MADZ Group Meeting talk: k-means++: few more steps yield constant approximation

Abstract

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is a state-of-the-art algorithm for solving the k-means clustering problem and is known to give an O(log k)-approximation in expectation. Recently, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with O(k log log k) local search steps to yield a constant approximation (in expectation) to the k-means clustering problem. In this paper, we improve their analysis to show that, for any arbitrarily small constant $\epsilon > 0$, with only $\epsilon k$ additional local search steps, one can achieve a constant approximation guarantee (with high probability in k), resolving an open problem in their paper.

Date
Location
Zoom
Avatar
Davin Choo
Student of life

I enjoy learning about things.