)



Basic Sorting Topics

• Bubble sort 

• Insertion sort 

• Selection sort 

• Merge sort



Vote on Topics
More general stuff 

• Advanced sorting 

• Data structures 

• Algorithm analysis 

• Graph algorithms 

• Dynamic programming 

More specific things: 

• Basic cryptography 

• Minimax algorithm 

• Project Euler 

• Computer Organization 

• Build a program/game

Suggestions?



Advanced sorting
• Heap sort 

• Quick sort 

• Counting sort 

• Radix sort 

• Bucket sort

Needs a little data structure

Heaps

Hash tables



Data structures
• Heaps (implementation in arrays) 

• Trees (balanced trees? augmented trees?) 

• Hash tables 

• Linked lists 

• Stack/Queue 

• Priority Queues



Algorithm analysis

• Remember how we said “quicksort is quick” and 
easy approach earlier was “slow”? 

• How to measure how fast/good an algorithm is? 

• Space complexity, Time complexity 

• Big-O notation



Graph algorithms

• Examples you know of:  
Pancake flipping, shortest path algorithm 

• Other examples: BFS, DFS, Topological Sort, etc. 

• Applications (in Artificial Intelligence):  
A* Search (general form of Dijkstra’s)  
Minimax algorithm



Dynamic Programming
• Another class of useful program solving skill 

• Besides recursion/divide-and-conquer 

• In fact, one of the most powerful ones… 

• But not trivial to understand 

• Idea: Similar to recursion but don’t repeat computation 

• Example: Fibonacci



Basic cryptography
• Shift ciphers 

• Affine ciphers 

• Block ciphers (?) 

• RSA (?) 

• http://en.wikipedia.org/wiki/RSA_(cryptosystem) 

• Program your own encoding/decoding code

Good way to show you 
why programming is useful 
(no one do these by hand)



Minimax algorithm

• Best way to play a game / decide action 

• Used in basic A.I. programs 

• Example: Tic-tac-toe



Project Euler
• http://projecteuler.net 

!

!

!

!

• We’ll work on the questions together one by one



Computer Organisation
• Curious about internal workings of a computer? 

• How do computers represent numbers? 

• How do computers do calculations? 

• What are logic gates? 

• Etc etc…



Build a program/game

• Build something (Ever had a cool idea?) 

• Learn skills along the way to accomplish goal 

• I can suggest topics or you can propose 

• Can be group work



Vote on Topics
More general stuff 

• Advanced sorting 

• Data structures 

• Algorithm analysis 

• Graph algorithms 

• Dynamic programming 

More specific things: 

• Basic cryptography 

• Minimax algorithm 

• Project Euler 

• Computer Organisation 

• Build a program/game

Suggestions?



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



Vote on Topics
More general stuff 

• Advanced sorting 

• Data structures 

• Algorithm analysis 

• Graph algorithms 

• Dynamic programming 

More specific things: 

• Basic cryptography 

• Minimax algorithm 

• Project Euler 

• Computer Organisation 

• Build a program/game

Suggestions?

4/5 votes!



Pacman

https://www.google.com/doodles/30th-anniversary-of-pac-man



But first…

Sorts



Sorts

Bubble sort 

Insertion sort 

Selection sort 

Merge sort



Seen this before?

https://www.youtube.com/watch?v=gdVPKxQUJKo

Uniform Group (NPCC) Sizing



NPCC Sizing
• To make contingent look “nicer” 

• How it works 

• Line up in descending order 

• Alternate numbering between 1 and 2 

• “1” step forward; “2” step backwards 

• March and form up



Sorting

• Line up in descending order 

• What if we have 10000 people? 

• Abstract into a model 

• Input: A sequence of numbers 

• Output: Sequence in descending order



Models
UNO Cards  

NPCC Sizing

Sorted Hand"
!

People in order

Sequence"
of"

Numbers
Descending"
Sequence

Sort

???



Hands on

All of you stand up and gather to the front"

Arrange in descending height order 

Arrange in earliest birthday order 

Arrange in alphabetical name order



Hands on

• How many people did you compare with? 
(Roughly) 

• That means ____ comparisons in total… 

• Lower # comparisons better (Algorithm analysis)



UNO Cards
Let us use UNO cards as an abstraction/example 

!

!

!

!

Consider [4, 5, 1, 2, 9, 6, 8]

http://img.4plebs.org/boards/tg/image/1368/87/1368871995105.png



Bubble sort

Idea: 

1. Look from left to right 

• If it is larger than the card on it’s left, swap 

• Stop when we reach last card 

2. If we made a swap, repeat Step 1.

We already know how!Iterative!



Bubble sort
• Why does it work? 

• If already sorted? 

• ___ comparisons 

• ___ swaps 

• If reversed order initially? 

• ___ comparisons 

• ___ swaps



Insertion sort

Idea: 

1. Look from left to right 

• If it is larger than the card on it’s left, swap 

• Keep swapping until left card is larger or same 

• Stop when we reach last card

We already know how!Iterative!



Insertion sort
• Why does it work? 

• If already sorted? 

• ___ comparisons 

• ___ swaps 

• If reversed order initially? 

• ___ comparisons 

• ___ swaps



Selection sort

Idea: 

1. Look at cards, find maximum 

2. Put maximum at left most side 

3. Look at the rest of the cards (Repeat 1)

We already know how!

By swapping
Iterative!



Selection sort
• Why does it work? 

• If already sorted? 

• ___ comparisons 

• ___ swaps 

• If reversed order initially? 

• ___ comparisons 

• ___ swaps



Merge sort

Idea: 

1. Split cards into K portions (usually K=2) 

2. Sort each portion 

3. Combine sorted portions (“Merge step”)

Recursive!

By using any sort

How?



Merge

R > B

Sorted Sorted



Merge

R > B

Sorted Sorted



Merge

R < B

Sorted Sorted



Merge

R < B

Sorted Sorted



Merge sort
• Why does it work? 

• If already sorted? 

• ___ comparisons 

• ___ swaps 

• If reversed order initially? 

• ___ comparisons 

• ___ swaps



Loop invariant

• A property that is guaranteed before and after 
every iteration of a loop 

• Example: 

• Terminating conditions in a loop



Loop invariant
• Bubble sort 

• Every time we are done from L to R, 
cards are 1 position closer to correct position 

• Insertion sort 

• Left portion of cards always in sorted order 

• Selection sort 

• After K steps, K largest cards are in correct place



Parallelism

Idea 

• Multi-core / multiple processors 

• Split workload and combine results 

• Can apply to sorts we learnt so far?



Parallelism
• Bubble sort 

• Check alternate cards at same time 

• Insertion sort & Selection sort 

• Can’t. Why? 

• Merge sort 

• Perfect! One processor sort 1 portion



Performance
• Algorithmic analysis 

• Worst case performance 

• Best case performance 

• In practice… 

• Small N: Insertion sort 

• Large N: Merge sort, until small N, then insertion



Computational 
Thinking 

Temasek Junior College

Davin Choo 
cxjdavin+CTC@gmail.com



What are these?
• HTML5 

• Hyper Text Markup Language 

• Standard markup language used to create web pages 

• CSS 

• Cascading Style Sheets 

• Used for describing look and formatting in markup languages 

• JS 

• Javascript



Goals for today
• Basic HTML5 syntax 

• How to draw using HTML5 <canvas> 

• How to capture keyboard inputs 

• How to simulate motion 

• Some game logic



Basic HTML5

• Tags 

• Canvas 

• Demo (basic.html) 

• Demo (canvas_demo.html)



Events

• Capturing keyboard inputs 

• Demo (keycapture.html)



JS Timing Events

• setInterval() 

• setTimeout() 

• Demo (motion.html)



Other stuff
• A lot of other HTML5 tags 

• Alerts 

• Nameless functions 

• for-loop 

• random()



Basic Game Logic
Game state

Visual User input

Maintain Process 
and 

Update

Draw

User

Game

InteractSee



Basic Game Logic
• Maintain 

• Update self-moving things / A.I. motion 

• Draw 

• Remember to clear canvas before re-drawing 

• Process and update 

• Process keyboard presses / button clicks



2-player catching
• Maintain (Do nothing, until keyboard input detected) 

• Draw 

• Clear canvas. Draw player images at player positions. 

• Process and update 

• Process keyboard presses 

• Update players’ position accordingly 

• If collide, add point to catcher



2048
• Maintain (Do nothing, until keyboard input detected) 

• Draw 

• Clear canvas. Draw cells. 

• Process and update 

• Process keyboard presses 

• Update array values (Shift/Combine) 

• Spawn new cell (Either 2 or 4) at random location



Useful links
Tutorials: 

http://www.w3schools.com/html/html5_intro.asp 

http://www.w3schools.com/html/html5_canvas.asp 

http://www.w3schools.com/js/js_timing.asp 

Key codes (to capture keyboard input): 

http://www.cambiaresearch.com/articles/15/javascript-char-codes-key-codes 


